ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Comparative Study of Sensitivity, Linearity, and Resistance to Inhibition of Digital and Nondigital Polymerase Chain Reaction and Loop Mediated Isothermal Amplification Assays for Quantification of Human Cytomegalovirus

View Author Information
LGC, Queens Road, Teddington, Middlesex TW11 0LY, United Kingdom
Research Department of Infection, Division of Infection and Immunity, UCL, Gower Street, London WC1E 6BT, United Kingdom
§ Virology Laboratory, Clinical Microbiology and Virology, UCLH NHS Foundation Trust, 60 Whitfield Street, London W1T 4EU, United Kingdom
*E-mail: [email protected]. Fax: +44 (0)20 8943 2767.
Cite this: Anal. Chem. 2014, 86, 9, 4387–4394
Publication Date (Web):March 31, 2014
https://doi.org/10.1021/ac500208w
Copyright © 2014 American Chemical Society

    Article Views

    2310

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (819 KB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Performing nucleic acid amplification techniques (NAATs) in digital format using limiting dilution provides potential advantages that have recently been demonstrated with digital polymerase chain reaction (dPCR). Key benefits that have been claimed are the ability to quantify nucleic acids without the need of an external calibrator and a greater resistance to inhibitors than real-time quantitative PCR (qPCR). In this study, we evaluated the performance of four NAATs, qPCR, dPCR, real-time quantitative loop mediated isothermal amplification (qLAMP), and digital LAMP (dLAMP), for the detection and quantification of human cytomegalovirus (hCMV). We used various DNA templates and inhibitors to compare the performance of these methods using a conventional real-time thermocycler platform (Bio-Rad CFX96) and a chip based digital platform (Fluidigm Biomark 12.765 Digital Array). dPCR performed well and demonstrated greater resistance to inhibitors than the other methods although this resistance did not apply equally to all inhibitors tested. dLAMP was found to be less sensitive than dPCR, but its quantitative performance was better than qLAMP, the latter being unable to quantify below 1000 copies. dLAMP was also more resistant to inhibitors than qLAMP. Unlike qPCR, both digital methods were able to quantify viral genomes without requiring a calibrator; however, neither can currently compete with the large reaction volumes, and thus the greater absolute sensitivity, of qPCR. With the introduction of digital instrumentation that will enable larger reaction volumes, digital amplification methods such as those evaluated in this study could potentially offer a robust alternative to qPCR for nucleic acid quantification.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional information as noted in text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 118 publications.

    1. Lina Yu, Zhe Tian, Dev Raj Joshi, Lin Yuan, Reshma Tuladhar, Yu Zhang, Min Yang. Detection of SARS-CoV-2 and Other Viruses in Wastewater: Optimization and Automation of an Aluminum Hydroxide Adsorption–Precipitation Method for Virus Concentration. ACS ES&T Water 2022, 2 (11) , 2175-2184. https://doi.org/10.1021/acsestwater.2c00079
    2. Zhao-Peng Chen, Peng Yang, Ze-Zhou Yang, Ya-Qin Chai, Ruo Yuan, Ying Zhuo, Wen-Bin Liang. One-Step Digital Droplet Auto-Catalytic Nucleic Acid Amplification with High-Throughput Fluorescence Imaging and Droplet Tracking Computation. Analytical Chemistry 2022, 94 (25) , 9166-9175. https://doi.org/10.1021/acs.analchem.2c01754
    3. Martin Schulz, Julian Ruediger, Emelie Landmann, Mohammed Bakheit, Sieghard Frischmann, Daniela Rassler, Ana R. Homann, Felix von Stetten, Roland Zengerle, Nils Paust. High Dynamic Range Digital Assay Enabled by Dual-Volume Centrifugal Step Emulsification. Analytical Chemistry 2021, 93 (5) , 2854-2860. https://doi.org/10.1021/acs.analchem.0c04182
    4. Junjie Chi, Changmin Shao, Xin Du, Hong Liu, Zhongze Gu. Generating Microdroplet Array on Photonic Pseudo-paper for Absolute Quantification of Nucleic Acids. ACS Applied Materials & Interfaces 2018, 10 (45) , 39144-39150. https://doi.org/10.1021/acsami.8b11552
    5. Yun Xia, Shuangqian Yan, Xian Zhang, Peng Ma, Wei Du, Xiaojun Feng, and Bi-Feng Liu . Monte Carlo Modeling-Based Digital Loop-Mediated Isothermal Amplification on a Spiral Chip for Absolute Quantification of Nucleic Acids. Analytical Chemistry 2017, 89 (6) , 3716-3723. https://doi.org/10.1021/acs.analchem.7b00031
    6. Maja Sidstedt, Erica L. Romsos, Ronny Hedell, Ricky Ansell, Carolyn R. Steffen, Peter M. Vallone, Peter Rådström, and Johannes Hedman . Accurate Digital Polymerase Chain Reaction Quantification of Challenging Samples Applying Inhibitor-Tolerant DNA Polymerases. Analytical Chemistry 2017, 89 (3) , 1642-1649. https://doi.org/10.1021/acs.analchem.6b03746
    7. Joel Tellinghuisen . Partition Volume Variability in Digital Polymerase Chain Reaction Methods: Polydispersity Causes Bias but Can Improve Precision. Analytical Chemistry 2016, 88 (24) , 12183-12187. https://doi.org/10.1021/acs.analchem.6b03139
    8. Jesus Rodriguez-Manzano, Mikhail A. Karymov, Stefano Begolo, David A. Selck, Dmitriy V. Zhukov, Erik Jue, and Rustem F. Ismagilov . Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones. ACS Nano 2016, 10 (3) , 3102-3113. https://doi.org/10.1021/acsnano.5b07338
    9. Yongxi Zhao, Feng Chen, Qian Li, Lihua Wang, and Chunhai Fan . Isothermal Amplification of Nucleic Acids. Chemical Reviews 2015, 115 (22) , 12491-12545. https://doi.org/10.1021/acs.chemrev.5b00428
    10. Joel Tellinghuisen , Andrej-Nikolai Spiess . Bias and Imprecision in Analysis of Real-Time Quantitative Polymerase Chain Reaction Data. Analytical Chemistry 2015, 87 (17) , 8925-8931. https://doi.org/10.1021/acs.analchem.5b02057
    11. Alison S. Devonshire, Isobella Honeyborne, Alice Gutteridge, Alexandra S. Whale, Gavin Nixon, Philip Wilson, Gerwyn Jones, Timothy D. McHugh, Carole A. Foy, and Jim F. Huggett . Highly Reproducible Absolute Quantification of Mycobacterium tuberculosis Complex by Digital PCR. Analytical Chemistry 2015, 87 (7) , 3706-3713. https://doi.org/10.1021/ac5041617
    12. Joel Tellinghuisen , Andrej-Nikolai Spiess . Absolute Copy Number from the Statistics of the Quantification Cycle in Replicate Quantitative Polymerase Chain Reaction Experiments. Analytical Chemistry 2015, 87 (3) , 1889-1895. https://doi.org/10.1021/acs.analchem.5b00077
    13. Xiude Hua, Wei Yin, Haiyan Shi, Ming Li, Yanru Wang, Hong Wang, Yonghao Ye, Hee Joo Kim, Shirley J. Gee, Minghua Wang, Fengquan Liu, and Bruce D. Hammock . Development of Phage Immuno-Loop-Mediated Isothermal Amplification Assays for Organophosphorus Pesticides in Agro-products. Analytical Chemistry 2014, 86 (16) , 8441-8447. https://doi.org/10.1021/ac5020657
    14. Sayyad Khanizadeh, Asra Malekshahi, Hooman Hanifehpour, Mehdi Birjandi, Shirzad Fallahi. Rapid, sensitive, and specific detection of SARS-CoV-2 in nasopharyngeal swab samples of suspected patients using a novel one-step loop-mediated isothermal amplification (one-step LAMP) technique. BMC Microbiology 2023, 23 (1) https://doi.org/10.1186/s12866-023-02806-z
    15. Li Meng, Mingzhong Li, Zhenyu Xu, Aman Lv, Yanwei Jia, Meiwan Chen, Pui-In Mak, Rui P. Martins, Man-Kay Law. Absolute Quantification of Nucleic Acid on Digital Microfluidics Platform Based on Superhydrophobic–Superhydrophilic Micropatterning. Sensors and Actuators B: Chemical 2023, 13 , 135079. https://doi.org/10.1016/j.snb.2023.135079
    16. Ishara M. Isham, Shahnas M. Najimudeen, Susan C. Cork, Ashish Gupta, Mohamed Faizal Abdul-Careem. Comparison of quantitative PCR and digital PCR assays for quantitative detection of infectious bronchitis virus (IBV) genome. Journal of Virological Methods 2023, 52 , 114859. https://doi.org/10.1016/j.jviromet.2023.114859
    17. Qingfei He, Xiaoguang Shang, Ruiping Tian, Xiefei Zhu, Wangzhen Guo. An efficient and accurate droplet digital PCR method for rapid transgene copy number detection and homozygous identification in cotton (Gossypium hirsutum). Industrial Crops and Products 2023, 204 , 117284. https://doi.org/10.1016/j.indcrop.2023.117284
    18. Alexandra Bogožalec Košir, Sabine Muller, Jana Žel, Mojca Milavec, Allison C. Mallory, David Dobnik. Fast and Accurate Multiplex Identification and Quantification of Seven Genetically Modified Soybean Lines Using Six-Color Digital PCR. Foods 2023, 12 (22) , 4156. https://doi.org/10.3390/foods12224156
    19. Nancy Sharma, Tara Neill, Hui-Ching Yang, Charlotte L. Oliver, Walter F. Mahaffee, Rachel Naegele, Michelle M. Moyer, Timothy D. Miles. Development of a PNA-LNA-LAMP Assay to Detect an SNP Associated with QoI Resistance in Erysiphe necator. Plant Disease 2023, 3 https://doi.org/10.1094/PDIS-09-22-2027-RE
    20. Tyler Hertenstein, Yisha Tang, Alexander S. Day, Jocelyn Reynolds, Patrick V. Viboolmate, Jeong-Yeol Yoon. Rapid and sensitive detection of miRNA via light scatter-aided emulsion-based isothermal amplification using a custom low-cost device. Biosensors and Bioelectronics 2023, 237 , 115444. https://doi.org/10.1016/j.bios.2023.115444
    21. Chanqiong Zhang, Zhengyi Cai, Zihao Zhou, Mei Li, Weilong Hong, Wenxian Zhou, Dianjun Yu, Panpan Wei, Jialin He, Yujuan Wang, Chongan Huang, Xiaobing Wang, Jinyu Wu. CASMART, a one-step CRISPR Cas12a-mediated isothermal amplification for rapid and high-resolution digital detection of rare mutant alleles. Biosensors and Bioelectronics 2023, 222 , 114956. https://doi.org/10.1016/j.bios.2022.114956
    22. Donnie L. Peterson, Kathleen Kyle, Aurélien Sallé, Francesco Pecori, Duccio Migliorini, Alberto Santini, Nicola Luchi, Michelle Cleary. Specificity and Sensitivity of a Rapid LAMP Assay for Early Detection of Emerald Ash Borer (Agrilus planipennis) in Europe. Forests 2023, 14 (2) , 436. https://doi.org/10.3390/f14020436
    23. Patrick Gürtler, Sven Pecoraro. Evolution der PCR – von der klassischen PCR zur digitalen PCR. 2023, 141-163. https://doi.org/10.1007/978-3-662-62671-9_7
    24. Petros Takousis, Alison S. Devonshire, Nicholas Redshaw, Louisa von Baumgarten, Alexandra S. Whale, Gerwyn M. Jones, Ana Fernandez-Gonzalez, Jan Martin, Carole A. Foy, Panagiotis Alexopoulos, Jim F. Huggett, Robert Perneczky. A standardised methodology for the extraction and quantification of cell-free DNA in cerebrospinal fluid and application to evaluation of Alzheimer’s disease and brain cancers. New Biotechnology 2022, 72 , 97-106. https://doi.org/10.1016/j.nbt.2022.10.001
    25. Constance Renault, Karine Bolloré, Amandine Pisoni, Camille Motto-Ros, Philippe Van de Perre, Jacques Reynes, Edouard Tuaillon. Accuracy of real-time PCR and digital PCR for the monitoring of total HIV DNA under prolonged antiretroviral therapy. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-13581-8
    26. Ugur Gezer, Abel J. Bronkhorst, Stefan Holdenrieder. The Clinical Utility of Droplet Digital PCR for Profiling Circulating Tumor DNA in Breast Cancer Patients. Diagnostics 2022, 12 (12) , 3042. https://doi.org/10.3390/diagnostics12123042
    27. Cui Wu, Linbo Liu, Zunzhong Ye, Jingjing Gong, Pei Hao, Jianfeng Ping, Yibin Ying. TriD-LAMP: A pump-free microfluidic chip for duplex droplet digital loop-mediated isothermal amplification analysis. Analytica Chimica Acta 2022, 1233 , 340513. https://doi.org/10.1016/j.aca.2022.340513
    28. Hui Wu, Xiaobao Cao, Yingchao Meng, Daniel Richards, Jian Wu, Zhangying Ye, Andrew J. deMello. DropCRISPR: A LAMP-Cas12a based digital method for ultrasensitive detection of nucleic acid. Biosensors and Bioelectronics 2022, 211 , 114377. https://doi.org/10.1016/j.bios.2022.114377
    29. Keven Lothert, Friederike Eilts, Michael W. Wolff. Quantification methods for viruses and virus-like particles applied in biopharmaceutical production processes. Expert Review of Vaccines 2022, 21 (8) , 1029-1044. https://doi.org/10.1080/14760584.2022.2072302
    30. Ramanath Majumdar, Julie A. Vrana, Justin W. Koepplin, Dragana Milosevic, Anja C. Roden, Joaquin J. Garcia, Benjamin R. Kipp, Ann M. Moyer. SARS-CoV-2 RNA detection in Formalin-Fixed Paraffin-Embedded (FFPE) tissue by droplet digital PCR (ddPCR). Clinica Chimica Acta 2022, 532 , 181-187. https://doi.org/10.1016/j.cca.2022.05.007
    31. Alexandra S. Whale, Eva K. von der Heide, Max Kohlenberg, Anja Brinckmann, Silke Baedker, Oezlem Karalay, Ana Fernandez-Gonzalez, Eloise J. Busby, Stephen A. Bustin, Heiko Hauser, Andreas Missel, Denise M. O'Sullivan, Jim F. Huggett, Michael W. Pfaffl, Tania Nolan. Digital PCR can augment the interpretation of RT-qPCR Cq values for SARS-CoV-2 diagnostics. Methods 2022, 201 , 5-14. https://doi.org/10.1016/j.ymeth.2021.08.006
    32. Xinran Xiang, Yuting Shang, Jumei Zhang, Yu Ding, Qingping Wu. Advances in improvement strategies of digital nucleic acid amplification for pathogen detection. TrAC Trends in Analytical Chemistry 2022, 149 , 116568. https://doi.org/10.1016/j.trac.2022.116568
    33. Xiaolin Wu, Cheryl Chan, Stacy L. Springs, Yie Hou Lee, Timothy K. Lu, Hanry Yu. A warm-start digital CRISPR/Cas-based method for the quantitative detection of nucleic acids. Analytica Chimica Acta 2022, 1196 , 339494. https://doi.org/10.1016/j.aca.2022.339494
    34. Hamsa N. Gowda, Horacio Kido, Xunyi Wu, Oren Shoval, Adrienne Lee, Albert Lorenzana, Marc Madou, Michael Hoffmann, Sunny C. Jiang. Development of a proof-of-concept microfluidic portable pathogen analysis system for water quality monitoring. Science of The Total Environment 2022, 813 , 152556. https://doi.org/10.1016/j.scitotenv.2021.152556
    35. Tigst Demeke, Sung-Jong Lee, Monika Eng. Increasing the Efficiency of Canola and Soybean GMO Detection and Quantification Using Multiplex Droplet Digital PCR. Biology 2022, 11 (2) , 201. https://doi.org/10.3390/biology11020201
    36. Manzoor A. Mir, Shariqa Aisha, Umar Mehraj. Triple-negative breast cancer - an aggressive subtype of breast cancer. 2022, 1-28. https://doi.org/10.1016/B978-0-323-96136-3.00005-4
    37. Mustafa Fatih Abasiyanik, Blake Flood, Jing Lin, Sefika Ozcan, Sherin J. Rouhani, Athalia Pyzer, Jonathan Trujillo, Chaojie Zhen, Ping Wu, Stephen Jumic, Andrew Wang, Thomas F. Gajewski, Peng Wang, Madeline Hartley, Bekim Ameti, Rachael Niemiec, Marian Fernando, Vasudha Mishra, Peter Savage, Bulent Aydogan, Cindy Bethel, Scott Matushek, Kathleen G. Beavis, Nishant Agrawal, Jeremy Segal, Savaş Tay, Evgeny Izumchenko. Sensitive detection and quantification of SARS-CoV-2 in saliva. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-91835-7
    38. Md Anik Ashfaq Khan, Khaledul Faisal, Rajashree Chowdhury, Prakash Ghosh, Faria Hossain, Manfred Weidmann, Dinesh Mondal, Ahmed Abd El Wahed. Development of Quantitative Rapid Isothermal Amplification Assay for Leishmania donovani. Diagnostics 2021, 11 (11) , 1963. https://doi.org/10.3390/diagnostics11111963
    39. Jinrong Shen, Jihong Zheng, Zhenqing Li, Yourong Liu, Fengxiang Jing, Xinjun Wan, Yoshinori Yamaguchi, Songlin Zhuang. A rapid nucleic acid concentration measurement system with large field of view for a droplet digital PCR microfluidic chip. Lab on a Chip 2021, 21 (19) , 3742-3747. https://doi.org/10.1039/D1LC00532D
    40. Sally A. Mahmoud, Subhashini Ganesan, Esra Ibrahim, Bhagyashree Thakre, Juliet G. Teddy, Preety Raheja, Walid A. Zaher. Evaluation of six different rapid methods for nucleic acid detection of SARS‐COV‐2 virus. Journal of Medical Virology 2021, 93 (9) , 5538-5543. https://doi.org/10.1002/jmv.27090
    41. Tingting Wen, Xianghong Zhang, Christoph Lippuner, Marcel Schiff, Frank Stuber. Development and Evaluation of a Droplet Digital PCR Assay for 8p23 β-Defensin Cluster Copy Number Determination. Molecular Diagnosis & Therapy 2021, 25 (5) , 607-615. https://doi.org/10.1007/s40291-021-00546-2
    42. Hao Yin, Zhenhua Wu, Nan Shi, Yong Qi, Xiaoyu Jian, Lin Zhou, Yigang Tong, Zule Cheng, Jianlong Zhao, Hongju Mao. Ultrafast multiplexed detection of SARS-CoV-2 RNA using a rapid droplet digital PCR system. Biosensors and Bioelectronics 2021, 188 , 113282. https://doi.org/10.1016/j.bios.2021.113282
    43. Amir Asri Kojabad, Mahdieh Farzanehpour, Hadi Esmaeili Gouvarchin Galeh, Ruhollah Dorostkar, Ali Jafarpour, Masoumeh Bolandian, Majid Mirzaei Nodooshan. Droplet digital PCR of viral ‎DNA/RNA, current progress, challenges, and future perspectives. Journal of Medical Virology 2021, 93 (7) , 4182-4197. https://doi.org/10.1002/jmv.26846
    44. Xiaolin Wu, Joshua K. Tay, Chuan Keng Goh, Cheryl Chan, Yie Hou Lee, Stacy L. Springs, De Yun Wang, Kwok Seng Loh, Timothy K. Lu, Hanry Yu. Digital CRISPR-based method for the rapid detection and absolute quantification of nucleic acids. Biomaterials 2021, 274 , 120876. https://doi.org/10.1016/j.biomaterials.2021.120876
    45. Andres F. Salcedo, Savithri Purayannur, Jeffrey R. Standish, Timothy Miles, Lindsey Thiessen, Lina M. Quesada-Ocampo. Fantastic Downy Mildew Pathogens and How to Find Them: Advances in Detection and Diagnostics. Plants 2021, 10 (3) , 435. https://doi.org/10.3390/plants10030435
    46. Xinran Xiang, Yuting Shang, Qinghua Ye, Jumei Zhang, Liang Xue, Juan Wang, Yu Ding, Wu Qingping. Advances in Improvement Strategies of Digital Nucleic Acid Amplification for Pathogen Detection. SSRN Electronic Journal 2021, 3812 https://doi.org/10.2139/ssrn.3991873
    47. Sylvia Annabel Dass, Kim Liu Tan, Rehasri Selva Rajan, Noor Fatmawati Mokhtar, Elis Rosliza Mohd Adzmi, Wan Faiziah Wan Abdul Rahman, Tengku Ahmad Damitri Al-Astani Tengku Din, Venugopal Balakrishnan. Triple Negative Breast Cancer: A Review of Present and Future Diagnostic Modalities. Medicina 2021, 57 (1) , 62. https://doi.org/10.3390/medicina57010062
    48. Darya Ilyinichna Smirnova, Anastasiya Vyacheslavovna Gracheva, Elena Aleksandrovna Volynskaya, Vitaliy Vasilievich Zverev, Evgeniy Bakhtiyorovich Faizuloev. Diagnostic value of the LAMP method with real-time fluo-rescence detection on a model of herpesvirus infection. Sanitarnyj vrač (Sanitary Doctor) 2021, (1) , 52-61. https://doi.org/10.33920/med-08-2101-06
    49. Joel Tellinghuisen. dPCR vs. qPCR: The role of Poisson statistics at low concentrations. Analytical Biochemistry 2020, 611 , 113946. https://doi.org/10.1016/j.ab.2020.113946
    50. Erik Jue, Daan Witters, Rustem F. Ismagilov. Two-phase wash to solve the ubiquitous contaminant-carryover problem in commercial nucleic-acid extraction kits. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-58586-3
    51. Gangwei Xu, Huaqing Si, Fengxiang Jing, Peng Sun, Dan Zhao, Dongping Wu. A Double-Deck Self-Digitization Microfluidic Chip for Digital PCR. Micromachines 2020, 11 (12) , 1025. https://doi.org/10.3390/mi11121025
    52. Emilis Gegevicius, Karolis Goda, Linas Mazutis. Droplet Gene Analysis – Digital PCR. 2020, 89-121. https://doi.org/10.1039/9781839162855-00089
    53. Jingfeng Zhang, Li Wang, Lei Shi, Xun Chen, Meidan Liang, Lichao Zhao. Development and application of a real-time loop-mediated isothermal amplification method for quantification of Acetobacter aceti in red wine. FEMS Microbiology Letters 2020, 367 (19) https://doi.org/10.1093/femsle/fnaa152
    54. Yeliz Yücel Öz, Öykü İrigül Sönmez, Sibel Karaman, Ersoy Öz, Can Bora Unal, Ayten Yazgan Karataş. Rapid and sensitive detection of Salmonella spp. in raw minced meat samples using droplet digital PCR. European Food Research and Technology 2020, 246 (10) , 1895-1907. https://doi.org/10.1007/s00217-020-03531-x
    55. Yi Tao, Juanli Yun, Jian Wang, Peng Xu, Caiming Li, Hongtao Liu, Ying Lan, Jianzhang Pan, Wenbin Du. High-performance detection of Mycobacterium bovis in milk using digital LAMP. Food Chemistry 2020, 327 , 126945. https://doi.org/10.1016/j.foodchem.2020.126945
    56. Christian D. Ahrberg, Ji Wook Choi, Jong Min Lee, Kyoung G. Lee, Seok Jae Lee, Andreas Manz, Bong Geun Chung. Plasmonic heating-based portable digital PCR system. Lab on a Chip 2020, 20 (19) , 3560-3568. https://doi.org/10.1039/D0LC00788A
    57. , Alexandra S Whale, Ward De Spiegelaere, Wim Trypsteen, Afif Abdel Nour, Young-Kyung Bae, Vladimir Benes, Daniel Burke, Megan Cleveland, Philippe Corbisier, Alison S Devonshire, Lianhua Dong, Daniela Drandi, Carole A Foy, Jeremy A Garson, Hua-Jun He, Jan Hellemans, Mikael Kubista, Antoon Lievens, Mike G Makrigiorgos, Mojca Milavec, Reinhold D Mueller, Tania Nolan, Denise M O’Sullivan, Michael W Pfaffl, Stefan Rödiger, Erica L Romsos, Gregory L Shipley, Valerie Taly, Andreas Untergasser, Carl T Wittwer, Stephen A Bustin, Jo Vandesompele, Jim F Huggett. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clinical Chemistry 2020, 66 (8) , 1012-1029. https://doi.org/10.1093/clinchem/hvaa125
    58. Somayeh Sohrabi, Nour kassir, Mostafa Keshavarz Moraveji. Droplet microfluidics: fundamentals and its advanced applications. RSC Advances 2020, 10 (46) , 27560-27574. https://doi.org/10.1039/D0RA04566G
    59. Tuang Yeow Poh, Nur A’tikah Binte Mohamed Ali, Louisa L.Y. Chan, Pei Yee Tiew, Sanjay H. Chotirmall. Evaluation of Droplet Digital Polymerase Chain Reaction (ddPCR) for the Absolute Quantification of Aspergillus species in the Human Airway. International Journal of Molecular Sciences 2020, 21 (9) , 3043. https://doi.org/10.3390/ijms21093043
    60. Faye M. Walker, Kuangwen Hsieh. Advances in Directly Amplifying Nucleic Acids from Complex Samples. Biosensors 2019, 9 (4) , 117. https://doi.org/10.3390/bios9040117
    61. Ke Zhu, Junjie Chi, Dagan Zhang, Biao Ma, Xing Dong, Jun Yang, Chao Zhao, Hong Liu. Bio-inspired photonic crystals for naked eye quantification of nucleic acids. The Analyst 2019, 144 (18) , 5413-5419. https://doi.org/10.1039/C9AN01042D
    62. Sang Hun Lee, Seung-min Park, Brian N. Kim, Oh Seok Kwon, Won-Yep Rho, Bong-Hyun Jun. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosensors and Bioelectronics 2019, 141 , 111448. https://doi.org/10.1016/j.bios.2019.111448
    63. Akkapol Suea-Ngam, Philip D. Howes, Monpichar Srisa-Art, Andrew J. deMello. Droplet microfluidics: from proof-of-concept to real-world utility?. Chemical Communications 2019, 55 (67) , 9895-9903. https://doi.org/10.1039/C9CC04750F
    64. Enora Dupas, Bruno Legendre, Valérie Olivier, Françoise Poliakoff, Charles Manceau, Amandine Cunty. Comparison of real-time PCR and droplet digital PCR for the detection of Xylella fastidiosa in plants. Journal of Microbiological Methods 2019, 162 , 86-95. https://doi.org/10.1016/j.mimet.2019.05.010
    65. Jason E. Kreutz, Jiasi Wang, Allison M. Sheen, Alison M. Thompson, Jeannette P. Staheli, Michael R. Dyen, Qinghua Feng, Daniel T. Chiu. Self-digitization chip for quantitative detection of human papillomavirus gene using digital LAMP. Lab on a Chip 2019, 19 (6) , 1035-1040. https://doi.org/10.1039/C8LC01223G
    66. Yongning Zhang, Zhou Zhang, Zhanying Wang, Zili Wang, Caixia Wang, Chunyan Feng, Wanzhe Yuan, Xiangmei Lin, Shaoqiang Wu. Development of a droplet digital PCR assay for sensitive detection of porcine circovirus 3. Molecular and Cellular Probes 2019, 43 , 50-57. https://doi.org/10.1016/j.mcp.2018.11.005
    67. Vijay J. Gadkar, David M. Goldfarb, Soren Gantt, Peter A. G. Tilley. Real-time Detection and Monitoring of Loop Mediated Amplification (LAMP) Reaction Using Self-quenching and De-quenching Fluorogenic Probes. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-23930-1
    68. Junjie Chi, Biao Ma, Xing Dong, Bingbing Gao, Abdelrahman Elbaz, Hong Liu, Zhongze Gu. A bio-inspired photonic nitrocellulose array for ultrasensitive assays of single nucleic acids. The Analyst 2018, 143 (19) , 4559-4565. https://doi.org/10.1039/C8AN00939B
    69. Ryan Snodgrass, Andrea Gardner, Aggrey Semeere, Varun Lingaiah Kopparthy, Jens Duru, Toby Maurer, Jeffrey Martin, Ethel Cesarman, David Erickson. A portable device for nucleic acid quantification powered by sunlight, a flame or electricity. Nature Biomedical Engineering 2018, 2 (9) , 657-665. https://doi.org/10.1038/s41551-018-0286-y
    70. Zachary Ballard, Aydogan Ozcan. Nucleic acid quantification in the field. Nature Biomedical Engineering 2018, 2 (9) , 629-630. https://doi.org/10.1038/s41551-018-0292-0
    71. Irene Dogliotti, Daniela Drandi, Elisa Genuardi, Simone Ferrero. New Molecular Technologies for Minimal Residual Disease Evaluation in B-Cell Lymphoid Malignancies. Journal of Clinical Medicine 2018, 7 (9) , 288. https://doi.org/10.3390/jcm7090288
    72. Tigst Demeke, David Dobnik. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Analytical and Bioanalytical Chemistry 2018, 410 (17) , 4039-4050. https://doi.org/10.1007/s00216-018-1010-1
    73. Phenix-Lan Quan, Martin Sauzade, Eric Brouzes. dPCR: A Technology Review. Sensors 2018, 18 (4) , 1271. https://doi.org/10.3390/s18041271
    74. Firouz Abbasian, Ebrahim Ghafar-Zadeh, Sebastian Magierowski. Microbiological Sensing Technologies: A Review. Bioengineering 2018, 5 (1) , 20. https://doi.org/10.3390/bioengineering5010020
    75. Daniela Drandi, Simone Ferrero, Marco Ladetto. Droplet Digital PCR for Minimal Residual Disease Detection in Mature Lymphoproliferative Disorders. 2018, 229-256. https://doi.org/10.1007/978-1-4939-7778-9_14
    76. Leonardo Pinheiro, Kerry R. Emslie. Basic Concepts and Validation of Digital PCR Measurements. 2018, 11-24. https://doi.org/10.1007/978-1-4939-7778-9_2
    77. Jessica N. Brazelton De Cárdenas, Randall T. Hayden. Applications of Digital PCR in Clinical Microbiology. 2018, 685-698. https://doi.org/10.1007/978-3-319-95111-9_29
    78. Carl T. Wittwer, G. Mike Makrigiorgos. Nucleic Acid Techniques. 2018, 47-86. https://doi.org/10.1016/B978-0-12-816061-9.00004-7
    79. Lindsey D. Thiessen, Tara M. Neill, Walter F. Mahaffee. Development of a quantitative loop-mediated isothermal amplification assay for the field detection of Erysiphe necator. PeerJ 2018, 6 , e4639. https://doi.org/10.7717/peerj.4639
    80. Tatsuhiko Hoshino, Yohei Hamada. Estimation of the influence of sequencing errors and distribution of random-sequence tags on quantitative sequencing. Journal of Bioscience and Bioengineering 2017, 124 (3) , 359-364. https://doi.org/10.1016/j.jbiosc.2017.04.003
    81. Ismail Basha, Eric Ho, Caffiyar Yousuff, Nor Hamid. Towards Multiplex Molecular Diagnosis—A Review of Microfluidic Genomics Technologies. Micromachines 2017, 8 (9) , 266. https://doi.org/10.3390/mi8090266
    82. Silvia Monteiro, Ricardo Santos, . Nanofluidic digital PCR for the quantification of Norovirus for water quality assessment. PLOS ONE 2017, 12 (7) , e0179985. https://doi.org/10.1371/journal.pone.0179985
    83. Jernej Pavšič, Alison Devonshire, Andrej Blejec, Carole A. Foy, Fran Van Heuverswyn, Gerwyn M. Jones, Heinz Schimmel, Jana Žel, Jim F. Huggett, Nicholas Redshaw, Maria Karczmarczyk, Erkan Mozioğlu, Sema Akyürek, Müslüm Akgöz, Mojca Milavec. Inter-laboratory assessment of different digital PCR platforms for quantification of human cytomegalovirus DNA. Analytical and Bioanalytical Chemistry 2017, 409 (10) , 2601-2614. https://doi.org/10.1007/s00216-017-0206-0
    84. Lei Cao, Xingye Cui, Jie Hu, Zedong Li, Jane Ru Choi, Qingzhen Yang, Min Lin, Li Ying Hui, Feng Xu. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosensors and Bioelectronics 2017, 90 , 459-474. https://doi.org/10.1016/j.bios.2016.09.082
    85. N. Mehle, P. Kogovšek, F. Constable, K. De Jonghe, M. Loiseau, F. Veratti, C. Marzachi, L. Ferretti, E. Angelini, L. Filippin, E. Sousa, E. Andrade, J. Hodgetts, M. Dickinson, M. Dermastia. Test performance study of isothermal amplification tests for the detection of Grapevine flavescence dorée phytoplasma and ‘ Candidatus Phytoplasma solani’. EPPO Bulletin 2017, 47 (1) , 18-23. https://doi.org/10.1111/epp.12351
    86. Daniel Ortiz Velez, Hannah Mack, Julietta Jupe, Sinead Hawker, Ninad Kulkarni, Behnam Hedayatnia, Yang Zhang, Shelley Lawrence, Stephanie I. Fraley. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep42326
    87. Mary Alikian, Robert Peter Gale, Jane F Apperley, Letizia Foroni. Molecular techniques for the personalised management of patients with chronic myeloid leukaemia. Biomolecular Detection and Quantification 2017, 11 , 4-20. https://doi.org/10.1016/j.bdq.2017.01.001
    88. Alexandra S. Whale, Jim F. Huggett, Svilen Tzonev. Fundamentals of multiplexing with digital PCR. Biomolecular Detection and Quantification 2016, 10 , 15-23. https://doi.org/10.1016/j.bdq.2016.05.002
    89. Hongling Li, Jianguo Xu, Zhenmeng Wang, Zai-Sheng Wu, Lee Jia. Increasingly branched rolling circle amplification for the cancer gene detection. Biosensors and Bioelectronics 2016, 86 , 1067-1073. https://doi.org/10.1016/j.bios.2016.07.095
    90. Alison S. Devonshire, Denise M. O’Sullivan, Isobella Honeyborne, Gerwyn Jones, Maria Karczmarczyk, Jernej Pavšič, Alice Gutteridge, Mojca Milavec, Pablo Mendoza, Heinz Schimmel, Fran Van Heuverswyn, Rebecca Gorton, Daniela Maria Cirillo, Emanuele Borroni, Kathryn Harris, Marinus Barnard, Anthenette Heydenrych, Norah Ndusilo, Carole L. Wallis, Keshree Pillay, Thomas Barry, Kate Reddington, Elvira Richter, Erkan Mozioğlu, Sema Akyürek, Burhanettin Yalçınkaya, Muslum Akgoz, Jana Žel, Carole A. Foy, Timothy D. McHugh, Jim F. Huggett. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis. BMC Infectious Diseases 2016, 16 (1) https://doi.org/10.1186/s12879-016-1696-7
    91. Wen Liang, Li Xu, Zhiwei Sui, Yan Li, Lanying Li, Yanli Wen, Chunhua Li, Shuzhen Ren, Gang Liu. Quantification of plasmid DNA reference materials for Shiga toxin-producing Escherichia coli based on UV, HR-ICP-MS and digital PCR. Chemistry Central Journal 2016, 10 (1) https://doi.org/10.1186/s13065-016-0201-0
    92. Azuka Iwobi, Lars Gerdes, Ulrich Busch, Sven Pecoraro. Droplet digital PCR for routine analysis of genetically modified foods (GMO) – A comparison with real-time quantitative PCR. Food Control 2016, 69 , 205-213. https://doi.org/10.1016/j.foodcont.2016.04.048
    93. Matthijs Vynck, Wim Trypsteen, Olivier Thas, Linos Vandekerckhove, Ward De Spiegelaere. The Future of Digital Polymerase Chain Reaction in Virology. Molecular Diagnosis & Therapy 2016, 20 (5) , 437-447. https://doi.org/10.1007/s40291-016-0224-1
    94. A Baoutina, S Bhat, M Zheng, L Partis, M Dobeson, I E Alexander, K R Emslie. Synthetic certified DNA reference material for analysis of human erythropoietin transgene and transcript in gene doping and gene therapy. Gene Therapy 2016, 23 (10) , 708-717. https://doi.org/10.1038/gt.2016.47
    95. Sandra Martin-Latil, Catherine Hennechart-Collette, Sabine Delannoy, Laurent Guillier, Patrick Fach, Sylvie Perelle. Quantification of Hepatitis E Virus in Naturally-Contaminated Pig Liver Products. Frontiers in Microbiology 2016, 07 https://doi.org/10.3389/fmicb.2016.01183
    96. Y. Gao, M. K. Tan, Y. G. Zhu. Rapid and specific detection of Tilletia indica using loop-mediated isothermal DNA amplification. Australasian Plant Pathology 2016, 45 (4) , 361-367. https://doi.org/10.1007/s13313-016-0422-7
    97. Jeanne Hohweyer, Catherine Cazeaux, Emmanuelle Travaillé, Emilie Languet, Aurélien Dumètre, Dominique Aubert, Christine Terryn, Jitender P. Dubey, Nadine Azas, Maryline Houssin, Favennec Loïc, Isabelle Villena, Stéphanie La Carbona. Simultaneous detection of the protozoan parasites Toxoplasma, Cryptosporidium and Giardia in food matrices and their persistence on basil leaves. Food Microbiology 2016, 57 , 36-44. https://doi.org/10.1016/j.fm.2016.01.002
    98. Alexandra S. Whale, Claire A. Bushell, Paul R. Grant, Simon Cowen, Ion Gutierrez-Aguirre, Denise M. O'Sullivan, Jana Žel, Mojca Milavec, Carole A. Foy, Eleni Nastouli, Jeremy A. Garson, Jim F. Huggett, . Detection of Rare Drug Resistance Mutations by Digital PCR in a Human Influenza A Virus Model System and Clinical Samples. Journal of Clinical Microbiology 2016, 54 (2) , 392-400. https://doi.org/10.1128/JCM.02611-15
    99. Kuo Zhang, Guigao Lin, Jinming Li. Quantitative nucleic acid amplification by digital PCR for clinical viral diagnostics. Clinical Chemistry and Laboratory Medicine (CCLM) , Article ASAP.
    100. Yiping Cao, John F. Griffith, Stephen B. Weisberg. The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR. 2016, 113-130. https://doi.org/10.1007/978-1-4939-3774-5_7
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect