ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Secondary Ion Mass Spectrometry: Characterizing Complex Samples in Two and Three Dimensions

View Author Information
Manchester Institute of Biotechnology, University of Manchester, Manchester M13 9PL, U.K.
Cite this: Anal. Chem. 2013, 85, 2, 610–639
Publication Date (Web):October 24, 2012
https://doi.org/10.1021/ac303088m
Copyright © 2012 American Chemical Society

    Article Views

    3601

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 120 publications.

    1. Govind Gupta, Jasreen Kaur, Kunal Bhattacharya, Benedict J. Chambers, Arianna Gazzi, Giulia Furesi, Martina Rauner, Claudia Fuoco, Marco Orecchioni, Lucia Gemma Delogu, Lars Haag, Jan Eric Stehr, Aurélien Thomen, Romain Bordes, Per Malmberg, Gulaim A. Seisenbaeva, Vadim G. Kessler, Michael Persson, Bengt Fadeel. Exploiting Mass Spectrometry to Unlock the Mechanism of Nanoparticle-Induced Inflammasome Activation. ACS Nano 2023, 17 (17) , 17451-17467. https://doi.org/10.1021/acsnano.3c05600
    2. Jichun Jiang, Lei Hua, Yuanyuan Xie, Yixue Cao, Yuxuan Wen, Ping Chen, Haiyang Li. High Mass Resolution Multireflection Time-of-Flight Secondary Ion Mass Spectrometer. Journal of the American Society for Mass Spectrometry 2021, 32 (5) , 1196-1204. https://doi.org/10.1021/jasms.1c00016
    3. Tanja Bien, Sebastian Bessler, Klaus Dreisewerd, Jens Soltwisch. Transmission-Mode MALDI Mass Spectrometry Imaging of Single Cells: Optimizing Sample Preparation Protocols. Analytical Chemistry 2021, 93 (10) , 4513-4520. https://doi.org/10.1021/acs.analchem.0c04905
    4. Vincent Delmez, Hervé Degand, Claude Poleunis, Konstantin Moshkunov, Mykhailo Chundak, Christine Dupont-Gillain, Arnaud Delcorte. Deposition of Intact and Active Proteins In Vacuo Using Large Argon Cluster Ion Beams. The Journal of Physical Chemistry Letters 2021, 12 (2) , 952-957. https://doi.org/10.1021/acs.jpclett.0c02510
    5. P. W. F. Arisz, J. B. M. Pureveen, R. M. A. Heeren. Dynamics of Molecules Observed at Crude-Oil–Gas Interfaces by Time-of-Flight Secondary Ion Mass Spectrometry Imaging. Journal of the American Society for Mass Spectrometry 2020, 31 (11) , 2356-2361. https://doi.org/10.1021/jasms.0c00290
    6. Wenxiao Guo, Michal Kanski, Wen Liu, Mikołaj Gołuński, Yadong Zhou, Yining Wang, Cuixia Cheng, Yingge Du, Zbigniew Postawa, Wei David Wei, Zihua Zhu. Three-Dimensional Mass Spectrometric Imaging of Biological Structures Using a Vacuum-Compatible Microfluidic Device. Analytical Chemistry 2020, 92 (20) , 13785-13793. https://doi.org/10.1021/acs.analchem.0c02204
    7. Brittney L. Gorman, Mary L. Kraft. High-Resolution Secondary Ion Mass Spectrometry Analysis of Cell Membranes. Analytical Chemistry 2020, 92 (2) , 1645-1652. https://doi.org/10.1021/acs.analchem.9b04492
    8. Tongtong Wang, Xiaoling Cheng, Hexin Xu, Yifan Meng, Zhibin Yin, Xiaoping Li, Wei Hang. Perspective on Advances in Laser-Based High-Resolution Mass Spectrometry Imaging. Analytical Chemistry 2020, 92 (1) , 543-553. https://doi.org/10.1021/acs.analchem.9b04067
    9. Robert M. T. Madiona, Sarah E. Bamford, David A. Winkler, Benjamin W. Muir, Paul J. Pigram. Distinguishing Chemically Similar Polyamide Materials with ToF-SIMS Using Self-Organizing Maps and a Universal Data Matrix. Analytical Chemistry 2018, 90 (21) , 12475-12484. https://doi.org/10.1021/acs.analchem.8b01951
    10. Claude Poleunis, Vanina Cristaudo, Arnaud Delcorte. Temperature Dependence of Arn+ Cluster Backscattering from Polymer Surfaces: a New Method to Determine the Surface Glass Transition Temperature. Journal of the American Society for Mass Spectrometry 2018, 29 (1) , 4-7. https://doi.org/10.1007/s13361-017-1840-7
    11. Nicholas J. Popczun, Lars Breuer, Andreas Wucher, Nicholas Winograd. On the SIMS Ionization Probability of Organic Molecules. Journal of the American Society for Mass Spectrometry 2017, 28 (6) , 1182-1191. https://doi.org/10.1007/s13361-017-1624-0
    12. John F. Cahill, Vilmos Kertesz, Taylor M. Weiskittel, Marissa Vavrek, Carol Freddo, and Gary J. Van Berkel . Online, Absolute Quantitation of Propranolol from Spatially Distinct 20- and 40-μm Dissections of Brain, Liver, and Kidney Thin Tissue Sections by Laser Microdissection–Liquid Vortex Capture–Mass Spectrometry. Analytical Chemistry 2016, 88 (11) , 6026-6034. https://doi.org/10.1021/acs.analchem.6b01155
    13. Xin Liu and Amanda B. Hummon . Mass Spectrometry Imaging of Therapeutics from Animal Models to Three-Dimensional Cell Cultures. Analytical Chemistry 2015, 87 (19) , 9508-9519. https://doi.org/10.1021/acs.analchem.5b00419
    14. Zhaoying Wang, Bingwen Liu, Evan W. Zhao, Ke Jin, Yingge Du, James J. Neeway, Joseph V. Ryan, Dehong Hu, Kelvin H. L. Zhang, Mina Hong, Solenne Le Guernic, Suntharampilai Thevuthasan, Fuyi Wang, Zihua Zhu. Argon Cluster Sputtering Source for ToF-SIMS Depth Profiling of Insulating Materials: High Sputter Rate and Accurate Interfacial Information. Journal of the American Society for Mass Spectrometry 2015, 26 (8) , 1283-1290. https://doi.org/10.1007/s13361-015-1159-1
    15. Andrew D. Palmer and Theodore Alexandrov . Serial 3D Imaging Mass Spectrometry at Its Tipping Point. Analytical Chemistry 2015, 87 (8) , 4055-4062. https://doi.org/10.1021/ac504604g
    16. Sadia Sheraz née Rabbani , Irma Berrueta Razo , Taylor Kohn , Nicholas P. Lockyer , and John C. Vickerman . Enhancing Ion Yields in Time-of-Flight-Secondary Ion Mass Spectrometry: A Comparative Study of Argon and Water Cluster Primary Beams. Analytical Chemistry 2015, 87 (4) , 2367-2374. https://doi.org/10.1021/ac504191m
    17. Slobodan Milasinovic, Yang Cui, Robert J. Gordon, and Luke Hanley . Internal Energy of Thermometer Ions Formed by Femtosecond Laser Desorption: Implications for Mass Spectrometric Imaging. The Journal of Physical Chemistry C 2014, 118 (50) , 28938-28947. https://doi.org/10.1021/jp504062u
    18. Andrew Kucher, Andreas Wucher, and Nicholas Winograd . Strong Field Ionization of β-Estradiol in the IR: Strategies To Optimize Molecular Postionization in Secondary Neutral Mass Spectrometry. The Journal of Physical Chemistry C 2014, 118 (44) , 25534-25544. https://doi.org/10.1021/jp5080708
    19. Andrew Kucher, Lauren M. Jackson, Jordan O. Lerach, A. N. Bloom, N. J. Popczun, Andreas Wucher, and Nicholas Winograd . Near Infrared (NIR) Strong Field Ionization and Imaging of C60 Sputtered Molecules: Overcoming Matrix Effects and Improving Sensitivity. Analytical Chemistry 2014, 86 (17) , 8613-8620. https://doi.org/10.1021/ac501586d
    20. Jeremy Brison, Michael A. Robinson, Danielle S. W. Benoit, Shin Muramoto, Patrick S. Stayton, and David G. Castner . TOF-SIMS 3D Imaging of Native and Non-Native Species within HeLa Cells. Analytical Chemistry 2013, 85 (22) , 10869-10877. https://doi.org/10.1021/ac402288d
    21. Yang Cui, Chhavi Bhardwaj, Slobodan Milasinovic, Ross P. Carlson, Robert J. Gordon, and Luke Hanley . Molecular Imaging and Depth Profiling of Biomaterials Interfaces by Femtosecond Laser Desorption Postionization Mass Spectrometry. ACS Applied Materials & Interfaces 2013, 5 (19) , 9269-9275. https://doi.org/10.1021/am4020633
    22. Claudia Bich, Rasmus Havelund, Rudolf Moellers, David Touboul, Felix Kollmer, Ewald Niehuis, Ian S. Gilmore, and Alain Brunelle . Argon Cluster Ion Source Evaluation on Lipid Standards and Rat Brain Tissue Samples. Analytical Chemistry 2013, 85 (16) , 7745-7752. https://doi.org/10.1021/ac4009513
    23. Joseph P. Thomas, Liyan Zhao, Marwa Abd-Ellah, Nina F. Heinig, and K. T. Leung . Interfacial Micropore Defect Formation in PEDOT:PSS-Si Hybrid Solar Cells Probed by TOF-SIMS 3D Chemical Imaging. Analytical Chemistry 2013, 85 (14) , 6840-6845. https://doi.org/10.1021/ac401084x
    24. Sadia Sheraz née Rabbani, Andrew Barber, John S. Fletcher, Nicholas P. Lockyer, and John C. Vickerman . Enhancing Secondary Ion Yields in Time of Flight-Secondary Ion Mass Spectrometry Using Water Cluster Primary Beams. Analytical Chemistry 2013, 85 (12) , 5654-5658. https://doi.org/10.1021/ac4013732
    25. Jörg Hanrieder, Nhu T. N. Phan, Michael E. Kurczy, and Andrew G. Ewing . Imaging Mass Spectrometry in Neuroscience. ACS Chemical Neuroscience 2013, 4 (5) , 666-679. https://doi.org/10.1021/cn400053c
    26. Kristina Mlinac-Jerkovic, Svjetlana Kalanj-Bognar, Marija Heffer, Senka Blažetić. Methodological Pitfalls of Investigating Lipid Rafts in the Brain: What Are We Still Missing?. Biomolecules 2024, 14 (2) , 156. https://doi.org/10.3390/biom14020156
    27. Qi Li, Jingjing Chang, Linfeng Li, Xiaoyang Lin, Yichun Li. Research progress of nano-scale secondary ion mass spectrometry (NanoSIMS) in soil science: Evolution, applications, and challenges. Science of The Total Environment 2023, 905 , 167257. https://doi.org/10.1016/j.scitotenv.2023.167257
    28. Ziyi Wang, Hongying Zhu, Wei Xiong. Advances in mass spectrometry-based multi-scale metabolomic methodologies and their applications in biological and clinical investigations. Science Bulletin 2023, 68 (19) , 2268-2284. https://doi.org/10.1016/j.scib.2023.08.047
    29. Yijia Fangma, Mengting Liu, Jie Liao, Zhong Chen, Yanrong Zheng. Dissecting the brain with spatially resolved multi-omics. Journal of Pharmaceutical Analysis 2023, 13 (7) , 694-710. https://doi.org/10.1016/j.jpha.2023.04.003
    30. Christine Kern, Stefanie Kern, Anja Henss, Marcus Rohnke. Secondary ion mass spectrometry for bone research. Biointerphases 2023, 18 (4) https://doi.org/10.1116/6.0002820
    31. Patcharamon Seubnooch, Matteo Montani, Sofia Tsouka, Emmanuelle Claude, Umara Rafiqi, Aurel Perren, Jean-Francois Dufour, Mojgan Masoodi. Characterisation of hepatic lipid signature distributed across the liver zonation using mass spectrometry imaging. JHEP Reports 2023, 5 (6) , 100725. https://doi.org/10.1016/j.jhepr.2023.100725
    32. Salvia Sajid, Ishika Aryal, Suleman Farooq Chaudhri, Frants Roager Lauritsen, Mikkel Girke Jørgensen, Håvard Jenssen, Bala Krishna Prabhala. MIMS as a Low-Impact Tool to Identify Pathogens in Water. Water 2023, 15 (1) , 184. https://doi.org/10.3390/w15010184
    33. Hao Li, Zhiyong Li. The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging. Bioengineering 2022, 9 (11) , 707. https://doi.org/10.3390/bioengineering9110707
    34. Christine Kern, Reem Jamous, Thaqif El Khassawna, Marcus Rohnke. Characterisation of Sr 2+ mobility in osteoporotic rat bone marrow by cryo-ToF-SIMS and cryo-OrbiSIMS. The Analyst 2022, 147 (18) , 4141-4157. https://doi.org/10.1039/D2AN00913G
    35. Christine Kern, Anna Pauli, Marcus Rohnke. Determination of Sr 2+ mobility in viscous bovine bone marrow by cryo‐time‐of‐flight secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry 2022, 36 (12) https://doi.org/10.1002/rcm.9300
    36. Tanushree Dutta, Tomáš Steklý, Lukáš Kučera, Karel Lemr. Dual-polarity MALDI mass spectrometry and imaging of oil binders and fatty acids in artworks using cyanographene as a single matrix. Talanta 2022, 242 , 123291. https://doi.org/10.1016/j.talanta.2022.123291
    37. Hao Mei, Travis S. Laws, Tanguy Terlier, Rafael Verduzco, Gila E. Stein. Characterization of polymeric surfaces and interfaces using time‐of‐flight secondary ion mass spectrometry. Journal of Polymer Science 2022, 60 (7) , 1174-1198. https://doi.org/10.1002/pol.20210282
    38. Théogène Habumugisha, Zixing Zhang, Jean Claude Ndayishimiye, François Nkinahamira, Alexis Kayiranga, Eric Cyubahiro, Abdul Rehman, Changzhou Yan, Xian Zhang. Evaluation and optimization of the influence of silver cluster ions on the MALDI-TOF-MS analysis of polystyrene nanoplastic polymers. Analytical Methods 2022, 14 (7) , 763-772. https://doi.org/10.1039/D1AY02219A
    39. Sang Ju Lee, Aram Hong, Jinwan Cho, Chang Min Choi, Ji Young Baek, Jae Yeong Eo, Byeong Jun Cha, Woo Jun Byeon, Jin Young We, Sangwon Hyun, Minwoo Jeon, Choelho Jeon, Dong Jin Ku, Myoung Choul Choi. Characteristics of a mixed-gas cluster ion beam for time-of-flight secondary ion mass spectrometry. Applied Surface Science 2022, 572 , 151467. https://doi.org/10.1016/j.apsusc.2021.151467
    40. Brittney L. Gorman, Melanie A. Brunet, Mary L. Kraft. Depth correction of 3D NanoSIMS images using secondary electron pixel intensities. Biointerphases 2021, 16 (4) https://doi.org/10.1116/6.0001092
    41. Vilmos Kertesz, John F. Cahill. Spatially resolved absolute quantitation in thin tissue by mass spectrometry. Analytical and Bioanalytical Chemistry 2021, 413 (10) , 2619-2636. https://doi.org/10.1007/s00216-020-02964-3
    42. Alexandre Fadel, Kevin Lepot, Nicolas Nuns, Sylvie Regnier, Armelle Riboulleau. New preparation techniques for molecular and in‐situ analysis of ancient organic micro‐ and nanostructures. Geobiology 2020, 18 (4) , 445-461. https://doi.org/10.1111/gbi.12380
    43. Christine Kern, Seemun Ray, Michael Gelinsky, Allen T. Bellew, Alexander Pirkl, Marcus Rohnke. New insights into ToF-SIMS imaging in osteoporotic bone research. Biointerphases 2020, 15 (3) https://doi.org/10.1116/6.0000051
    44. Muhammad Shemyal Nisar, Xiangwei Zhao. High resolution mass spectrometry for single cell analysis. International Journal of Mass Spectrometry 2020, 450 , 116302. https://doi.org/10.1016/j.ijms.2020.116302
    45. Buddy D. Ratner, David G. Castner. Surface Properties and Surface Characterization of Biomaterials. 2020, 53-75. https://doi.org/10.1016/B978-0-12-816137-1.00006-4
    46. Sébastien Grégoire, Gustavo S. Luengo, Philippe Hallegot, Ana-Maria Pena, Xueqin Chen, Thomas Bornschlögl, Kin F. Chan, Isaac Pence, Peyman Obeidy, Amin Feizpour, Sinyoung Jeong, Conor L. Evans. Imaging and quantifying drug delivery in skin – Part 1: Autoradiography and mass spectrometry imaging. Advanced Drug Delivery Reviews 2020, 153 , 137-146. https://doi.org/10.1016/j.addr.2019.11.004
    47. Subhash Chandra. Correlative microscopy of freeze-dried cells and studies on intracellular calcium stores with imaging secondary ion mass spectrometry (SIMS). Journal of Analytical Atomic Spectrometry 2019, 34 (10) , 1998-2003. https://doi.org/10.1039/C9JA00193J
    48. Elizabeth K. Neumann, Thanh D. Do, Troy J. Comi, Jonathan V. Sweedler. Erforschung der fundamentalen Strukturen des Lebens: Nicht zielgerichtete chemische Analyse von Einzelzellen und subzellulären Strukturen. Angewandte Chemie 2019, 131 (28) , 9448-9465. https://doi.org/10.1002/ange.201811951
    49. Elizabeth K. Neumann, Thanh D. Do, Troy J. Comi, Jonathan V. Sweedler. Exploring the Fundamental Structures of Life: Non‐Targeted, Chemical Analysis of Single Cells and Subcellular Structures. Angewandte Chemie International Edition 2019, 58 (28) , 9348-9364. https://doi.org/10.1002/anie.201811951
    50. Sage J.B. Dunham, Elizabeth K. Neumann, Eric J. Lanni, Ta‐Hsuan Ong, Jonathan V. Sweedler. Biomarker Discovery with Mass Spectrometry Imaging and Profiling. 2019, 89-123. https://doi.org/10.1002/9781119081661.ch4
    51. Robert M.T. Madiona, David A. Winkler, Benjamin W. Muir, Paul J. Pigram. Effect of mass segment size on polymer ToF-SIMS multivariate analysis using a universal data matrix. Applied Surface Science 2019, 478 , 465-477. https://doi.org/10.1016/j.apsusc.2019.01.242
    52. S. Eswara, A. Pshenova, L. Yedra, Q. H. Hoang, J. Lovric, P. Philipp, T. Wirtz. Correlative microscopy combining transmission electron microscopy and secondary ion mass spectrometry: A general review on the state-of-the-art, recent developments, and prospects. Applied Physics Reviews 2019, 6 (2) https://doi.org/10.1063/1.5064768
    53. Christine Kern, Mandy Quade, Seemun Ray, Jürgen Thomas, Matthias Schumacher, Thomas Gemming, Michael Gelinsky, Volker Alt, Marcus Rohnke. Investigation of strontium transport and strontium quantification in cortical rat bone by time-of-flight secondary ion mass spectrometry. Journal of The Royal Society Interface 2019, 16 (151) , 20180638. https://doi.org/10.1098/rsif.2018.0638
    54. Robert Mroczka, Rafał Łopucki, Grzegorz Żukociński. Molecular analysis of additives and impurities accumulated on copper electrodeposited layer by time-of-flight secondary ion mass spectrometry. Applied Surface Science 2019, 463 , 412-426. https://doi.org/10.1016/j.apsusc.2018.08.238
    55. Ruo-Can Qian, Li-Jun Zhao, Jian Lv, Xin Hua, Yi-Tao Long. Reversible redox inter-conversion of biologically active NAD + /NADH derivatives bound to a gold electrode: ToF-SIMS evidence. Chemical Communications 2018, 54 (99) , 13945-13948. https://doi.org/10.1039/C8CC08341J
    56. Sohee Yoon, Tae Geol Lee. Biological tissue sample preparation for time-of-flight secondary ion mass spectrometry (ToF–SIMS) imaging. Nano Convergence 2018, 5 (1) https://doi.org/10.1186/s40580-018-0157-y
    57. Yukio Fujiwara, Naoaki Saito. Cluster ion beam generation from a wetted needle emitter for organic secondary ion mass spectrometry (organic SIMS) using a protic ionic liquid, propylammonium nitrate. Rapid Communications in Mass Spectrometry 2018, 32 (21) , 1867-1874. https://doi.org/10.1002/rcm.8256
    58. Xiao Sui, Yufan Zhou, Fei Zhang, Yanyan Zhang, Jianmin Chen, Zihua Zhu, Xiao‐Ying Yu. ToF‐SIMS characterization of glyoxal surface oxidation products by hydrogen peroxide: A comparison between dry and liquid samples. Surface and Interface Analysis 2018, 50 (10) , 927-938. https://doi.org/10.1002/sia.6334
    59. Hilde‐Marléne Bergman, Kyle D. Duncan, Ingela Lanekoff. Single‐Cell Mass Spectrometry. 2018, 1-19. https://doi.org/10.1002/9780470027318.a9580
    60. Prutchayawoot Thopan, Hubert Gnaser, Rika Oki, Takaaki Aoki, Toshio Seki, Jiro Matsuo. Cationization and fragmentation of molecular ions sputtered from polyethylene glycol under gas cluster bombardment: An analysis by MS and MS/MS. International Journal of Mass Spectrometry 2018, 430 , 149-157. https://doi.org/10.1016/j.ijms.2018.05.012
    61. Hubert Gnaser, Wolfgang Bock, Jiro Matsuo. In situ cationization of molecular ions sputtered from organic specimens under cluster bombardment. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2018, 36 (3) https://doi.org/10.1116/1.5009781
    62. Lothar Veith, Dörthe Dietrich, Antje Vennemann, Daniel Breitenstein, Carsten Engelhard, Uwe Karst, Michael Sperling, Martin Wiemann, Birgit Hagenhoff. Combination of micro X-ray fluorescence spectroscopy and time-of-flight secondary ion mass spectrometry imaging for the marker-free detection of CeO 2 nanoparticles in tissue sections. Journal of Analytical Atomic Spectrometry 2018, 33 (3) , 491-501. https://doi.org/10.1039/C7JA00325K
    63. Yukio Fujiwara, Naoaki Saito. Time‐of‐flight secondary ion mass spectrometry using a new primary ion beam generated by vacuum electrospray of a protic ionic liquid, propylammonium nitrate. Rapid Communications in Mass Spectrometry 2017, 31 (22) , 1859-1867. https://doi.org/10.1002/rcm.7960
    64. Kui Wu, Feifei Jia, Wei Zheng, Qun Luo, Yao Zhao, Fuyi Wang. Visualization of metallodrugs in single cells by secondary ion mass spectrometry imaging. JBIC Journal of Biological Inorganic Chemistry 2017, 22 (5) , 653-661. https://doi.org/10.1007/s00775-017-1462-3
    65. David G. Castner. Biomedical surface analysis: Evolution and future directions (Review). Biointerphases 2017, 12 (2) https://doi.org/10.1116/1.4982169
    66. A. A. Gulin, M. S. Pavlyukov, S. A. Gusev, Yu. N. Malakhova, A. I. Buzin, S. N. Chvalun, K. G. Aldarov, D. V. Klinov, S. K. Gularyan, V. A. Nadtochenko. Applicability of TOF-SIMS for the assessment of lipid composition of cell membrane structures. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology 2017, 11 (2) , 144-150. https://doi.org/10.1134/S1990747817020052
    67. Xiaodong Zhang, Shi-Wei Ricky Lee, Fuliang Le. Characterization of Copper Diffusion in Through Silicon Vias. 2017, 923-951. https://doi.org/10.1007/978-3-319-45098-8_22
    68. Lothar Veith, Antje Vennemann, Daniel Breitenstein, Carsten Engelhard, Martin Wiemann, Birgit Hagenhoff. Detection of SiO 2 nanoparticles in lung tissue by ToF-SIMS imaging and fluorescence microscopy. The Analyst 2017, 142 (14) , 2631-2639. https://doi.org/10.1039/C7AN00399D
    69. Xiao Sui, Yufan Zhou, Fei Zhang, Jianmin Chen, Zihua Zhu, Xiao-Ying Yu. Deciphering the aqueous chemistry of glyoxal oxidation with hydrogen peroxide using molecular imaging. Physical Chemistry Chemical Physics 2017, 19 (31) , 20357-20366. https://doi.org/10.1039/C7CP02071F
    70. А.А. Гулин, М.С. Павлюков, С.А. Гусев, Ю.Н. Малахова, А.И. Бузин, С.Н. Чвалун, К. Г. Алдаров, Д. В. Клинов, С.К. Гуларян, В.А. Надточенко. ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ МЕТОДА TOF-SIMS ДЛЯ ОЦЕНКИ ЛИПИДНОГО СОСТАВА МЕМБРАННЫХ СТРУКТУР КЛЕТКИ, "Биологические мембраны: Журнал мембранной и клеточной биологии". Биологические мембраны: Журнал мембранной и клеточной биологии 2017, (3) , 215-222. https://doi.org/10.7868/S0233475517020050
    71. Su-Chung Youn, Li-You Chen, Ruei-Jen Chiou, Te-Jen Lai, Wen-Chieh Liao, Fu-Der Mai, Hung-Ming Chang. Comprehensive Application of Time-of-flight Secondary Ion Mass Spectrometry (TOF-SIMS) for Ionic Imaging and Bio-energetic Analysis of Club Drug-induced Cognitive Deficiency. Scientific Reports 2016, 5 (1) https://doi.org/10.1038/srep18420
    72. Daniel Scotcher, Christopher Jones, Maria Posada, Amin Rostami-Hodjegan, Aleksandra Galetin. Key to Opening Kidney for In Vitro–In Vivo Extrapolation Entrance in Health and Disease: Part I: In Vitro Systems and Physiological Data. The AAPS Journal 2016, 18 (5) , 1067-1081. https://doi.org/10.1208/s12248-016-9942-x
    73. Kermit K. Murray, Chinthaka A. Seneviratne, Suman Ghorai. High resolution laser mass spectrometry bioimaging. Methods 2016, 104 , 118-126. https://doi.org/10.1016/j.ymeth.2016.03.002
    74. V. Thiel, J. Lausmaa, P. Sjövall, E. Ragazzi, L. J. Seyfullah, A. R. Schmidt. Microbe‐like inclusions in tree resins and implications for the fossil record of protists in amber. Geobiology 2016, 14 (4) , 364-373. https://doi.org/10.1111/gbi.12180
    75. Afnan M. Alnajeebi, John C. Vickerman, Nicholas P. Lockyer. Matrix effects in biological SIMS using cluster ion beams of different chemical composition. Biointerphases 2016, 11 (2) https://doi.org/10.1116/1.4941009
    76. Quentin P. Vanbellingen, Tingting Fu, Claudia Bich, Nadine Amusant, Didier Stien, Serge Della‐Negra, David Touboul, Alain Brunelle. Mapping Dicorynia guianensis Amsh. wood constituents by submicron resolution cluster‐TOF‐SIMS imaging. Journal of Mass Spectrometry 2016, 51 (6) , 412-423. https://doi.org/10.1002/jms.3762
    77. Edmund G Seebauer, D Eitan Barlaz. SIMS for analysis of nanostructures. Current Opinion in Chemical Engineering 2016, 12 , 8-13. https://doi.org/10.1016/j.coche.2016.01.007
    78. Hubert Gnaser, Masakazu Kusakari, Makiko Fujii, Toshio Seki, Takaaki Aoki, Jiro Matsuo. Secondary ion emission from leucine and isoleucine under argon gas-cluster ion bombardment. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2016, 34 (3) https://doi.org/10.1116/1.4939497
    79. Yukio Fujiwara, Naoaki Saito. Effects of a proton‐conducting ionic liquid on secondary ion formation in time‐of‐flight secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry 2016, 30 (1) , 239-249. https://doi.org/10.1002/rcm.7439
    80. Hilde-Marléne Bergman, Erik Lundin, Malin Andersson, Ingela Lanekoff. Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization. The Analyst 2016, 141 (12) , 3686-3695. https://doi.org/10.1039/C5AN02620B
    81. Andreas Limbeck, Ghislain M. Rupp, Markus Kubicek, Helena Téllez, John Druce, Tatsumi Ishihara, John A. Kilner, Jürgen Fleig. Dynamic etching of soluble surface layers with on-line inductively coupled plasma mass spectrometry detection – a novel approach for determination of complex metal oxide surface cation stoichiometry. Journal of Analytical Atomic Spectrometry 2016, 31 (8) , 1638-1646. https://doi.org/10.1039/C6JA00154H
    82. Nikolay Kutuzov, Alexander Gulin, Vladimir Lyaskovskiy, Victor Nadtochenko, Georgy Maksimov, . ATP-Mediated Compositional Change in Peripheral Myelin Membranes: A Comparative Raman Spectroscopy and Time-Of-Flight Secondary Ion Mass Spectrometry Study. PLOS ONE 2015, 10 (11) , e0142084. https://doi.org/10.1371/journal.pone.0142084
    83. Kedar Narayan, Sriram Subramaniam. Focused ion beams in biology. Nature Methods 2015, 12 (11) , 1021-1031. https://doi.org/10.1038/nmeth.3623
    84. Irma Berrueta Razo, Sadia Sheraz, Alex Henderson, Nicholas P. Lockyer, John C. Vickerman. Mass spectrometric imaging of brain tissue by time-of-flight secondary ion mass spectrometry - How do polyatomic primary beams C 60 + , Ar 2000 + , water-doped Ar 2000 + and (H 2 O) 6000 + compare?. Rapid Communications in Mass Spectrometry 2015, 29 (20) , 1851-1862. https://doi.org/10.1002/rcm.7285
    85. Xiaoling Cheng, Weifeng Li, Wei Hang, Benli Huang. Depth profiling of nanometer thin layers by pulsed micro-discharge with inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2015, 111 , 52-56. https://doi.org/10.1016/j.sab.2015.07.001
    86. Quentin P. Vanbellingen, Nicolas Elie, Michael J. Eller, Serge Della‐Negra, David Touboul, Alain Brunelle. Time‐of‐flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions. Rapid Communications in Mass Spectrometry 2015, 29 (13) , 1187-1195. https://doi.org/10.1002/rcm.7210
    87. Peter Sjövall, Martin Rossmeisl, Jörg Hanrieder, Ondrej Kuda, Jan Kopecky, Morten Bryhn. Dietary uptake of omega-3 fatty acids in mouse tissue studied by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Analytical and Bioanalytical Chemistry 2015, 407 (17) , 5101-5111. https://doi.org/10.1007/s00216-015-8515-7
    88. Jörg Hanrieder, Per Malmberg, Andrew G. Ewing. Spatial neuroproteomics using imaging mass spectrometry. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2015, 1854 (7) , 718-731. https://doi.org/10.1016/j.bbapap.2014.12.026
    89. Yasuyuki Nagata, Itsuko Ishizaki, Michihiko Waki, Yoshimi Ide, Md Amir Hossen, Kazunori Ohnishi, Takuya Miyayama, Mitsutoshi Setou. Palmitic acid, verified by lipid profiling using secondary ion mass spectrometry, demonstrates anti-multiple myeloma activity. Leukemia Research 2015, 39 (6) , 638-645. https://doi.org/10.1016/j.leukres.2015.02.011
    90. Masakazu Kusakari, Hubert Gnaser, Makiko Fujii, Toshio Seki, Takaaki Aoki, Jiro Matsuo. Molecular cluster emission in sputtering of amino acids by argon gas-cluster ions. International Journal of Mass Spectrometry 2015, 383-384 , 31-37. https://doi.org/10.1016/j.ijms.2015.04.003
    91. Emily Pipan, Angela I. Calderón. Metabolic Profiling Approaches for the Identification of Bioactive Metabolites in Plants. 2015, 199-225. https://doi.org/10.1002/9783527673391.ch6
    92. Parham Aram, Lingli Shen, John A. Pugh, Seetharaman Vaidyanathan, Visakan Kadirkamanathan. An efficient TOF-SIMS image analysis with spatial correlation and alternating non–negativity-constrained least squares. Bioinformatics 2015, 31 (5) , 753-760. https://doi.org/10.1093/bioinformatics/btu734
    93. Richard B. Thompson, Valentina Reffatto, Jacob G. Bundy, Elod Kortvely, Jane M. Flinn, Antonio Lanzirotti, Emrys A. Jones, David S. McPhail, Sarah Fearn, Karsten Boldt, Marius Ueffing, Savanjeet Guy Singh Ratu, Laurenz Pauleikhoff, Alan C. Bird, Imre Lengyel. Identification of hydroxyapatite spherules provides new insight into subretinal pigment epithelial deposit formation in the aging eye. Proceedings of the National Academy of Sciences 2015, 112 (5) , 1565-1570. https://doi.org/10.1073/pnas.1413347112
    94. Tina B. Angerer, Paul Blenkinsopp, John S. Fletcher. High energy gas cluster ions for organic and biological analysis by time-of-flight secondary ion mass spectrometry. International Journal of Mass Spectrometry 2015, 377 , 591-598. https://doi.org/10.1016/j.ijms.2014.05.015
    95. John C. Vickerman, Nicholas Winograd. SIMS—A precursor and partner to contemporary mass spectrometry. International Journal of Mass Spectrometry 2015, 377 , 568-579. https://doi.org/10.1016/j.ijms.2014.06.021
    96. Freddy Adams, Carlo Barbante. Mass Spectrometry and Chemical Imaging. 2015, 159-211. https://doi.org/10.1016/B978-0-444-63439-9.00005-0
    97. S. Fearn. Characterisation of biological material with ToF-SIMS: A review. Materials Science and Technology 2015, 31 (2) , 148-161. https://doi.org/10.1179/1743284714Y.0000000668
    98. Jörg Hanrieder, Andrew G. Ewing. Spatial Elucidation of Spinal Cord Lipid- and Metabolite- Regulations in Amyotrophic Lateral Sclerosis. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep05266
    99. Hua-Yang Liao, Meng-Hung Tsai, Wei-Lun Kao, Ding-Yuan Kuo, Jing-Jong Shyue. Effects of the temperature and beam parameters on depth profiles in X-ray photoelectron spectrometry and secondary ion mass spectrometry under C60+–Ar+ cosputtering. Analytica Chimica Acta 2014, 852 , 129-136. https://doi.org/10.1016/j.aca.2014.08.044
    100. Tina B. Angerer, John S. Fletcher. 3D Imaging of TiO 2 nanoparticle accumulation in Tetrahymena pyriformis. Surface and Interface Analysis 2014, 46 (S1) , 198-203. https://doi.org/10.1002/sia.5444
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect