ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

MIDAS: A Database-Searching Algorithm for Metabolite Identification in Metabolomics

View Author Information
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
Cite this: Anal. Chem. 2014, 86, 19, 9496–9503
Publication Date (Web):August 26, 2014
https://doi.org/10.1021/ac5014783
Copyright © 2014 American Chemical Society

    Article Views

    3011

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A database searching approach can be used for metabolite identification in metabolomics by matching measured tandem mass spectra (MS/MS) against the predicted fragments of metabolites in a database. Here, we present the open-source MIDAS algorithm (Metabolite Identification via Database Searching). To evaluate a metabolite-spectrum match (MSM), MIDAS first enumerates possible fragments from a metabolite by systematic bond dissociation, then calculates the plausibility of the fragments based on their fragmentation pathways, and finally scores the MSM to assess how well the experimental MS/MS spectrum from collision-induced dissociation (CID) is explained by the metabolite’s predicted CID MS/MS spectrum. MIDAS was designed to search high-resolution tandem mass spectra acquired on time-of-flight or Orbitrap mass spectrometer against a metabolite database in an automated and high-throughput manner. The accuracy of metabolite identification by MIDAS was benchmarked using four sets of standard tandem mass spectra from MassBank. On average, for 77% of original spectra and 84% of composite spectra, MIDAS correctly ranked the true compounds as the first MSMs out of all MetaCyc metabolites as decoys. MIDAS correctly identified 46% more original spectra and 59% more composite spectra at the first MSMs than an existing database-searching algorithm, MetFrag. MIDAS was showcased by searching a published real-world measurement of a metabolome from Synechococcus sp. PCC 7002 against the MetaCyc metabolite database. MIDAS identified many metabolites missed in the previous study. MIDAS identifications should be considered only as candidate metabolites, which need to be confirmed using standard compounds. To facilitate manual validation, MIDAS provides annotated spectra for MSMs and labels observed mass spectral peaks with predicted fragments. The database searching and manual validation can be performed online at http://midas.omicsbio.org.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional materials as described in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 86 publications.

    1. Yury Kostyukevich, Sergey Sosnin, Sergey Osipenko, Oxana Kovaleva, Lidiia Rumiantseva, Albert Kireev, Alexander Zherebker, Maxim Fedorov, Evgeny N. Nikolaev. PyFragMS─A Web Tool for the Investigation of the Collision-Induced Fragmentation Pathways. ACS Omega 2022, 7 (11) , 9710-9719. https://doi.org/10.1021/acsomega.1c07272
    2. Fei Wang, Jaanus Liigand, Siyang Tian, David Arndt, Russell Greiner, David S. Wishart. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Analytical Chemistry 2021, 93 (34) , 11692-11700. https://doi.org/10.1021/acs.analchem.1c01465
    3. Erandika Karunaratne, Dennis W. Hill, Philipp Pracht, José A. Gascón, Stefan Grimme, David F. Grant. High-Throughput Non-targeted Chemical Structure Identification Using Gas-Phase Infrared Spectra. Analytical Chemistry 2021, 93 (30) , 10688-10696. https://doi.org/10.1021/acs.analchem.1c02244
    4. Giuseppe Martano, Michele Leone, Pierluca D’Oro, Vittoria Matafora, Angela Cattaneo, Marco Masseroli, Angela Bachi. SMfinder: Small Molecules Finder for Metabolomics and Lipidomics Analysis. Analytical Chemistry 2020, 92 (13) , 8874-8882. https://doi.org/10.1021/acs.analchem.0c00585
    5. Yury Kostyukevich, Alexander Zherebker, Alexey Orlov, Oxana Kovaleva, Tatyana Burykina, Boris Isotov, Evgeny N. Nikolaev. Hydrogen/Deuterium and 16O/18O-Exchange Mass Spectrometry Boosting the Reliability of Compound Identification. Analytical Chemistry 2020, 92 (10) , 6877-6885. https://doi.org/10.1021/acs.analchem.9b05379
    6. Dehua Li, Binghang Liu, Hancheng Zheng, Xu Xiao, Zhenyu Li, Enhui Luan, Wei Li, Yaling Yang, Yalan Wang, Qiaoyun Long, Jiaping Song, Gong Zhang. XY-Meta: A High-Efficiency Search Engine for Large-Scale Metabolome Annotation with Accurate FDR Estimation. Analytical Chemistry 2020, 92 (8) , 5701-5707. https://doi.org/10.1021/acs.analchem.9b03355
    7. Hongchao Ji, Yamei Xu, Hongmei Lu, Zhimin Zhang. Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification. Analytical Chemistry 2019, 91 (9) , 5629-5637. https://doi.org/10.1021/acs.analchem.8b05405
    8. Onur Erbilgin, Oliver Rübel, Katherine B. Louie, Matthew Trinh, Markus de Raad, Tony Wildish, Daniel Udwary, Cindi Hoover, Samuel Deutsch, Trent R. Northen, Benjamin P. Bowen. MAGI: A Method for Metabolite Annotation and Gene Integration. ACS Chemical Biology 2019, 14 (4) , 704-714. https://doi.org/10.1021/acschembio.8b01107
    9. Milinda A. Samaraweera, L. Mark Hall, Dennis W. Hill, David F. Grant. Evaluation of an Artificial Neural Network Retention Index Model for Chemical Structure Identification in Nontargeted Metabolomics. Analytical Chemistry 2018, 90 (21) , 12752-12760. https://doi.org/10.1021/acs.analchem.8b03118
    10. Xinjie Zhao, Zhongda Zeng, Aiming Chen, Xin Lu, Chunxia Zhao, Chunxiu Hu, Lina Zhou, Xinyu Liu, Xiaolin Wang, Xiaoli Hou, Yaorui Ye, Guowang Xu. Comprehensive Strategy to Construct In-House Database for Accurate and Batch Identification of Small Molecular Metabolites. Analytical Chemistry 2018, 90 (12) , 7635-7643. https://doi.org/10.1021/acs.analchem.8b01482
    11. Zijuan Lai, Tobias Kind, and Oliver Fiehn . Using Accurate Mass Gas Chromatography–Mass Spectrometry with the MINE Database for Epimetabolite Annotation. Analytical Chemistry 2017, 89 (19) , 10171-10180. https://doi.org/10.1021/acs.analchem.7b01134
    12. Zhongwei Xu, Tingmei Chen, Jiao Luo, Shijia Ding, Sichuan Gao, and Jian Zhang . Cartilaginous Metabolomic Study Reveals Potential Mechanisms of Osteophyte Formation in Osteoarthritis. Journal of Proteome Research 2017, 16 (4) , 1425-1435. https://doi.org/10.1021/acs.jproteome.6b00676
    13. William M. B. Edmands, Lauren Petrick, Dinesh K. Barupal, Augustin Scalbert, Mark J. Wilson, Jeffrey K. Wickliffe, and Stephen M. Rappaport . compMS2Miner: An Automatable Metabolite Identification, Visualization, and Data-Sharing R Package for High-Resolution LC–MS Data Sets. Analytical Chemistry 2017, 89 (7) , 3919-3928. https://doi.org/10.1021/acs.analchem.6b02394
    14. Hiroshi Tsugawa, Tobias Kind, Ryo Nakabayashi, Daichi Yukihira, Wataru Tanaka, Tomas Cajka, Kazuki Saito, Oliver Fiehn, and Masanori Arita . Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Analytical Chemistry 2016, 88 (16) , 7946-7958. https://doi.org/10.1021/acs.analchem.6b00770
    15. Felicity Allen, Allison Pon, Russ Greiner, and David Wishart . Computational Prediction of Electron Ionization Mass Spectra to Assist in GC/MS Compound Identification. Analytical Chemistry 2016, 88 (15) , 7689-7697. https://doi.org/10.1021/acs.analchem.6b01622
    16. Yu-Jen Liang, Yu-Ting Lin, Chia-Wei Chen, Chien-Wei Lin, Kun-Mao Chao, Wen-Harn Pan, and Hsin-Chou Yang . SMART: Statistical Metabolomics Analysis—An R Tool. Analytical Chemistry 2016, 88 (12) , 6334-6341. https://doi.org/10.1021/acs.analchem.6b00603
    17. Tao Huan, Chenqu Tang, Ronghong Li, Yi Shi, Guohui Lin, and Liang Li . MyCompoundID MS/MS Search: Metabolite Identification Using a Library of Predicted Fragment-Ion-Spectra of 383,830 Possible Human Metabolites. Analytical Chemistry 2015, 87 (20) , 10619-10626. https://doi.org/10.1021/acs.analchem.5b03126
    18. Jérôme Cotton, Fanny Leroux, Simon Broudin, Mylène Marie, Bruno Corman, Jean-Claude Tabet, Céline Ducruix, and Christophe Junot . High-Resolution Mass Spectrometry Associated with Data Mining Tools for the Detection of Pollutants and Chemical Characterization of Honey Samples. Journal of Agricultural and Food Chemistry 2014, 62 (46) , 11335-11345. https://doi.org/10.1021/jf504400c
    19. Jun Zeng, Yaping Li, Chuanlin Wang, Sheng Fu, Min He. Combination of in silico prediction and convolutional neural network framework for targeted screening of metabolites from LC-HRMS fingerprints: A case study of “Pericarpium Citri Reticulatae - Fructus Aurantii”. Talanta 2024, 269 , 125514. https://doi.org/10.1016/j.talanta.2023.125514
    20. Yinran Xiong, Jinyue Liu, Jing Yu, Da Chen, Tiantian Li, Fengli Zhou, Ting Wu, Xiaotu Liu, Yiping Du. OPEs-ID: A software for non-targeted screening of organophosphate esters based on liquid chromatography-high-resolution mass spectrometry. Journal of Hazardous Materials 2024, 465 , 133275. https://doi.org/10.1016/j.jhazmat.2023.133275
    21. Gurpur Rakesh D. Prabhu, Evan R. Williams, Matthias Wilm, Pawel L. Urban. Mass spectrometry using electrospray ionization. Nature Reviews Methods Primers 2023, 3 (1) https://doi.org/10.1038/s43586-023-00203-4
    22. Yuhui Hong, Sujun Li, Christopher J Welch, Shane Tichy, Yuzhen Ye, Haixu Tang, . 3DMolMS: prediction of tandem mass spectra from 3D molecular conformations. Bioinformatics 2023, 39 (6) https://doi.org/10.1093/bioinformatics/btad354
    23. Susana P. Gaudêncio, Engin Bayram, Lada Lukić Bilela, Mercedes Cueto, Ana R. Díaz-Marrero, Berat Z. Haznedaroglu, Carlos Jimenez, Manolis Mandalakis, Florbela Pereira, Fernando Reyes, Deniz Tasdemir. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Marine Drugs 2023, 21 (5) , 308. https://doi.org/10.3390/md21050308
    24. Boris Tupertsev, Sergey Osipenko, Albert Kireev, Eugene Nikolaev, Yury Kostyukevich. Simple In Vitro 18O Labeling for Improved Mass Spectrometry-Based Drug Metabolites Identification: Deep Drug Metabolism Study. International Journal of Molecular Sciences 2023, 24 (5) , 4569. https://doi.org/10.3390/ijms24054569
    25. Luana P. Mallmann, Alessandro O. Rios, Eliseu Rodrigues. MS-FINDER and SIRIUS for phenolic compound identification from high-resolution mass spectrometry data. Food Research International 2023, 163 , 112315. https://doi.org/10.1016/j.foodres.2022.112315
    26. Milka Ljoncheva, Tomaž Stepišnik, Tina Kosjek, Sašo Džeroski. Machine learning for identification of silylated derivatives from mass spectra. Journal of Cheminformatics 2022, 14 (1) https://doi.org/10.1186/s13321-022-00636-1
    27. Xin Ma. Recent Advances in Mass Spectrometry-Based Structural Elucidation Techniques. Molecules 2022, 27 (19) , 6466. https://doi.org/10.3390/molecules27196466
    28. Jian Guo, Huaxu Yu, Shipei Xing, Tao Huan. Addressing big data challenges in mass spectrometry-based metabolomics. Chemical Communications 2022, 58 (72) , 9979-9990. https://doi.org/10.1039/D2CC03598G
    29. Lauren M. Petrick, Noam Shomron. AI/ML-driven advances in untargeted metabolomics and exposomics for biomedical applications. Cell Reports Physical Science 2022, 3 (7) , 100978. https://doi.org/10.1016/j.xcrp.2022.100978
    30. Shipei Xing, Tao Huan. Radical fragment ions in collision-induced dissociation-based tandem mass spectrometry. Analytica Chimica Acta 2022, 1200 , 339613. https://doi.org/10.1016/j.aca.2022.339613
    31. Dongyang Ye, Xiaowei Li, Jianzhong Shen, Xi Xia. Microbial metabolomics: From novel technologies to diversified applications. TrAC Trends in Analytical Chemistry 2022, 148 , 116540. https://doi.org/10.1016/j.trac.2022.116540
    32. Xue Bai, Chunyan Zhu, Jiayun Chen, Xiaojuan Jiang, Ying Jin, Rong Shen, Mingshe Zhu, Caisheng Wu. Recent Progress on Mass Spectrum Based Approaches for Absorption, Distribution, Metabolism, and Excretion Characterization of Traditional Chinese Medicine. Current Drug Metabolism 2022, 23 (2) , 99-112. https://doi.org/10.2174/1389200223666220211093548
    33. Myungjae Kwak, Kyungwoo Kang, Yingfeng Wang. Methods of Metabolite Identification Using MS/MS Data. Journal of Computer Information Systems 2022, 62 (1) , 12-18. https://doi.org/10.1080/08874417.2019.1681328
    34. Xiu‐xiu Dou, Ying‐li Cai, Xi‐ke Xu, Yu‐hao Zhang, Xin Guo, Zi‐qing Gao, Shan Lin, Yan‐lin Liang, Ji Ye, Wei‐dong Zhang. In vivo and in vitro metabolism study of traditional Chinese medicine formula Dingkun Dan in rats by using ultra‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. Biomedical Chromatography 2022, 36 (1) https://doi.org/10.1002/bmc.5235
    35. Zhitao Tian, Fangzhou Liu, Dongqin Li, Alisdair R. Fernie, Wei Chen. Strategies for structure elucidation of small molecules based on LC–MS/MS data from complex biological samples. Computational and Structural Biotechnology Journal 2022, 20 , 5085-5097. https://doi.org/10.1016/j.csbj.2022.09.004
    36. Liu Cao, Mustafa Guler, Azat Tagirdzhanov, Yi-Yuan Lee, Alexey Gurevich, Hosein Mohimani. MolDiscovery: learning mass spectrometry fragmentation of small molecules. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23986-0
    37. Christoph A Krettler, Gerhard G Thallinger. A map of mass spectrometry-based in silico fragmentation prediction and compound identification in metabolomics. Briefings in Bioinformatics 2021, 22 (6) https://doi.org/10.1093/bib/bbab073
    38. Guodong Cao, Zhengbo Song, Zhiyi Yang, Zhongjian Chen, Yanjun Hong, Zongwei Cai. Database-assisted global metabolomics profiling of pleural effusion induced by tuberculosis and malignancy. Chinese Chemical Letters 2021, 32 (10) , 3207-3210. https://doi.org/10.1016/j.cclet.2021.03.052
    39. Candice L. Swift, Katherine B. Louie, Benjamin P. Bowen, Heather M. Olson, Samuel O. Purvine, Asaf Salamov, Stephen J. Mondo, Kevin V. Solomon, Aaron T. Wright, Trent R. Northen, Igor V. Grigoriev, Nancy P. Keller, Michelle A. O’Malley. Anaerobic gut fungi are an untapped reservoir of natural products. Proceedings of the National Academy of Sciences 2021, 118 (18) https://doi.org/10.1073/pnas.2019855118
    40. Emilie Cauët, Yannick J. Vanhaegenborgh, Frank De Proft, Paul Geerlings. Conceptual and Computational DFT‐based In Silico Fragmentation Method for the Identification of Metabolite Mass Spectra. Chemistry–Methods 2021, 1 (2) , 101-115. https://doi.org/10.1002/cmtd.202000047
    41. Min He, Yu Zhou. How to identify “Material basis–Quality markers” more accurately in Chinese herbal medicines from modern chromatography-mass spectrometry data-sets: Opportunities and challenges of chemometric tools. Chinese Herbal Medicines 2021, 13 (1) , 2-16. https://doi.org/10.1016/j.chmed.2020.05.006
    42. Milka Ljoncheva, Tomaž Stepišnik, Sašo Džeroski, Tina Kosjek. Cheminformatics in MS-based environmental exposomics: Current achievements and future directions. Trends in Environmental Analytical Chemistry 2020, 28 , e00099. https://doi.org/10.1016/j.teac.2020.e00099
    43. Zeqin Guo, Sheng Huang, Jianhua Wang, Yong-Lai Feng. Recent advances in non-targeted screening analysis using liquid chromatography - high resolution mass spectrometry to explore new biomarkers for human exposure. Talanta 2020, 219 , 121339. https://doi.org/10.1016/j.talanta.2020.121339
    44. Zeqin Guo, Zhiguo Zhu, Sheng Huang, Jianhua Wang. Non-targeted screening of pesticides for food analysis using liquid chromatography high-resolution mass spectrometry-a review. Food Additives & Contaminants: Part A 2020, 37 (7) , 1180-1201. https://doi.org/10.1080/19440049.2020.1753890
    45. Neda Hassanpour, Nicholas Alden, Rani Menon, Arul Jayaraman, Kyongbum Lee, Soha Hassoun. Biological Filtering and Substrate Promiscuity Prediction for Annotating Untargeted Metabolomics. Metabolites 2020, 10 (4) , 160. https://doi.org/10.3390/metabo10040160
    46. Marcus Ludwig, Markus Fleischauer, Kai Dührkop, Martin A. Hoffmann, Sebastian Böcker. De Novo Molecular Formula Annotation and Structure Elucidation Using SIRIUS 4. 2020, 185-207. https://doi.org/10.1007/978-1-0716-0239-3_11
    47. Hyun Woo Kim, Seong Yeon Choi, Hyeon Seok Jang, Byeol Ryu, Sang Hyun Sung, Heejung Yang. Exploring novel secondary metabolites from natural products using pre-processed mass spectral data. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-54078-1
    48. Christoph Ruttkies, Steffen Neumann, Stefan Posch. Improving MetFrag with statistical learning of fragment annotations. BMC Bioinformatics 2019, 20 (1) https://doi.org/10.1186/s12859-019-2954-7
    49. Aurélien F. A. Moumbock, Fidele Ntie-Kang, Sergi H. Akone, Jianyu Li, Mingjie Gao, Kiran K. Telukunta, Stefan Günther. An overview of tools, software, and methods for natural product fragment and mass spectral analysis. Physical Sciences Reviews 2019, 4 (9) https://doi.org/10.1515/psr-2018-0126
    50. Simon Rogers, Cher Wei Ong, Joe Wandy, Madeleine Ernst, Lars Ridder, Justin J. J. van der Hooft. Deciphering complex metabolite mixtures by unsupervised and supervised substructure discovery and semi-automated annotation from MS/MS spectra. Faraday Discussions 2019, 218 , 284-302. https://doi.org/10.1039/C8FD00235E
    51. Stefanie Doell, Nadja Arens, Hans‐Peter Mock. Liquid Chromatography and Liquid Chromatography–Mass Spectrometry of Plants: Techniques and Applications. 2019, 1-12. https://doi.org/10.1002/9780470027318.a9912.pub2
    52. Aitor Blanco-Míguez, Florentino Fdez-Riverola, Borja Sánchez, Anália Lourenço. Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Briefings in Bioinformatics 2019, 20 (3) , 1032-1056. https://doi.org/10.1093/bib/bbx156
    53. Timothy M.D. Ebbels, Jake T.M. Pearce, Noureddin Sadawi, Jianliang Gao, Robert C. Glen. Big Data and Databases for Metabolic Phenotyping. 2019, 329-367. https://doi.org/10.1016/B978-0-12-812293-8.00011-6
    54. Feng Qiu, Zhentian Lei, Lloyd W. Sumner. MetExpert: An expert system to enhance gas chromatography‒mass spectrometry-based metabolite identifications. Analytica Chimica Acta 2018, 1037 , 316-326. https://doi.org/10.1016/j.aca.2018.03.052
    55. Liang Cui, Haitao Lu, Yie Hou Lee. Challenges and emergent solutions for LC‐MS/MS based untargeted metabolomics in diseases. Mass Spectrometry Reviews 2018, 37 (6) , 772-792. https://doi.org/10.1002/mas.21562
    56. Marcus Ludwig, Kai Dührkop, Sebastian Böcker. Bayesian networks for mass spectrometric metabolite identification via molecular fingerprints. Bioinformatics 2018, 34 (13) , i333-i340. https://doi.org/10.1093/bioinformatics/bty245
    57. Florbela Pereira, Joao Aires-de-Sousa. Computational Methodologies in the Exploration of Marine Natural Product Leads. Marine Drugs 2018, 16 (7) , 236. https://doi.org/10.3390/md16070236
    58. Ivana Blaženović, Tobias Kind, Jian Ji, Oliver Fiehn. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites 2018, 8 (2) , 31. https://doi.org/10.3390/metabo8020031
    59. Tim Young, Andrea C. Alfaro. Metabolomic strategies for aquaculture research: a primer. Reviews in Aquaculture 2018, 10 (1) , 26-56. https://doi.org/10.1111/raq.12146
    60. Rene Boiteau, David Hoyt, Carrie Nicora, Hannah Kinmonth-Schultz, Joy Ward, Kerem Bingol. Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction. Metabolites 2018, 8 (1) , 8. https://doi.org/10.3390/metabo8010008
    61. Joanna Godzien, Alberto Gil de la Fuente, Abraham Otero, Coral Barbas. Metabolite Annotation and Identification. 2018, 415-445. https://doi.org/10.1016/bs.coac.2018.07.004
    62. François Fenaille, Pierre Barbier Saint-Hilaire, Kathleen Rousseau, Christophe Junot. Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: Where do we stand?. Journal of Chromatography A 2017, 1526 , 1-12. https://doi.org/10.1016/j.chroma.2017.10.043
    63. Kerstin Scheubert, Franziska Hufsky, Daniel Petras, Mingxun Wang, Louis-Félix Nothias, Kai Dührkop, Nuno Bandeira, Pieter C. Dorrestein, Sebastian Böcker. Significance estimation for large scale metabolomics annotations by spectral matching. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-01318-5
    64. Ivana Blaženović, Tobias Kind, Hrvoje Torbašinović, Slobodan Obrenović, Sajjan S. Mehta, Hiroshi Tsugawa, Tobias Wermuth, Nicolas Schauer, Martina Jahn, Rebekka Biedendieck, Dieter Jahn, Oliver Fiehn. Comprehensive comparison of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is needed to achieve 93% accuracy. Journal of Cheminformatics 2017, 9 (1) https://doi.org/10.1186/s13321-017-0219-x
    65. Yana Sandlers. The future perspective: metabolomics in laboratory medicine for inborn errors of metabolism. Translational Research 2017, 189 , 65-75. https://doi.org/10.1016/j.trsl.2017.06.005
    66. Yingfeng Wang, Xutao Wang, Xiaoqin Zeng. MIDAS-G: a computational platform for investigating fragmentation rules of tandem mass spectrometry in metabolomics. Metabolomics 2017, 13 (10) https://doi.org/10.1007/s11306-017-1258-z
    67. Franziska Hufsky, Sebastian Böcker. Mining molecular structure databases: Identification of small molecules based on fragmentation mass spectrometry data. Mass Spectrometry Reviews 2017, 36 (5) , 624-633. https://doi.org/10.1002/mas.21489
    68. Jennifer Pett-Ridge, Mary K. Firestone. Using stable isotopes to explore root-microbe-mineral interactions in soil. Rhizosphere 2017, 3 , 244-253. https://doi.org/10.1016/j.rhisph.2017.04.016
    69. Syam S. Andra, Christine Austin, Dhavalkumar Patel, Georgia Dolios, Mahmoud Awawda, Manish Arora. Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. Environment International 2017, 100 , 32-61. https://doi.org/10.1016/j.envint.2016.11.026
    70. Zhou Li, Qiuming Yao, Stephen P. Dearth, Matthew R. Entler, Hector F. Castro Gonzalez, Jessie K. Uehling, Rytas J. Vilgalys, Gregory B. Hurst, Shawn R. Campagna, Jessy L. Labbé, Chongle Pan. Integrated proteomics and metabolomics suggests symbiotic metabolism and multimodal regulation in a fungal‐endobacterial system. Environmental Microbiology 2017, 19 (3) , 1041-1053. https://doi.org/10.1111/1462-2920.13605
    71. Sebastian Böcker. Searching molecular structure databases using tandem MS data: are we there yet?. Current Opinion in Chemical Biology 2017, 36 , 1-6. https://doi.org/10.1016/j.cbpa.2016.12.010
    72. Sebastian Böcker, Kai Dührkop. Fragmentation trees reloaded. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0116-8
    73. Martin J. Blaser, Zoe G. Cardon, Mildred K. Cho, Jeffrey L. Dangl, Timothy J. Donohue, Jessica L. Green, Rob Knight, Mary E. Maxon, Trent R. Northen, Katherine S. Pollard, Eoin L. Brodie. Toward a Predictive Understanding of Earth’s Microbiomes to Address 21st Century Challenges. mBio 2016, 7 (3) https://doi.org/10.1128/mBio.00714-16
    74. Céline Brouard, Huibin Shen, Kai Dührkop, Florence d'Alché-Buc, Sebastian Böcker, Juho Rousu. Fast metabolite identification with Input Output Kernel Regression. Bioinformatics 2016, 32 (12) , i28-i36. https://doi.org/10.1093/bioinformatics/btw246
    75. Dries Verdegem, Diether Lambrechts, Peter Carmeliet, Bart Ghesquière. Improved metabolite identification with MIDAS and MAGMa through MS/MS spectral dataset-driven parameter optimization. Metabolomics 2016, 12 (6) https://doi.org/10.1007/s11306-016-1036-3
    76. Lochana Menikarachchi, Ritvik Dubey, Dennis Hill, Daniel Brush, David Grant. Development of Database Assisted Structure Identification (DASI) Methods for Nontargeted Metabolomics. Metabolites 2016, 6 (2) , 17. https://doi.org/10.3390/metabo6020017
    77. Andrew D. Hanson, Christopher S. Henry, Oliver Fiehn, Valérie de Crécy-Lagard. Metabolite Damage and Metabolite Damage Control in Plants. Annual Review of Plant Biology 2016, 67 (1) , 131-152. https://doi.org/10.1146/annurev-arplant-043015-111648
    78. Werner Brack, Selim Ait-Aissa, Robert M. Burgess, Wibke Busch, Nicolas Creusot, Carolina Di Paolo, Beate I. Escher, L. Mark Hewitt, Klara Hilscherova, Juliane Hollender, Henner Hollert, Willem Jonker, Jeroen Kool, Marja Lamoree, Matthias Muschket, Steffen Neumann, Pawel Rostkowski, Christoph Ruttkies, Jennifer Schollee, Emma L. Schymanski, Tobias Schulze, Thomas-Benjamin Seiler, Andrew J. Tindall, Gisela De Aragão Umbuzeiro, Branislav Vrana, Martin Krauss. Effect-directed analysis supporting monitoring of aquatic environments — An in-depth overview. Science of The Total Environment 2016, 544 , 1073-1118. https://doi.org/10.1016/j.scitotenv.2015.11.102
    79. Biswapriya B. Misra, Justin J. J. van der Hooft. Updates in metabolomics tools and resources: 2014–2015. ELECTROPHORESIS 2016, 37 (1) , 86-110. https://doi.org/10.1002/elps.201500417
    80. Estelle Rathahao-Paris, Sandra Alves, Christophe Junot, Jean-Claude Tabet. High resolution mass spectrometry for structural identification of metabolites in metabolomics. Metabolomics 2016, 12 (1) https://doi.org/10.1007/s11306-015-0882-8
    81. Ann M. Knolhoff, Timothy R. Croley. Non-targeted screening approaches for contaminants and adulterants in food using liquid chromatography hyphenated to high resolution mass spectrometry. Journal of Chromatography A 2016, 1428 , 86-96. https://doi.org/10.1016/j.chroma.2015.08.059
    82. Hosein Mohimani, Pavel A. Pevzner. Dereplication, sequencing and identification of peptidic natural products: from genome mining to peptidogenomics to spectral networks. Natural Product Reports 2016, 33 (1) , 73-86. https://doi.org/10.1039/C5NP00050E
    83. James G Jeffryes, Ricardo L Colastani, Mona Elbadawi-Sidhu, Tobias Kind, Thomas D Niehaus, Linda J Broadbelt, Andrew D Hanson, Oliver Fiehn, Keith E J Tyo, Christopher S Henry. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-015-0087-1
    84. Kai Dührkop, Huibin Shen, Marvin Meusel, Juho Rousu, Sebastian Böcker. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proceedings of the National Academy of Sciences 2015, 112 (41) , 12580-12585. https://doi.org/10.1073/pnas.1509788112
    85. Yushu Yao, Terence Sun, Tony Wang, Oliver Ruebel, Trent Northen, Benjamin Bowen. Analysis of Metabolomics Datasets with High-Performance Computing and Metabolite Atlases. Metabolites 2015, 5 (3) , 431-442. https://doi.org/10.3390/metabo5030431
    86. Arpana Vaniya, Oliver Fiehn. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. TrAC Trends in Analytical Chemistry 2015, 69 , 52-61. https://doi.org/10.1016/j.trac.2015.04.002

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect