ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Flexible Software Platform for Fast-Scan Cyclic Voltammetry Data Acquisition and Analysis

View Author Information
Department of Chemistry and Neuroscience Center University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3290
Department of Chemistry, Roanoke College, Salem, VA 24153
*E-mail: [email protected]. Fax: (919) 962-2388. Tel.: (919) 962-1472.
Cite this: Anal. Chem. 2013, 85, 21, 10344–10353
Publication Date (Web):October 1, 2013
https://doi.org/10.1021/ac402263x
Copyright © 2013 American Chemical Society

    Article Views

    2349

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Over the last several decades, fast-scan cyclic voltammetry (FSCV) has proved to be a valuable analytical tool for the real-time measurement of neurotransmitter dynamics in vitro and in vivo. Indeed, FSCV has found application in a wide variety of disciplines including electrochemistry, neurobiology, and behavioral psychology. The maturation of FSCV as an in vivo technique led users to pose increasingly complex questions that require a more sophisticated experimental design. To accommodate recent and future advances in FSCV application, our lab has developed High Definition Cyclic Voltammetry (HDCV). HDCV is an electrochemical software suite that includes data acquisition and analysis programs. The data collection program delivers greater experimental flexibility and better user feedback through live displays. It supports experiments involving multiple electrodes with customized waveforms. It is compatible with transistor–transistor logic-based systems that are used for monitoring animal behavior, and it enables simultaneous recording of electrochemical and electrophysiological data. HDCV analysis streamlines data processing with superior filtering options, seamlessly manages behavioral events, and integrates chemometric processing. Furthermore, analysis is capable of handling single files collected over extended periods of time, allowing the user to consider biological events on both subsecond and multiminute time scales. Here we describe and demonstrate the utility of HDCV for in vivo experiments.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 66 publications.

    1. Seongtak Kang, Jeongrak Park, Yunho Jeong, Yong-Seok Oh, Ji-Woong Choi. Second-Derivative-Based Background Drift Removal for a Tonic Dopamine Measurement in Fast-Scan Cyclic Voltammetry. Analytical Chemistry 2022, 94 (33) , 11459-11463. https://doi.org/10.1021/acs.analchem.2c01047
    2. Hoseok Choi, Hojin Shin, Hyun U. Cho, Charles D. Blaha, Michael L. Heien, Yoonbae Oh, Kendall H. Lee, Dong Pyo Jang. Neurochemical Concentration Prediction Using Deep Learning vs Principal Component Regression in Fast Scan Cyclic Voltammetry: A Comparison Study. ACS Chemical Neuroscience 2022, 13 (15) , 2288-2297. https://doi.org/10.1021/acschemneuro.2c00069
    3. Sergio Mena, Solene Dietsch, Shane N. Berger, Colby E. Witt, Parastoo Hashemi. Novel, User-Friendly Experimental and Analysis Strategies for Fast Voltammetry: 1. The Analysis Kid for FSCV. ACS Measurement Science Au 2021, 1 (1) , 11-19. https://doi.org/10.1021/acsmeasuresciau.1c00003
    4. Pumidech Puthongkham, Julian Rocha, Jason R. Borgus, Mallikarjunarao Ganesana, Ying Wang, Yuanyu Chang, Andreas Gahlmann, B. Jill Venton. Structural Similarity Image Analysis for Detection of Adenosine and Dopamine in Fast-Scan Cyclic Voltammetry Color Plots. Analytical Chemistry 2020, 92 (15) , 10485-10494. https://doi.org/10.1021/acs.analchem.0c01214
    5. Seth H. Walters, Zhan Shu, Adrian C. Michael, Edwin S. Levitan. Regional Variation in Striatal Dopamine Spillover and Release Plasticity. ACS Chemical Neuroscience 2020, 11 (6) , 888-899. https://doi.org/10.1021/acschemneuro.9b00577
    6. Karl T. Schmidt, Viren H. Makhijani, Kristen M. Boyt, Elizabeth S. Cogan, Dipanwita Pati, Melanie M. Pina, Isabel M. Bravo, Jason L. Locke, Sara R. Jones, Joyce Besheer, Zoé A. McElligott. Stress-Induced Alterations of Norepinephrine Release in the Bed Nucleus of the Stria Terminalis of Mice. ACS Chemical Neuroscience 2019, 10 (4) , 1908-1914. https://doi.org/10.1021/acschemneuro.8b00265
    7. Jacqueline D. Keighron, Juliana C. Quarterman, Jianjing Cao, Emily M. DeMarco, Mark A. Coggiano, Apre Gleaves, Rachel D. Slack, Claudio Zanettini, Amy Hauck Newman, Gianluigi Tanda. Effects of (R)-Modafinil and Modafinil Analogues on Dopamine Dynamics Assessed by Voltammetry and Microdialysis in the Mouse Nucleus Accumbens Shell. ACS Chemical Neuroscience 2019, 10 (4) , 2012-2021. https://doi.org/10.1021/acschemneuro.8b00340
    8. Justin A. Johnson, Nathan T. Rodeberg, R. Mark Wightman. Measurement of Basal Neurotransmitter Levels Using Convolution-Based Nonfaradaic Current Removal. Analytical Chemistry 2018, 90 (12) , 7181-7189. https://doi.org/10.1021/acs.analchem.7b04682
    9. Leslie R. Wilson, Sambit Panda, Andreas C. Schmidt, and Leslie A. Sombers . Selective and Mechanically Robust Sensors for Electrochemical Measurements of Real-Time Hydrogen Peroxide Dynamics in Vivo. Analytical Chemistry 2018, 90 (1) , 888-895. https://doi.org/10.1021/acs.analchem.7b03770
    10. Justin A. Johnson, Josh H. Gray, Nathan T. Rodeberg, R. Mark Wightman. Multivariate Curve Resolution for Signal Isolation from Fast-Scan Cyclic Voltammetric Data. Analytical Chemistry 2017, 89 (19) , 10547-10555. https://doi.org/10.1021/acs.analchem.7b02771
    11. Justin A. Johnson, Caddy N. Hobbs, R. Mark Wightman. Removal of Differential Capacitive Interferences in Fast-Scan Cyclic Voltammetry. Analytical Chemistry 2017, 89 (11) , 6166-6174. https://doi.org/10.1021/acs.analchem.7b01005
    12. Ryan P. Borman, Ying Wang, Michael D. Nguyen, Mallikarjunarao Ganesana, Scott T. Lee, and B. Jill Venton . Automated Algorithm for Detection of Transient Adenosine Release. ACS Chemical Neuroscience 2017, 8 (2) , 386-393. https://doi.org/10.1021/acschemneuro.6b00262
    13. Nathan T. Rodeberg, Stefan G. Sandberg, Justin A. Johnson, Paul E. M. Phillips, and R. Mark Wightman . Hitchhiker’s Guide to Voltammetry: Acute and Chronic Electrodes for in Vivo Fast-Scan Cyclic Voltammetry. ACS Chemical Neuroscience 2017, 8 (2) , 221-234. https://doi.org/10.1021/acschemneuro.6b00393
    14. Megan E. Fox, Elizabeth S. Bucher, Justin A. Johnson, and R. Mark Wightman . Medullary Norepinephrine Projections Release Norepinephrine into the Contralateral Bed Nucleus of the Stria Terminalis. ACS Chemical Neuroscience 2016, 7 (12) , 1681-1689. https://doi.org/10.1021/acschemneuro.6b00210
    15. Nathan T. Rodeberg, Justin A. Johnson, Elizabeth S. Bucher, and R. Mark Wightman . Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data. ACS Chemical Neuroscience 2016, 7 (11) , 1508-1518. https://doi.org/10.1021/acschemneuro.6b00142
    16. Stephen J. Percival and Bo Zhang . Fast-Scan Cyclic Voltammetry Allows Determination of Electron-Transfer Kinetic Constants in Single Nanoparticle Collision. The Journal of Physical Chemistry C 2016, 120 (37) , 20536-20546. https://doi.org/10.1021/acs.jpcc.5b11330
    17. Douglas C. Kirkpatrick and R. Mark Wightman . Evaluation of Drug Concentrations Delivered by Microiontophoresis. Analytical Chemistry 2016, 88 (12) , 6492-6499. https://doi.org/10.1021/acs.analchem.6b01211
    18. Nathan T. Rodeberg, Justin A. Johnson, Courtney M. Cameron, Michael P. Saddoris, Regina M. Carelli, and R. Mark Wightman . Construction of Training Sets for Valid Calibration of in Vivo Cyclic Voltammetric Data by Principal Component Analysis. Analytical Chemistry 2015, 87 (22) , 11484-11491. https://doi.org/10.1021/acs.analchem.5b03222
    19. Adam K. Dengler, R. Mark Wightman, and Gregory S. McCarty . Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations. Analytical Chemistry 2015, 87 (20) , 10556-10564. https://doi.org/10.1021/acs.analchem.5b02866
    20. Zhihui Guo, Stephen J. Percival, and Bo Zhang . Chemically Resolved Transient Collision Events of Single Electrocatalytic Nanoparticles. Journal of the American Chemical Society 2014, 136 (25) , 8879-8882. https://doi.org/10.1021/ja503656a
    21. Bhavna Gupta, Mason L. Perillo, James R. Siegenthaler, Isabelle E. Christensen, Matthew P. Welch, Robert Rechenberg, G M Hasan Ul Banna, Davit Galstyan, Michael F. Becker, Wen Li, Erin K. Purcell. In Vitro Biofouling Performance of Boron-Doped Diamond Microelectrodes for Serotonin Detection Using Fast-Scan Cyclic Voltammetry. Biosensors 2023, 13 (6) , 576. https://doi.org/10.3390/bios13060576
    22. Naela Delmo, Bahar Mostafiz, Ashley E. Ross, Johanna Suni, Emilia Peltola. Developing an electrochemical sensor for the in vivo measurements of dopamine. Sensors & Diagnostics 2023, 2 (3) , 559-581. https://doi.org/10.1039/D2SD00230B
    23. Bhavna Gupta, Mason L. Perillo, Isabelle E. Christensen, James R. Siegenthaler, Robert Rechenberg, Michael F. Becker, Wen Li, Erin K. Purcell. Waveform Development for Neurotransmitter Detection on Novel Boron-Doped Diamond Microelectrodes. 2023, 1-5. https://doi.org/10.1109/NER52421.2023.10123806
    24. Michal Kielbinski, Joanna Bernacka, Katarzyna Zajda, Agnieszka Wawrzczak‐Bargieła, Marzena Maćkowiak, Ryszard Przewlocki, Wojciech Solecki. Acute stress modulates noradrenergic signaling in the ventral tegmental area‐amygdalar circuit. Journal of Neurochemistry 2023, 164 (5) , 598-612. https://doi.org/10.1111/jnc.15698
    25. Joanna Bernacka, Michal Kielbinski, Agnieszka Wawrzczak-Bargieła, Katarzyna Zajda, Marzena Maćkowiak, Ryszard Przewlocki, Wojciech Solecki. Alpha-2A but not 2B/C noradrenergic receptors in ventral tegmental area regulate phasic dopamine release in nucleus accumbens core. Neuropharmacology 2022, 220 , 109258. https://doi.org/10.1016/j.neuropharm.2022.109258
    26. Abhinav Goyal, Sangmun Hwang, Aaron E. Rusheen, Charles D. Blaha, Kevin E. Bennet, Kendall H. Lee, Dong Pyo Jang, Yoonbae Oh, Hojin Shin. Software for near-real-time voltammetric tracking of tonic neurotransmitter levels in vivo. Frontiers in Neuroscience 2022, 16 https://doi.org/10.3389/fnins.2022.899436
    27. Yingliang Xie, Peizhen Wang, Xiaoyan Cui, Lei Liu, Pengcheng Wang, Shimei Jing, Qi Liu, Yuting Wang, Shiqiang Wang. RETRACTED: Dopaminergic neurons project to the nucleus accumbens regulates anxiety-like behaviors through dopamine D1 signaling. Behavioural Brain Research 2022, 416 , 113540. https://doi.org/10.1016/j.bbr.2021.113540
    28. Lindsay R Walton, Matthew Verber, Sung-Ho Lee, Tzu-Hao Harry Chao, R. Mark Wightman, Yen-Yu Ian Shih. Simultaneous fMRI and fast-scan cyclic voltammetry bridges evoked oxygen and neurotransmitter dynamics across spatiotemporal scales. NeuroImage 2021, 244 , 118634. https://doi.org/10.1016/j.neuroimage.2021.118634
    29. J. A. Nadel, S. S. Pawelko, J. R. Scott, R. McLaughlin, M. Fox, M. Ghanem, R. van der Merwe, N. G. Hollon, E. S. Ramsson, C. D. Howard. Optogenetic stimulation of striatal patches modifies habit formation and inhibits dopamine release. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-99350-5
    30. Wanpeng Cui, Nannan Gao, Zhaoqi Dong, Chen Shen, Hongsheng Zhang, Bin Luo, Peng Chen, Davide Comoletti, Hongyang Jing, Hongsheng Wang, Heath Robinson, Wen-Cheng Xiong, Lin Mei. In trans neuregulin3-Caspr3 interaction controls DA axonal bassoon cluster development. Current Biology 2021, 31 (15) , 3330-3342.e7. https://doi.org/10.1016/j.cub.2021.05.045
    31. Dean M. Corva, Scott D. Adams, Kevin E. Bennet, Michael Berk, Abbas Z. Kouzani. Miniature FSCV Devices: A Review. IEEE Sensors Journal 2021, 21 (12) , 13006-13018. https://doi.org/10.1109/JSEN.2021.3069950
    32. Erin Purcell, Michael Becker, Yue Guo, Seth Hara, Kip Ludwig, Collin McKinney, Elizabeth Monroe, Robert Rechenberg, Cory Rusinek, Akash Saxena, James Siegenthaler, Caryl Sortwell, Cort Thompson, James Trevathan, Suzanne Witt, Wen Li. Next-Generation Diamond Electrodes for Neurochemical Sensing: Challenges and Opportunities. Micromachines 2021, 12 (2) , 128. https://doi.org/10.3390/mi12020128
    33. Carl J. Meunier, Leslie A. Sombers. Fast-Scan Voltammetry for In Vivo Measurements of Neurochemical Dynamics. 2021, 93-123. https://doi.org/10.1007/978-1-0716-1146-3_5
    34. Kendra D. Bunner, George V. Rebec. Voltammetry in Behaving Animals. 2021, 469-487. https://doi.org/10.1007/978-1-0716-1522-5_28
    35. Juan M. Rojas Cabrera, J. Blair Price, Aaron E. Rusheen, Abhinav Goyal, Danielle Jondal, Abhijeet S. Barath, Hojin Shin, Su-Youne Chang, Kevin E. Bennet, Charles D. Blaha, Kendall H. Lee, Yoonbae Oh. Advances in neurochemical measurements: A review of biomarkers and devices for the development of closed-loop deep brain stimulation systems. Reviews in Analytical Chemistry 2020, 39 (1) , 188-199. https://doi.org/10.1515/revac-2020-0117
    36. Paras R Patel, Pavlo Popov, Ciara M Caldwell, Elissa J Welle, Daniel Egert, Jeffrey R Pettibone, Douglas H Roossien, Jill B Becker, Joshua D Berke, Cynthia A Chestek, Dawen Cai. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. Journal of Neural Engineering 2020, 17 (5) , 056029. https://doi.org/10.1088/1741-2552/abb1f6
    37. Danesh Ashouri Vajari, Chockalingam Ramanathan, Yixin Tong, Thomas Stieglitz, Volker A. Coenen, Máté D. Döbrössy. Medial forebrain bundle DBS differentially modulates dopamine release in the nucleus accumbens in a rodent model of depression. Experimental Neurology 2020, 327 , 113224. https://doi.org/10.1016/j.expneurol.2020.113224
    38. Seth H Walters, Edwin S Levitan. Vesicular Antipsychotic Drug Release Evokes an Extra Phase of Dopamine Transmission. Schizophrenia Bulletin 2020, 46 (3) , 643-649. https://doi.org/10.1093/schbul/sbz085
    39. Asha K. Lahiri, Mark D. Bevan. Dopaminergic Transmission Rapidly and Persistently Enhances Excitability of D1 Receptor-Expressing Striatal Projection Neurons. Neuron 2020, 106 (2) , 277-290.e6. https://doi.org/10.1016/j.neuron.2020.01.028
    40. Pumidech Puthongkham, B. Jill Venton. Recent advances in fast-scan cyclic voltammetry. The Analyst 2020, 145 (4) , 1087-1102. https://doi.org/10.1039/C9AN01925A
    41. Scott D. Adams, Egan H. Doeven, Susannah J. Tye, Kevin E. Bennet, Michael Berk, Abbas Z. Kouzani. TinyFSCV: FSCV for the Masses. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2020, 28 (1) , 133-142. https://doi.org/10.1109/TNSRE.2019.2956479
    42. Karen Scida, Kevin W. Plaxco, Brian G. Jamieson. High frequency, real-time neurochemical and neuropharmacological measurements in situ in the living body. Translational Research 2019, 213 , 50-66. https://doi.org/10.1016/j.trsl.2019.07.004
    43. Khalid B. Mirza, Caroline T. Golden, Konstantin Nikolic, Christofer Toumazou. Closed-Loop Implantable Therapeutic Neuromodulation Systems Based on Neurochemical Monitoring. Frontiers in Neuroscience 2019, 13 https://doi.org/10.3389/fnins.2019.00808
    44. Anna K. Radke, Adrina Kocharian, Dan P. Covey, David M. Lovinger, Joseph F. Cheer, Yolanda Mateo, Andrew Holmes. Contributions of nucleus accumbens dopamine to cognitive flexibility. European Journal of Neuroscience 2019, 50 (3) , 2023-2035. https://doi.org/10.1111/ejn.14152
    45. Jacqueline D. Keighron, JoLynn B. Giancola, Rachel J. Shaffer, Emily M. DeMarco, Mark A. Coggiano, Rachel D. Slack, Amy Hauck Newman, Gianluigi Tanda. Distinct effects of ( R )‐modafinil and its ( R )‐ and ( S )‐fluoro‐analogs on mesolimbic extracellular dopamine assessed by voltammetry and microdialysis in rats. European Journal of Neuroscience 2019, 50 (3) , 2045-2053. https://doi.org/10.1111/ejn.14256
    46. Jaekyung Kim, Yoonbae Oh, Cheonho Park, Yu Min Kang, Hojin Shin, In Young Kim, Dong Pyo Jang. Comparison Study of Partial Least Squares Regression Analysis and Principal Component Analysis in Fast-Scan Cyclic Voltammetry. International Journal of Electrochemical Science 2019, 14 (7) , 5924-5937. https://doi.org/10.20964/2019.07.03
    47. Michał Kielbinski, Joanna Bernacka, Wojciech B. Solecki. Differential regulation of phasic dopamine release in the forebrain by the VTA noradrenergic receptor signaling. Journal of Neurochemistry 2019, 149 (6) , 747-759. https://doi.org/10.1111/jnc.14706
    48. Rhiannon Robke, Parastoo Hashemi, Eric Ramsson. A simplified LED-driven switch for fast-scan controlled-adsorption voltammetry instrumentation. HardwareX 2019, 5 , e00051. https://doi.org/10.1016/j.ohx.2018.e00051
    49. Surabhi Nimbalkar, Elisa Castagnola, Arvind Balasubramani, Alice Scarpellini, Soshi Samejima, Abed Khorasani, Adrien Boissenin, Sanitta Thongpang, Chet Moritz, Sam Kassegne. Ultra-Capacitive Carbon Neural Probe Allows Simultaneous Long-Term Electrical Stimulations and High-Resolution Neurotransmitter Detection. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-25198-x
    50. Cory A. Rusinek, Yue Guo, Robert Rechenberg, Michael F. Becker, Erin Purcell, Matthew Verber, Collin McKinney, Wen Li. All-Diamond Microfiber Electrodes for Neurochemical Analysis. Journal of The Electrochemical Society 2018, 165 (12) , G3087-G3092. https://doi.org/10.1149/2.0141812jes
    51. Jordan G McCall, Edward R Siuda, Dionnet L Bhatti, Lamley A Lawson, Zoe A McElligott, Garret D Stuber, Michael R Bruchas. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. eLife 2017, 6 https://doi.org/10.7554/eLife.18247
    52. Kendall H. Lee, J. Luis Lujan, James K. Trevathan, Erika K. Ross, John J. Bartoletta, Hyung Ook Park, Seungleal Brian Paek, Evan N. Nicolai, Jannifer H. Lee, Hoon-Ki Min, Christopher J. Kimble, Charles D. Blaha, Kevin E. Bennet. WINCS Harmoni: Closed-loop dynamic neurochemical control of therapeutic interventions. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep46675
    53. Yue‐Yi Peng, Ruo‐Can Qian, Mahmoud Elsayed Hafez, Yi‐Tao Long. Stochastic Collision Nanoelectrochemistry: A Review of Recent Developments. ChemElectroChem 2017, 4 (5) , 977-985. https://doi.org/10.1002/celc.201600673
    54. Christopher D. Howard, Hao Li, Claire E. Geddes, Xin Jin. Dynamic Nigrostriatal Dopamine Biases Action Selection. Neuron 2017, 93 (6) , 1436-1450.e8. https://doi.org/10.1016/j.neuron.2017.02.029
    55. Bryan F. Singer, Myranda A. Bryan, Pavlo Popov, Raymond Scarff, Cody Carter, Erin Wright, Brandon J. Aragona, Terry E. Robinson. The sensory features of a food cue influence its ability to act as an incentive stimulus and evoke dopamine release in the nucleus accumbens core. Learning & Memory 2016, 23 (11) , 595-606. https://doi.org/10.1101/lm.043026.116
    56. Joohee Jeon, Inseong Hwang, Taek Dong Chung. Electrochemical detection of neurotransmitters: Toward synapse-based neural interfaces. Biomedical Engineering Letters 2016, 6 (3) , 123-133. https://doi.org/10.1007/s13534-016-0230-6
    57. Catarina Owesson-White, Anna M. Belle, Natalie R. Herr, Jessica L. Peele, Preethi Gowrishankar, Regina M. Carelli, R. Mark Wightman. Cue-Evoked Dopamine Release Rapidly Modulates D2 Neurons in the Nucleus Accumbens During Motivated Behavior. The Journal of Neuroscience 2016, 36 (22) , 6011-6021. https://doi.org/10.1523/JNEUROSCI.0393-16.2016
    58. Adam Gorczyński, Dawid Pakulski, Martyna Szymańska, Maciej Kubicki, Kornela Bułat, Teresa Łuczak, Violetta Patroniak. Electrochemical deposition of the new manganese(II) Schiff-base complex on a gold template and its application for dopamine sensing in the presence of interfering biogenic compounds. Talanta 2016, 149 , 347-355. https://doi.org/10.1016/j.talanta.2015.11.050
    59. Kendra D. Bunner, George V. Rebec. Voltammetry in Behaving Animals. 2016, 397-414. https://doi.org/10.1007/978-1-4939-3064-7_24
    60. D. C. Kirkpatrick, L. R. Walton, M. A. Edwards, R. M. Wightman. Quantitative analysis of iontophoretic drug delivery from micropipettes. The Analyst 2016, 141 (6) , 1930-1938. https://doi.org/10.1039/C5AN02530C
    61. D. C. Kirkpatrick, C. J. McKinney, P. B. Manis, R. M. Wightman. Expanding neurochemical investigations with multi-modal recording: simultaneous fast-scan cyclic voltammetry, iontophoresis, and patch clamp measurements. The Analyst 2016, 141 (16) , 4902-4911. https://doi.org/10.1039/C6AN00933F
    62. Elizabeth S. Bucher, R. Mark Wightman. Electrochemical Analysis of Neurotransmitters. Annual Review of Analytical Chemistry 2015, 8 (1) , 239-261. https://doi.org/10.1146/annurev-anchem-071114-040426
    63. S.M. Fortin, J.J. Cone, S. Ng‐Evans, J.E. McCutcheon, M.F. Roitman. Sampling Phasic Dopamine Signaling with Fast‐Scan Cyclic Voltammetry in Awake, Behaving Rats. Current Protocols in Neuroscience 2015, 70 (1) https://doi.org/10.1002/0471142301.ns0725s70
    64. Maryam Mirzaei, Mohamad Sawan. Microelectronics-Based Biosensors Dedicated to the Detection of Neurotransmitters: A Review. Sensors 2014, 14 (10) , 17981-18008. https://doi.org/10.3390/s141017981
    65. Jan Hrbac, Vladimir Halouzka, Libuse Trnkova, Jan Vacek. eL-Chem Viewer: A Freeware Package for the Analysis of Electroanalytical Data and Their Post-Acquisition Processing. Sensors 2014, 14 (8) , 13943-13954. https://doi.org/10.3390/s140813943
    66. Elizabeth S Bucher, Megan E Fox, Laura Kim, Douglas C Kirkpatrick, Nathan T Rodeberg, Anna M Belle, R Mark Wightman. Medullary Norepinephrine Neurons Modulate Local Oxygen Concentrations in the Bed Nucleus of the Stria Terminalis. Journal of Cerebral Blood Flow & Metabolism 2014, 34 (7) , 1128-1137. https://doi.org/10.1038/jcbfm.2014.60

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect