Hopping Intermittent Contact-Scanning Electrochemical Microscopy (HIC-SECM): Visualizing Interfacial Reactions and Fluxes from Surfaces to Bulk SolutionClick to copy article linkArticle link copied!
Abstract

Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) is introduced as a powerful new technique for the quantitative visualization of redox activity and concentration at and above a surface of interest. HIC-SECM combines a hopping imaging mode, in which data are acquired at a tip as a function of distance (z) from the surface, at a series of x, y pixels across the surface, using the principles of intermittent contact to provide a nonelectrochemical means of determining when the tip and the substrate come into contact. The implementation of HIC-SECM is described, and SECM feedback measurements in three-dimensional (3D) space over a gold band array are presented. To demonstrate the generality of the methodology, flux imaging is also carried out over a Pt-disk ultramicroelectrode (UME) in the feedback mode and substrate generation/tip collection mode. The type of information that can be extracted from the data sets acquired include x-y current maps at a well-defined tip–substrate separation (parallel to the surface), x-z current maps (normal to the surface), 3D x-y-z profiles, approach curves at particular spots on the surface of interest, and surface topography. Moreover, because HIC-SECM utilizes an oscillating probe, alternating current data are also obtained that greatly enhances the information content compared to other types of electrochemical imaging. Furthermore, interfacial fluxes are ubiquitous in chemistry and allied areas, and HIC-SECM opens up the possibility of detailed flux visualization in three dimensions for many physicochemical processes.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 38 publications.
- Sebastian Amland Skaanvik, Lisa Irene Stephens, Samantha Michelle Gateman, Matthias Geissler, Janine Mauzeroll. Quantitative Feedback Referencing for Improved Kinetic Fitting of Scanning Electrochemical Microscopy Measurements. Analytical Chemistry 2022, 94
(40)
, 13852-13859. https://doi.org/10.1021/acs.analchem.2c02498
- Dylan T. Jantz, Ryan J. Balla, Siao-Han Huang, Niraja Kurapati, Shigeru Amemiya, Kevin C. Leonard. Simultaneous Intelligent Imaging of Nanoscale Reactivity and Topography by Scanning Electrochemical Microscopy. Analytical Chemistry 2021, 93
(25)
, 8906-8914. https://doi.org/10.1021/acs.analchem.1c01248
- Kiran Mahankali, Naresh Kumar Thangavel, Leela Mohana Reddy Arava. In Situ Electrochemical Mapping of Lithium–Sulfur Battery Interfaces Using AFM–SECM. Nano Letters 2019, 19
(8)
, 5229-5236. https://doi.org/10.1021/acs.nanolett.9b01636
- Ryan J. Balla, Dylan T. Jantz, Niraja Kurapati, Ran Chen, Kevin C. Leonard, Shigeru Amemiya. Nanoscale Intelligent Imaging Based on Real-Time Analysis of Approach Curve by Scanning Electrochemical Microscopy. Analytical Chemistry 2019, 91
(15)
, 10227-10235. https://doi.org/10.1021/acs.analchem.9b02361
- Lisa I. Stephens, Nicholas A. Payne, Sebastian A. Skaanvik, David Polcari, Matthias Geissler, Janine Mauzeroll. Evaluating the Use of Edge Detection in Extracting Feature Size from Scanning Electrochemical Microscopy Images. Analytical Chemistry 2019, 91
(6)
, 3944-3950. https://doi.org/10.1021/acs.analchem.8b05011
- Cameron
L. Bentley, James Edmondson, Gabriel N. Meloni, David Perry, Viacheslav Shkirskiy, Patrick R. Unwin. Nanoscale Electrochemical Mapping. Analytical Chemistry 2019, 91
(1)
, 84-108. https://doi.org/10.1021/acs.analchem.8b05235
- Gabriel N. Meloni . 3D Printed and Microcontrolled: The One Hundred Dollars Scanning Electrochemical Microscope. Analytical Chemistry 2017, 89
(17)
, 8643-8649. https://doi.org/10.1021/acs.analchem.7b01764
- Christian Iffelsberger, Preety Vatsyayan, and Frank-Michael Matysik . Scanning Electrochemical Microscopy with Forced Convection Introduced by High-Precision Stirring. Analytical Chemistry 2017, 89
(3)
, 1658-1664. https://doi.org/10.1021/acs.analchem.6b03764
- David Polcari, Philippe Dauphin-Ducharme, and Janine Mauzeroll . Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015. Chemical Reviews 2016, 116
(22)
, 13234-13278. https://doi.org/10.1021/acs.chemrev.6b00067
- Robert Godin and Gonzalo Cosa . Counting Single Redox Turnovers: Fluorogenic Antioxidant Conversion and Mass Transport Visualization via Single Molecule Spectroelectrochemistry. The Journal of Physical Chemistry C 2016, 120
(28)
, 15349-15353. https://doi.org/10.1021/acs.jpcc.6b06183
- Michael A. O’Connell and Andrew J. Wain . Mapping Electroactivity at Individual Catalytic Nanostructures Using High-Resolution Scanning Electrochemical–Scanning Ion Conductance Microcopy. Analytical Chemistry 2014, 86
(24)
, 12100-12107. https://doi.org/10.1021/ac502946q
- Stephen M. Oja and Bo Zhang . Imaging Transient Formation of Diffusion Layers with Fluorescence-Enabled Electrochemical Microscopy. Analytical Chemistry 2014, 86
(24)
, 12299-12307. https://doi.org/10.1021/ac5035715
- Andreas Lesch, Po-Chung Chen, Folkert Roelfs, Carsten Dosche, Dmitry Momotenko, Fernando Cortés-Salazar, Hubert H. Girault, and Gunther Wittstock . Finger Probe Array for Topography-Tolerant Scanning Electrochemical Microscopy of Extended Samples. Analytical Chemistry 2014, 86
(1)
, 713-720. https://doi.org/10.1021/ac403168p
- Binoy Paulose Nadappuram, Kim McKelvey, Rehab Al Botros, Alex W. Colburn, and Patrick R. Unwin . Fabrication and Characterization of Dual Function Nanoscale pH-Scanning Ion Conductance Microscopy (SICM) Probes for High Resolution pH Mapping. Analytical Chemistry 2013, 85
(17)
, 8070-8074. https://doi.org/10.1021/ac401883n
- Kim McKelvey, Binoy Paulose Nadappuram, Paolo Actis, Yasufumi Takahashi, Yuri E. Korchev, Tomokazu Matsue, Colin Robinson, and Patrick R. Unwin . Fabrication, Characterization, and Functionalization of Dual Carbon Electrodes as Probes for Scanning Electrochemical Microscopy (SECM). Analytical Chemistry 2013, 85
(15)
, 7519-7526. https://doi.org/10.1021/ac401476z
- Chun Sun, Longlu Wang, Yuxing Liu, Hance Su, Peng Cui. Electrocatalytic microdevices based on transition metal dichalcogenides for hydrogen evolution. Journal of Materials Chemistry A 2025, 13
(6)
, 3991-4011. https://doi.org/10.1039/D4TA07238C
- Vadimas Ivinskij, Vijitashwa Pandey, Inga Morkvėnaitė-Vilkončienė. Applications of Machine Learning Methods for Positioning in Scanning Electrochemical Microscope. 2024, 259-271. https://doi.org/10.1007/978-3-031-78266-4_22
- Mantas Makulavičius, Andrius Dzedzickis, Vytautas Bučinskas, Jurga Subaciute-Zemaitiene, Inga Morkvenaite-Vilkonciene. Theoretical Simulations of Scanning Electrochemical Microscope Positioning System. 2022, 183-191. https://doi.org/10.1007/978-3-031-03502-9_19
- Shigeru Amemiya. Scanning Electrochemical Microscopy. 2021, 1-48. https://doi.org/10.1002/9783527610426.bard030105
- N. Limani, A. Boudet, N. Blanchard, B. Jousselme, R. Cornut. Local probe investigation of electrocatalytic activity. Chemical Science 2021, 12
(1)
, 71-98. https://doi.org/10.1039/D0SC04319B
- Feng Chen, Namuna Panday, Xiaoshuang Li, Tao Ma, Jing Guo, Xuewen Wang, Lidia Kos, Ke Hu, Ning Gu, Jin He. Simultaneous mapping of nanoscale topography and surface potential of charged surfaces by scanning ion conductance microscopy. Nanoscale 2020, 12
(40)
, 20737-20748. https://doi.org/10.1039/D0NR04555A
- Yunchang Liang, Jonas H. K. Pfisterer, David McLaughlin, Christoph Csoklich, Lukas Seidl, Aliaksandr S. Bandarenka, Oliver Schneider. Electrochemical Scanning Probe Microscopies in Electrocatalysis. Small Methods 2019, 3
(8)
https://doi.org/10.1002/smtd.201800387
- Zhenhui Li, Ke Xu, Fanan Wei. Recent development of samples’ surface properties using scanning ion conductance microscopy. Micro & Nano Letters 2019, 14
(7)
, 744-748. https://doi.org/10.1049/mnl.2019.0038
- Fraser P. Filice, Zhifeng Ding. Analysing single live cells by scanning electrochemical microscopy. The Analyst 2019, 144
(3)
, 738-752. https://doi.org/10.1039/C8AN01490F
- Robert A. Lazenby, Ryan J. White. Advances and Perspectives in Chemical Imaging in Cellular Environments Using Electrochemical Methods. Chemosensors 2018, 6
(2)
, 24. https://doi.org/10.3390/chemosensors6020024
- Sze-yin Tan, Patrick R. Unwin, Julie V. Macpherson, Jie Zhang, Alan M. Bond. Probing Electrode Heterogeneity using Fourier-Transformed Alternating Current Voltammetry: Protocol Development. Electrochimica Acta 2017, 240 , 514-521. https://doi.org/10.1016/j.electacta.2017.04.053
- Yasufumi Takahashi, Hiroki Ida, Yoshiharu Matsumae, Hirokazu Komaki, Yuanshu Zhou, Akichika Kumatani, Makoto Kanzaki, Hitoshi Shiku, Tomokazu Matsue. 3D electrochemical and ion current imaging using scanning electrochemical–scanning ion conductance microscopy. Phys. Chem. Chem. Phys. 2017, 19
(39)
, 26728-26733. https://doi.org/10.1039/C7CP05157C
- Lucy I. Tomlinson, Hollie V. Patten, Ben L. Green, James Iacobini, Katherine E. Meadows, Kim McKelvey, Patrick R. Unwin, Mark E. Newton, Julie V. Macpherson. Intermittent‐contact Scanning Electrochemical Microscopy (IC‐SECM) as a Quantitative Probe of Defects in Single Crystal Boron Doped Diamond Electrodes. Electroanalysis 2016, 28
(10)
, 2297-2302. https://doi.org/10.1002/elan.201600291
- Zachary J. Barton, Joaquín Rodríguez-López. Emerging scanning probe approaches to the measurement of ionic reactivity at energy storage materials. Analytical and Bioanalytical Chemistry 2016, 408
(11)
, 2707-2715. https://doi.org/10.1007/s00216-016-9373-7
- Samantha Raisa Catarelli, Daniel Lonsdale, Lei Cheng, Jaroslaw Syzdek, Marca Doeff. Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples. Frontiers in Energy Research 2016, 4 https://doi.org/10.3389/fenrg.2016.00014
- Justus Masa, Edgar Ventosa, Wolfgang Schuhmann. Application of Scanning Electrochemical Microscopy (SECM) to Study Electrocatalysis of Oxygen Reduction by MN4-Macrocyclic Complexes. 2016, 103-141. https://doi.org/10.1007/978-3-319-31172-2_4
- Angelika Holzinger, Charlotte Steinbach, Christine Kranz. Scanning Electrochemical Microscopy (SECM): Fundamentals and Applications in Life Sciences. 2015, 125-169. https://doi.org/10.1039/9781782622529-00125
- Amelia R. Perry, Robert A. Lazenby, Maria Adobes-Vidal, Massimo Peruffo, Kim McKelvey, Michael E. Snowden, Patrick R. Unwin. Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) as a new local dissolution kinetic probe: application to salicylic acid dissolution in aqueous solution. CrystEngComm 2015, 17
(41)
, 7835-7843. https://doi.org/10.1039/C5CE00138B
- Michael A. O'Connell, Andrew J. Wain. Combined electrochemical-topographical imaging: a critical review. Analytical Methods 2015, 7
(17)
, 6983-6999. https://doi.org/10.1039/C5AY00557D
- Aliaksandr S. Bandarenka, Edgar Ventosa, Artjom Maljusch, Justus Masa, Wolfgang Schuhmann. Techniques and methodologies in modern electrocatalysis: evaluation of activity, selectivity and stability of catalytic materials. The Analyst 2014, 139
(6)
, 1274. https://doi.org/10.1039/c3an01647a
- Michaela Nebel, Thomas Erichsen, Wolfgang Schuhmann. Constant-distance mode SECM as a tool to visualize local electrocatalytic activity of oxygen reduction catalysts. Beilstein Journal of Nanotechnology 2014, 5 , 141-151. https://doi.org/10.3762/bjnano.5.14
- Robert A. Lazenby, Kim McKelvey, Massimo Peruffo, Marc Baghdadi, Patrick R. Unwin. Nanoscale intermittent contact-scanning electrochemical microscopy. Journal of Solid State Electrochemistry 2013, 17
(12)
, 2979-2987. https://doi.org/10.1007/s10008-013-2168-2
- David E. Williams. Closing remarks: looking back and ahead at ‘nano’ electroanalytical chemistry. Faraday Discussions 2013, 164 , 437. https://doi.org/10.1039/c3fd00106g
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.