ACS Publications. Most Trusted. Most Cited. Most Read
Highly Selective Electrochemical Strategy for Monitoring of Cerebral Cu2+ Based on a Carbon Dot-TPEA Hybridized Surface
My Activity
    Article

    Highly Selective Electrochemical Strategy for Monitoring of Cerebral Cu2+ Based on a Carbon Dot-TPEA Hybridized Surface
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, People’s Republic of China, and
    Department of Chemistry, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
    *Phone: +86-21-65987075. Fax: +86-21-65981097. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Analytical Chemistry

    Cite this: Anal. Chem. 2013, 85, 1, 418–425
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac303113n
    Published December 10, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Direct determination of cerebral metal ions in small volume biological samples is still the bottleneck for evaluating the roles that metal ions play in the physiological and pathological processes. In this work, selected copper ion (Cu2+) as a model, a facile and direct electrochemical method for detection of Cu2+ has been developed on the basis of two new designed strategies: one is specific recognition molecule for Cu2+-AE-TPEA (N-(2-aminoethyl)-N,N′,N′-tris(pyridine-2-yl-methyl)ethane-1,2-diamine); another is carbon dots (C-Dots) with high electrocatalytic activity. Based on the high affinity between TPEA and Cu2+, the electrode assembled with C-Dot-TPEA hybridized nanocomposites shows high selectivity toward Cu2+ over other metal ions, amino acids, and biological coexisting species, such as uric acid (UA), ascorbic acid (AA), and so on, which makes it possible to be used for determination of Cu2+ in the complex brain system. By taking advantage of C-Dots, a dynamic linear range from 1 μM to 60 μM is first achieved with a detection limit of ∼100 nM in aCSF solution. In addition, the developed method with theoretical simplicity and less instrumental demands exhibits long-term stability and good reproducibility. As a result, the present strategy has been successfully applied in detection of cerebral Cu2+ in normal rat brain and that followed by global cerebral ischemia, combined with in vivo microdialysis. The determined concentrations of Cu2+ in the rat brain microdialysates by the present method are found to be identical to those obtained by the conventional ICP-AES method.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    1H NMR, 13C NMR, ES-MS, HR-MS, IR characterization of AE-TPEA, FT-IR spectrum of C-Dots, and comparison of DPASV responses. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 161 publications.

    1. Ashima Sharma Kavita Tapadia Rubina Sahin Dakeshwar Kumar Verma Paz Otero Indu Agrawal . Carbon Dots in Sensing: Photoelectrochemical, Electrochemiluminescent, Electrochemical, Colorimetric, and Fluorescent Applications. , 167-185. https://doi.org/10.1021/bk-2024-1465.ch008
    2. A. Silambarasan R. Ramesh . Disposable Sensor for Environmental Pollutants Detection. , 101-120. https://doi.org/10.1021/bk-2023-1437.ch005
    3. Shidi Wang, Yuandong Liu, Anwei Zhu, Yang Tian. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Analytical Chemistry 2023, 95 (1) , 388-406. https://doi.org/10.1021/acs.analchem.2c04541
    4. Yuandong Liu, Zhichao Liu, Yang Tian. Real-Time Tracking of Electrical Signals and an Accurate Quantification of Chemical Signals with Long-Term Stability in the Live Brain. Accounts of Chemical Research 2022, 55 (19) , 2821-2832. https://doi.org/10.1021/acs.accounts.2c00333
    5. Shiqi Huang, Limin Zhang, Liyi Dai, Yuanyuan Wang, Yang Tian. Nonenzymatic Electrochemical Sensor with Ratiometric Signal Output for Selective Determination of Superoxide Anion in Rat Brain. Analytical Chemistry 2021, 93 (13) , 5570-5576. https://doi.org/10.1021/acs.analchem.1c00151
    6. Qin Fan, Jinhua Li, Yuhua Zhu, Zilu Yang, Tao Shen, Yizhong Guo, Lihua Wang, Tao Mei, Jianying Wang, Xianbao Wang. Functional Carbon Quantum Dots for Highly Sensitive Graphene Transistors for Cu2+ Ion Detection. ACS Applied Materials & Interfaces 2020, 12 (4) , 4797-4803. https://doi.org/10.1021/acsami.9b20785
    7. Meixiu Li, Tao Chen, J. Justin Gooding, Jingquan Liu. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sensors 2019, 4 (7) , 1732-1748. https://doi.org/10.1021/acssensors.9b00514
    8. Siwakorn Sakunkaewkasem, Anuwut Petdum, Waraporn Panchan, Jitnapa Sirirak, Adisri Charoenpanich, Thanasat Sooksimuang, Nantanit Wanichacheva. Dual-Analyte Fluorescent Sensor Based on [5]Helicene Derivative with Super Large Stokes Shift for the Selective Determinations of Cu2+ or Zn2+ in Buffer Solutions and Its Application in a Living Cell. ACS Sensors 2018, 3 (5) , 1016-1023. https://doi.org/10.1021/acssensors.8b00158
    9. Limin Zhang, Yang Tian. Designing Recognition Molecules and Tailoring Functional Surfaces for In Vivo Monitoring of Small Molecules in the Brain. Accounts of Chemical Research 2018, 51 (3) , 688-696. https://doi.org/10.1021/acs.accounts.7b00543
    10. Bao-Ping Qi, Lei Bao, Zhi-Ling Zhang, and Dai-Wen Pang . Electrochemical Methods to Study Photoluminescent Carbon Nanodots: Preparation, Photoluminescence Mechanism and Sensing. ACS Applied Materials & Interfaces 2016, 8 (42) , 28372-28382. https://doi.org/10.1021/acsami.5b11551
    11. Bingfang Shi, Yubin Su, Liangliang Zhang, Mengjiao Huang, Rongjun Liu, and Shulin Zhao . Nitrogen and Phosphorus Co-Doped Carbon Nanodots as a Novel Fluorescent Probe for Highly Sensitive Detection of Fe3+ in Human Serum and Living Cells. ACS Applied Materials & Interfaces 2016, 8 (17) , 10717-10725. https://doi.org/10.1021/acsami.6b01325
    12. Jie Zhou, Limin Zhang, and Yang Tian . Micro Electrochemical pH Sensor Applicable for Real-Time Ratiometric Monitoring of pH Values in Rat Brains. Analytical Chemistry 2016, 88 (4) , 2113-2118. https://doi.org/10.1021/acs.analchem.5b03634
    13. Yuqing Lin, Chao Wang, Linbo Li, Hao Wang, Kangyu Liu, Keqing Wang, and Bo Li . Tunable Fluorescent Silica-Coated Carbon Dots: A Synergistic Effect for Enhancing the Fluorescence Sensing of Extracellular Cu2+ in Rat Brain. ACS Applied Materials & Interfaces 2015, 7 (49) , 27262-27270. https://doi.org/10.1021/acsami.5b08499
    14. Pengcheng Huang, Fangying Wu, and Lanqun Mao . Target-Triggered Switching on and off the Luminescence of Lanthanide Coordination Polymer Nanoparticles for Selective and Sensitive Sensing of Copper Ions in Rat Brain. Analytical Chemistry 2015, 87 (13) , 6834-6841. https://doi.org/10.1021/acs.analchem.5b01155
    15. Xiaorong Gan, Huimin Zhao, Shuo Chen, Hongtao Yu, and Xie Quan . Three-Dimensional Porous HxTiS2 Nanosheet–Polyaniline Nanocomposite Electrodes for Directly Detecting Trace Cu(II) Ions. Analytical Chemistry 2015, 87 (11) , 5605-5613. https://doi.org/10.1021/acs.analchem.5b00500
    16. Yingying Han, Changqin Ding, Jie Zhou, and Yang Tian . Single Probe for Imaging and Biosensing of pH, Cu2+ Ions, and pH/Cu2+ in Live Cells with Ratiometric Fluorescence Signals. Analytical Chemistry 2015, 87 (10) , 5333-5339. https://doi.org/10.1021/acs.analchem.5b00628
    17. Limin Zhang, Yingying Han, Fan Zhao, Guoyue Shi, and Yang Tian . A Selective and Accurate Ratiometric Electrochemical Biosensor for Monitoring of Cu2+ Ions in a Rat Brain. Analytical Chemistry 2015, 87 (5) , 2931-2936. https://doi.org/10.1021/ac504448m
    18. Xiaoxiao Yue, Ziyu Zhu, Meining Zhang, and Zhiqiang Ye . Reaction-Based Turn-on Electrochemiluminescent Sensor with a Ruthenium(II) Complex for Selective Detection of Extracellular Hydrogen Sulfide in Rat Brain. Analytical Chemistry 2015, 87 (3) , 1839-1845. https://doi.org/10.1021/ac503875j
    19. Xiaolan Chai, Limin Zhang, and Yang Tian . Ratiometric Electrochemical Sensor for Selective Monitoring of Cadmium Ions Using Biomolecular Recognition. Analytical Chemistry 2014, 86 (21) , 10668-10673. https://doi.org/10.1021/ac502521f
    20. Xiang Gao, Changqin Ding, Anwei Zhu, and Yang Tian . Carbon-Dot-Based Ratiometric Fluorescent Probe for Imaging and Biosensing of Superoxide Anion in Live Cells. Analytical Chemistry 2014, 86 (14) , 7071-7078. https://doi.org/10.1021/ac501499y
    21. Yan Fu, Changqin Ding, Anwei Zhu, Zifeng Deng, Yang Tian, and Ming Jin . Two-Photon Ratiometric Fluorescent Sensor Based on Specific Biomolecular Recognition for Selective and Sensitive Detection of Copper Ions in Live Cells. Analytical Chemistry 2013, 85 (24) , 11936-11943. https://doi.org/10.1021/ac403527c
    22. Kun Liu, Ping Yu, Yuqing Lin, Yuexiang Wang, Takeo Ohsaka, and Lanqun Mao . Online Electrochemical Monitoring of Dynamic Change of Hippocampal Ascorbate: Toward a Platform for In Vivo Evaluation of Antioxidant Neuroprotective Efficiency against Cerebral Ischemia Injury. Analytical Chemistry 2013, 85 (20) , 9947-9954. https://doi.org/10.1021/ac402620c
    23. Ningkun Feng, Chuan Dong, Shaomin Shuang, Shengmei Song. Fluorescence and colorimetric dual-mode sensing of copper ions and fingerprint visualization by benzimidazole derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2025, 326 , 125292. https://doi.org/10.1016/j.saa.2024.125292
    24. Jia-qi Du, Du-wei Lin, Wen-yi Chen, Qian Sun, En-qing Gao. A dual-emission fluorescence sensor based on TCPP@UiO-66-NH 2 for high-sensitivity detection of copper ions. CrystEngComm 2025, 27 (4) , 488-496. https://doi.org/10.1039/D4CE01017E
    25. Qingwei Zhou, Li Fu, Jiangwei Zhu. Electrochemical Sensors Go Nano: Carbon Nanomaterials for Ultrasensitive Heavy Metal Analysis. Current Nanoscience 2025, 21 (4) , 596-612. https://doi.org/10.2174/0115734137281774231214054405
    26. Abdulhammed K. Hamzat, Ramazan Asmatulu. Nanotechnology safety in sensors and security industries. 2025, 251-281. https://doi.org/10.1016/B978-0-443-15904-6.00004-6
    27. Bin Qian, John L. Rayner, Greg B. Davis, Adrian Trinchi, Gavin Collis, Ilias (Louis) Kyratzis, Anand Kumar. Per- and poly-fluoroalkyl substances (PFAS) sensing: A focus on representatively sampling soil vadose zones linked to nano-sensors. Ecotoxicology and Environmental Safety 2024, 284 , 116932. https://doi.org/10.1016/j.ecoenv.2024.116932
    28. Pipattra Mayurachayakul, Oraphin Chantarasriwong, Anyanee Kamkaew, Mongkol Sukwattanasinitt, Nakorn Niamnont. A novel triphenylamine-furan hydrazone-based sensing of Cu2+ ions and imaging in cancer cells. Journal of Molecular Structure 2024, 1310 , 138298. https://doi.org/10.1016/j.molstruc.2024.138298
    29. Mihaela Homocianu, Elena Hamciuc, Corneliu Hamciuc. Sensing of Co2+ and Cu2+ Ions Using Dimethylamino-functionalized Poly(azomethine-1,3,4-oxadiazole)s. Journal of Fluorescence 2024, 4 https://doi.org/10.1007/s10895-024-03772-z
    30. Masoumeh Ghalkhani, Somayeh Alimohammadi. Functionalized Carbon Nanostructures for Electroanalysis. 2024, 1651-1683. https://doi.org/10.1007/978-3-031-32150-4_48
    31. P. Keerthana, Ashlay George, M. Bharath, Munmun Ghosh, Anitha Varghese. Dual ion specific electrochemical sensor using aminothiazole-engineered carbon quantum dots. Chemical Engineering Journal 2024, 480 , 148018. https://doi.org/10.1016/j.cej.2023.148018
    32. Shengqiang Hu, Shulin Zhao. Carbon Dot-based Sensing Strategy and Mechanism. 2023, 150-167. https://doi.org/10.1039/9781837671205-00150
    33. Aniruddha Molla, Ji Ho Youk. Recent progress on electroanalytical sensing of small molecules and biomolecules using carbon dots: A review. Journal of Industrial and Engineering Chemistry 2023, 127 , 62-81. https://doi.org/10.1016/j.jiec.2023.07.037
    34. Karen A. Gonzalez, Sarah Kazemeini, Dustyn C. Weber, Paula A. Cordero, Elizabeth M. Garcia, Cory A. Rusinek. Electrochemical sensing of heavy metals in biological media: A review. Electroanalysis 2023, 35 (9) https://doi.org/10.1002/elan.202300098
    35. Raja Saad Alruwais, Waheed A. Adeosun, Amjad E. Alsafrani, Hadi M. Marwani, Abdullah M. Asiri, Anish Khan. High-performance nonenzymatic ion-sensor based on CNT loaded APTES@PTOL based on electrochemical method. Journal of the Taiwan Institute of Chemical Engineers 2023, 147 , 104843. https://doi.org/10.1016/j.jtice.2023.104843
    36. Zishan Yan, Tong Chen, Lingpeng Yan, Xinghua Liu, Jingxia Zheng, Fu‐de Ren, Yongzhen Yang, Bin Liu, Xuguang Liu, Bingshe Xu. One‐Step Synthesis of White‐Light‐Emitting Carbon Dots for White LEDs with a High Color Rendering Index of 97. Advanced Science 2023, 10 (12) https://doi.org/10.1002/advs.202206386
    37. Masoumeh Ghalkhani, Somayeh Alimohammadi. Functionalized Carbon Nanostructures for Electroanalysis. 2023, 1-33. https://doi.org/10.1007/978-3-031-14955-9_48-1
    38. Alyah Buzid, John H. T. Luong. Electrochemical Sensing and Biosensing-Based on Carbon Nanodots. 2023, 339-362. https://doi.org/10.1007/978-981-19-9437-1_16
    39. Hani Nasser Abdelhamid. Carbon dots for electrochemical analytical methods. 2023, 77-86. https://doi.org/10.1016/B978-0-323-98350-1.00023-2
    40. Behnam Hasannejad-Asl, Farkhondeh Pooresmaeil, Edris Choupani, Mehran Dabiri, Abtin Behmardi, Mahmood Fadaie, Majid Fathi, Seyed Akbar Moosavi, Shahla Takamoli, Ehsan Hemati, Vahid Yaghoubi Naei, Fatemeh Kazemi-Lomedasht. Nanoparticles as Powerful Tools for Crossing the Blood-brain Barrier. CNS & Neurological Disorders - Drug Targets 2023, 22 (1) , 18-26. https://doi.org/10.2174/1871527321666220222092655
    41. Kun Wang, Jixu Yang, Xiaoyan Yang, Qingfu Guo, Guangming Nie. Photoelectrochemical nanoprobe for combined monitoring of Cu2+ and β-amyloid peptide. Microchemical Journal 2022, 182 , 107952. https://doi.org/10.1016/j.microc.2022.107952
    42. Pipattra Mayurachayakul, Oraphin Chantarasriwong, Nattawut Yotapan, Anyanee Kamkaew, Withawat Mingvanish, Choladda Srisuwannaket, Mongkol Sukwattanasinitt, Nakorn Niamnont. Novel selective “on–off” fluorescence sensor based on julolidine hydrazone-Al3+ complex for Cu2+ ion: DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 279 , 121382. https://doi.org/10.1016/j.saa.2022.121382
    43. Ratan W. Jadhav, Pritesh P. Khobrekar, Sandesh T. Bugde, Sheshanath V. Bhosale. Nanoarchitectonics of neomycin-derived fluorescent carbon dots for selective detection of Fe 3+ ions. Analytical Methods 2022, 14 (34) , 3289-3298. https://doi.org/10.1039/D2AY01040B
    44. Zhongjie Yang, Xiaofei Zhang, Jun Guo. Functionalized Carbon-Based Electrochemical Sensors for Food and Alcoholic Beverage Safety. Applied Sciences 2022, 12 (18) , 9082. https://doi.org/10.3390/app12189082
    45. Chengqi Bao, Yan Lu, Jiawei Liu, Yansha Gao, Limin Lu, Shuwu Liu. β-Cyclodextrin/CMK-8-Based Electrochemical Sensor for Sensitive Detection of Cu2+. Molecules 2022, 27 (15) , 4954. https://doi.org/10.3390/molecules27154954
    46. Thanapich Santiwat, Nilubon Sornkaew, Pipattra Mayurachayakul, Kittiwat Srikittiwanna, Kornkanya Pratumyot, Mongkol Sukwattanasinitt, Nakorn Niamnont. A new triphenylamine-pyrenyl salicylic acid fluorophore for the detection of highly selective Cu(II) ions in an aqueous media at the picomolar level. Journal of Molecular Structure 2022, 1259 , 132735. https://doi.org/10.1016/j.molstruc.2022.132735
    47. Saptarshi Mandal, Prolay Das. Are carbon dots worth the tremendous attention it is getting: Challenges and opportunities. Applied Materials Today 2022, 26 , 101331. https://doi.org/10.1016/j.apmt.2021.101331
    48. Hao Jiang, Hao Lin, Jinjin Lin, Selorm Yao-Say Solomon Adade, Quansheng Chen, Zhaoli Xue, Chenming Chan. Non-destructive detection of multi-component heavy metals in corn oil using nano-modified colorimetric sensor combined with near-infrared spectroscopy. Food Control 2022, 133 , 108640. https://doi.org/10.1016/j.foodcont.2021.108640
    49. Dandan Zhao, Yijun Huang, Huixiang Ouyang, Bingfang Shi, Suping Li, Shengyu Chen, Shulin Zhao. Facile preparation of Cu-doped carbon dots for naked-eye discrimination of phenylenediamine isomers and highly sensitive ratiometric fluorescent detection of H2O2. Talanta 2022, 239 , 123110. https://doi.org/10.1016/j.talanta.2021.123110
    50. Anirudh Sharma, Neeraj Tejwan, Saloni Thakur, Vinit Sharma, Th. Abhishek Singh, Joydeep Das. Synthesis of novel carbon dots from taurine for Cu2+ sensing and nanohybrid with ceria for visible light photocatalysis. Optical Materials 2022, 124 , 111995. https://doi.org/10.1016/j.optmat.2022.111995
    51. Sakib Hussain Laghari, Najma Memon, Muhammad Yar Khuhawer, Taj Muhammad Jahangir. Fluorescent Carbon Dots and their Applications in Sensing of Small Organic Molecules. Current Analytical Chemistry 2022, 18 (2) , 145-162. https://doi.org/10.2174/1573411017999210120180236
    52. Lihong Bao, Leighton O. Jones, Ana M. Garrote Cañas, Yunhan Yan, Christopher M. Pask, Michaele J. Hardie, Martin A. Mosquera, George C. Schatz, Natalia N. Sergeeva. Multipurpose made colorimetric materials for amines, pH change and metal ion detection. RSC Advances 2022, 12 (5) , 2684-2692. https://doi.org/10.1039/D1RA07811A
    53. Ali A. Ensafi, N. Kazemifard, Z. Saberi. Functionalized nanomaterial-based environmental sensors: An overview. 2022, 143-164. https://doi.org/10.1016/B978-0-12-823788-5.00020-X
    54. Li Liu, Changqing Guo, Qisheng Zhang, Peipei Xu, Yuanyuan Cui, Weiju Zhu, Min Fang, Cun Li. A hydrazone dual-functional fluorescent probe based on carbazole and coumarin groups for the detection of Cu2+ and ClO−: Application in live cell imaging and actual water samples. Journal of Photochemistry and Photobiology A: Chemistry 2022, 423 , 113593. https://doi.org/10.1016/j.jphotochem.2021.113593
    55. Kun Wang, Jixu Yang, Qingfu Guo, xiaoyan yang, Guangming Nie. Photoelectrochemical Nanoprobe for Combined Monitoring of Cu2+ and Β-Amyloid Peptide. SSRN Electronic Journal 2022, 138 https://doi.org/10.2139/ssrn.4107121
    56. Yixuan Xia, Yuzhi Ma, Yuntao Wu, Yinhui Yi, Huiyu Lin, Gangbing Zhu. Free-electrodeposited anodic stripping voltammetry sensing of Cu(II) based on Ti3C2Tx MXene/carbon black. Microchimica Acta 2021, 188 (11) https://doi.org/10.1007/s00604-021-05042-2
    57. Raja Ram Pandey, Charles C. Chusuei. Carbon Nanotubes, Graphene, and Carbon Dots as Electrochemical Biosensing Composites. Molecules 2021, 26 (21) , 6674. https://doi.org/10.3390/molecules26216674
    58. Qinglan Miao, Ji Qi, Yuanyuan Li, Xinxia Fan, Dongmei Deng, Xiaoxia Yan, Haibo He, Liqiang Luo. Anchoring zinc-doped carbon dots on a paper-based chip for highly sensitive fluorescence detection of copper ions. The Analyst 2021, 146 (20) , 6297-6305. https://doi.org/10.1039/D1AN01268A
    59. Yiqing Liu, Ting Kang, Qian He, Yuefu Hu, Zeping Zuo, Zhihua Cao, Bowen Ke, Weiyi Zhang, Qingrong Qi. A selective and sensitive near-infrared fluorescent probe for real-time detection of Cu( i ). RSC Advances 2021, 11 (24) , 14824-14828. https://doi.org/10.1039/D1RA00725D
    60. Nafiseh Kazemifard, Ali A. Ensafi, Marziyeh Poshteh Shirani. Fabrication of a Highly Sensitive and Selective Electrochemical Imidacloprid Sensor Using a Glassy Carbon Electrode Modified With MWCNTs/SBA-15@Si-CDs Nanocomposite. IEEE Sensors Journal 2021, 21 (8) , 9763-9770. https://doi.org/10.1109/JSEN.2021.3057940
    61. Xiao Wang, Huimin Song, Congbin Fan, Shouzhi Pu. Europium(III) complex fluorescent sensor for dual channel recognition of Sn2+ and Cu2+ ions in water. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 250 , 119373. https://doi.org/10.1016/j.saa.2020.119373
    62. Brij Mohan, Krunal Modi, Chirag Patel, Sandeep Kumar, Tao Zhiyu, Hengzhi You, Peng Ren. A new N-methylhydrazinecarbothioamide incorporated “naked-eye” and “turn-off” chemosensor for selective and low detection of Cu2+ ions and computation study. Journal of Photochemistry and Photobiology A: Chemistry 2021, 408 , 113097. https://doi.org/10.1016/j.jphotochem.2020.113097
    63. Arianna Mazzoli, Maria Stefania Spagnuolo, Martina Nazzaro, Cristina Gatto, Susanna Iossa, Luisa Cigliano. Fructose Removal from the Diet Reverses Inflammation, Mitochondrial Dysfunction, and Oxidative Stress in Hippocampus. Antioxidants 2021, 10 (3) , 487. https://doi.org/10.3390/antiox10030487
    64. Asmaa M. El-Shafey. Carbon dots: Discovery, structure, fluorescent properties, and applications. Green Processing and Synthesis 2021, 10 (1) , 134-156. https://doi.org/10.1515/gps-2021-0006
    65. Xuying Liu, Xiu Jin, Hong Deng, Zhou Sha, Xingping Zhou. Formation of nitrogen-doped blue- and green-emitting fluorescent carbon dots via a one-step solid-phase pyrolysis. Journal of Nanoparticle Research 2021, 23 (2) https://doi.org/10.1007/s11051-021-05162-z
    66. Zahra Hassanvand, Fahimeh Jalali, Maryam Nazari, Fatemeh Parnianchi, Carlo Santoro. Carbon Nanodots in Electrochemical Sensors and Biosensors: A Review. ChemElectroChem 2021, 8 (1) , 15-35. https://doi.org/10.1002/celc.202001229
    67. Nagaraju Kottam, Smrithi S P. ‘Luminescent carbon nanodots: Current prospects on synthesis, properties and sensing applications’. Methods and Applications in Fluorescence 2021, 9 (1) , 012001. https://doi.org/10.1088/2050-6120/abc008
    68. An-Qi Zheng, Ya-Nan Hao, Ting-Ting Guo, Yang Shu, Jian-Hua Wang. A fluorescence imaging protocol for correlating intracellular free cationic copper to the total uptaken copper by live cells. Talanta 2020, 220 , 121355. https://doi.org/10.1016/j.talanta.2020.121355
    69. Shanshan Wei, Tinghua Li, Xinyu Zhang, Hongyuan Zhang, Chunzhu Jiang, Guoying Sun. An “on–off–on” selective fluorescent probe based on nitrogen and sulfur co-doped carbon dots for detecting Cu 2+ and GSH in living cells. Analytical Methods 2020, 12 (42) , 5110-5119. https://doi.org/10.1039/D0AY01662D
    70. Muthupandian Ganesan, Paramathevar Nagaraaj. Quantum dots as nanosensors for detection of toxics: a literature review. Analytical Methods 2020, 12 (35) , 4254-4275. https://doi.org/10.1039/D0AY01293A
    71. Ying Chen, Yue Cao, Cheng Ma, Jun-Jie Zhu. Carbon-based dots for electrochemiluminescence sensing. Materials Chemistry Frontiers 2020, 4 (2) , 369-385. https://doi.org/10.1039/C9QM00572B
    72. Chunxia Wang, Caiwen Pan, Xiaoran Wei, Fan Yang, Wenjie Wu, Lanqun Mao. Emissive carbon dots derived from natural liquid fuels and its biological sensing for copper ions. Talanta 2020, 208 , 120375. https://doi.org/10.1016/j.talanta.2019.120375
    73. Carmen Ioana Fort, Lucian Cristian Pop. Heavy metal and metalloid electrochemical detection by composite nanostructures. 2020, 185-250. https://doi.org/10.1016/B978-0-12-815882-1.00005-7
    74. Xiaorong Gan, Huimin Zhao. Understanding signal amplification strategies of nanostructured electrochemical sensors for environmental pollutants. Current Opinion in Electrochemistry 2019, 17 , 56-64. https://doi.org/10.1016/j.coelec.2019.04.016
    75. Shaoxia Wang, Jing Li, Yang Qiu, Xuming Zhuang, Xuran Wu, Jing Jiang. Facile synthesis of oxidized multi-walled carbon nanotubes functionalized with 5-sulfosalicylic acid/MoS2 nanosheets nanocomposites for electrochemical detection of copper ions. Applied Surface Science 2019, 487 , 766-772. https://doi.org/10.1016/j.apsusc.2019.05.161
    76. Elham Asadian, Masoumeh Ghalkhani, Saeed Shahrokhian. Electrochemical sensing based on carbon nanoparticles: A review. Sensors and Actuators B: Chemical 2019, 293 , 183-209. https://doi.org/10.1016/j.snb.2019.04.075
    77. Hui Gu, Qi Hou, Yu Liu, Yujie Cai, Yanqiu Guo, Haoyue Xiang, Shu Chen. On-line regeneration of electrochemical biosensor for in vivo repetitive measurements of striatum Cu2+ under global cerebral ischemia/reperfusion events. Biosensors and Bioelectronics 2019, 135 , 111-119. https://doi.org/10.1016/j.bios.2019.03.014
    78. Guo Zhao, Gang Liu. Synthesis of a three-dimensional (BiO)2CO3@single-walled carbon nanotube nanocomposite and its application for ultrasensitive detection of trace Pb(II) and Cd(II) by incorporating Nafion. Sensors and Actuators B: Chemical 2019, 288 , 71-79. https://doi.org/10.1016/j.snb.2019.02.106
    79. Hui Huang, Yang Liu, Zhenhui Kang. Carbon Nanodot Composites: Fabrication, Properties, and Environmental and Energy Applications. 2019, 223-273. https://doi.org/10.1002/9781119313649.ch8
    80. N. Murugan, M. Prakash, M. Jayakumar, Anandhakumar Sundaramurthy, Ashok K. Sundramoorthy. Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+. Applied Surface Science 2019, 476 , 468-480. https://doi.org/10.1016/j.apsusc.2019.01.090
    81. Qin Hu, Lu Gao, Sheng-qi Rao, Zhen-quan Yang, Tao Li, Xiaojuan Gong. Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect. Food Chemistry 2019, 280 , 195-202. https://doi.org/10.1016/j.foodchem.2018.12.050
    82. Janjira Praneerad, Nichaphat Thongsai, Preeyanuch Supchocksoonthorn, Sumana Kladsomboon, Peerasak Paoprasert. Multipurpose sensing applications of biocompatible radish-derived carbon dots as Cu2+ and acetic acid vapor sensors. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 211 , 59-70. https://doi.org/10.1016/j.saa.2018.11.049
    83. Hongling Liu, Shiqiang Cui, Fu Shi, Shouzhi Pu. A diarylethene based multi-functional sensor for fluorescent detection of Cd2+ and colorimetric detection of Cu2+. Dyes and Pigments 2019, 161 , 34-43. https://doi.org/10.1016/j.dyepig.2018.09.030
    84. Zongrang Guo, Tingting Hu, Xingjian Wang, Tao Sun, Tianduo Li, Qingfen Niu. Highly sensitive and selective fluorescent sensor for visual detection of Cu2+ in water and food samples based on oligothiophene derivative. Journal of Photochemistry and Photobiology A: Chemistry 2019, 371 , 50-58. https://doi.org/10.1016/j.jphotochem.2018.10.053
    85. Yue Yaling, He Yi. A Sensitive and Selective Method for Visual Chronometric Detection of Copper(II) Ions Using Clock Reaction. Analytical Sciences 2019, 35 (2) , 159-163. https://doi.org/10.2116/analsci.18P345
    86. Yi Wang, Yunsheng Xia. Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review. Microchimica Acta 2019, 186 (1) https://doi.org/10.1007/s00604-018-3110-1
    87. Swagatika Kamila, Bishnupad Mohanty, Sushanta K. Das, Satyapriya Sahoo, Bikash Kumar Jena. Electrochemical Sensing Platform Based on Graphene-Metal/Metal Oxide Hybrids for Detection of Metal Ions Contaminants. 2019, 301-327. https://doi.org/10.1016/B978-0-08-102577-2.00008-7
    88. Bo Peng, Siyuan Fang, Lin Tang, Xilian Ouyang, Guangming Zeng. Nanohybrid Materials Based Biosensors for Heavy Metal Detection. 2019, 233-264. https://doi.org/10.1016/B978-0-12-814154-0.00008-6
    89. Haochi Liu, Lan Ding, Ligang Chen, Yanhua Chen, Tianyu Zhou, Huiyu Li, Yuan Xu, Li Zhao, Ning Huang. A facile, green synthesis of biomass carbon dots coupled with molecularly imprinted polymers for highly selective detection of oxytetracycline. Journal of Industrial and Engineering Chemistry 2019, 69 , 455-463. https://doi.org/10.1016/j.jiec.2018.10.007
    90. Xingyu Liu, Yiping Tang, Jinwei Gao, Qi Luo, Zhi Zeng, Qianming Wang. Room-temperature synthesis of novel polymeric nanoclusterwith emissions and its Cu2+ recognition performance. Journal of Luminescence 2019, 205 , 142-147. https://doi.org/10.1016/j.jlumin.2018.09.020
    91. Anshu Bhati, Satyesh Raj Anand, Deepika Saini, Prateek Khare, Prashant Dubey, Sumit Kumar Sonkar. Self-doped nontoxic red-emitting Mg–N-embedded carbon dots for imaging, Cu( ii ) sensing and fluorescent ink. New Journal of Chemistry 2018, 42 (24) , 19548-19556. https://doi.org/10.1039/C8NJ04754E
    92. Mónica Mediavilla, Emiliano Martínez-Periñán, Iria Bravo, Tania García-Mendiola, Mónica Revenga-Parra, Félix Pariente, Encarnación Lorenzo. Electrochemically driven phenothiazine modification of carbon nanodots. Nano Research 2018, 11 (12) , 6405-6416. https://doi.org/10.1007/s12274-018-2165-y
    93. Min Jiang, Hui-Ru Chen, Shan-Shan Li, Rui Liang, Jin-Huai Liu, Yang Yang, Yue-Jin Wu, Meng Yang, Xing-Jiu Huang. The selective capture of Pb 2+ in rice phloem sap using glutathione-functionalized gold nanoparticles/multi-walled carbon nanotubes: enhancing anti-interference electrochemical detection. Environmental Science: Nano 2018, 5 (11) , 2761-2771. https://doi.org/10.1039/C8EN00879E
    94. Shenghong Yang, Wenjing Guo, Xiaohan Sun. Electrostatic association complex of a polymer capped CdTe(S) quantum dot and a small molecule dye as a robust ratiometric fluorescence probe of copper ions. Dyes and Pigments 2018, 158 , 114-120. https://doi.org/10.1016/j.dyepig.2018.05.031
    95. Yuanyuan Lu, Xinqiang Liang, Jianming Xu, Ziyi Zhao, Guangming Tian. Synthesis of CuZrO3 nanocomposites/graphene and their application in modified electrodes for the co-detection of trace Pb(II) and Cd(II). Sensors and Actuators B: Chemical 2018, 273 , 1146-1155. https://doi.org/10.1016/j.snb.2018.06.104
    96. Liyun Ding, Bing Xu, Tao Li, Jun Huang, Wei Bai. A “Turn-On” Fluorescence Copper Biosensor Based on DNA Cleavage-Dependent Graphene Oxide-dsDNA-CdTe Quantum Dots Complex. Sensors 2018, 18 (8) , 2605. https://doi.org/10.3390/s18082605
    97. Zhimin Bao, Chuanxiang Qin, Jian-jun Wang, Jun Sun, Lixing Dai, Guoqiang Chen, Feng Mei. A sensitive and selective probe for visual detection of Cu2+ based on 1, 8-naphthalimidederivative. Sensors and Actuators B: Chemical 2018, 265 , 234-241. https://doi.org/10.1016/j.snb.2018.03.050
    98. Shan Huang, Erli Yang, Yi Liu, Jiandong Yao, Wei Su, Qi Xiao. Low-temperature rapid synthesis of nitrogen and phosphorus dual-doped carbon dots for multicolor cellular imaging and hemoglobin probing in human blood. Sensors and Actuators B: Chemical 2018, 265 , 326-334. https://doi.org/10.1016/j.snb.2018.03.056
    99. Shelja Sharma, Ahmad Umar, Swati Sood, Surinder Kumar Mehta, Sushil Kumar Kansal. Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications. Journal of Alloys and Compounds 2018, 748 , 818-853. https://doi.org/10.1016/j.jallcom.2018.03.001
    100. Mingxia Jiao, Zimeng Li, Yun Li, Min Cui, Xiliang Luo. Poly(3,4-ethylenedioxythiophene) doped with engineered carbon quantum dots for enhanced amperometric detection of nitrite. Microchimica Acta 2018, 185 (5) https://doi.org/10.1007/s00604-018-2784-8
    Load all citations

    Analytical Chemistry

    Cite this: Anal. Chem. 2013, 85, 1, 418–425
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac303113n
    Published December 10, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    3710

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.