Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
All-in-One Centrifugal Microfluidic Device for Size-Selective Circulating Tumor Cell Isolation with High Purity
My Activity
    ADDITION/CORRECTION. This article has been corrected. View the notice.
    Article

    All-in-One Centrifugal Microfluidic Device for Size-Selective Circulating Tumor Cell Isolation with High Purity
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 689-798, Republic of Korea
    § Department of Clinical Laboratory Medicine and §Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, 179, Gudeok-ro, Seo-Gu, Busan, 602-739, Republic of Korea
    Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 689-798, Republic of Korea
    *E-mail: [email protected]. Phone: +82-52-217-2511. Fax: +82-52-217-2509.
    Other Access OptionsSupporting Information (1)

    Analytical Chemistry

    Cite this: Anal. Chem. 2014, 86, 22, 11349–11356
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac5035049
    Published October 15, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Circulating tumor cells (CTCs) have gained increasing attention owing to their roles in cancer recurrence and progression. Due to the rarity of CTCs in the bloodstream, an enrichment process is essential for effective target cell characterization. However, in a typical pressure-driven microfluidic system, the enrichment process generally requires complicated equipment and long processing times. Furthermore, the commonly used immunoaffinity-based positive selection method is limited, as its recovery rate relies on EpCAM expression of target CTCs, which shows heterogeneity among cell types. Here, we propose a centrifugal-force-based size-selective CTC isolation platform that can isolate and enumerate CTCs from whole blood within 30 s with high purity. The device was validated using the MCF-7 breast cancer cell line spiked in phosphate-buffered saline and whole blood, and an average capture efficiency of 61% was achieved, which is typical for size-based filtration. The capture efficiency for whole blood samples varied from 44% to 84% under various flow conditions and dilution factors. Under the optimized operating conditions, a few hundred white blood cells per 1 mL of whole blood were captured, representing a 20-fold decrease compared to those obtained using a commercialized size-based CTC isolation device. In clinical validation, normalized CTC counts varied from 10 to 60 per 7.5 mL of blood from gastric and lung cancer patients, yielding a detection rate of 50% and 38%, respectively. Overall, our CTC isolation device enables rapid and label-free isolation of CTCs with high purity, which should greatly improve downstream molecular analyses of captured CTCs.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Figures S1 and S2 and Table S1, as noted in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 94 publications.

    1. Hongxin Zhang, Xuegang Li, Xue Zhou, Yanan Zhang, Yong Zhao. Optical Fiber Surface Plasmon Resonance Sensor for Glyceryl Tributyrate Detection Based on the PAA/CS Composite Hydrogel Embedding Protease Method. Analytical Chemistry 2024, 96 (18) , 6906-6913. https://doi.org/10.1021/acs.analchem.3c05357
    2. Vijaya Sunkara, Sumit Kumar, Jonathan Sabaté del Río, Insu Kim, Yoon-Kyoung Cho. Lab-on-a-Disc for Point-of-Care Infection Diagnostics. Accounts of Chemical Research 2021, 54 (19) , 3643-3655. https://doi.org/10.1021/acs.accounts.1c00367
    3. Thilanga N. Pahattuge, Ian M. Freed, Mateusz L. Hupert, Swarnagowri Vaidyanathan, Katie Childers, Malgorzata A. Witek, Kumuditha Weerakoon-Ratnayake, Daniel Park, Anup Kasi, Mazin F Al-Kasspooles, Michael C. Murphy, Steven A. Soper. System Modularity Chip for Analysis of Rare Targets (SMART-Chip): Liquid Biopsy Samples. ACS Sensors 2021, 6 (5) , 1831-1839. https://doi.org/10.1021/acssensors.0c02728
    4. Xu-Yan Ma, Ling-Ling Wu, Lan Chen, Yin-Hui Qin, Jiao Hu, Man Tang, Chun-Miao Xu, Chu-bo Qi, Zhi-Ling Zhang, Dai-Wen Pang. Enhanced and High-Purity Enrichment of Circulating Tumor Cells Based on Immunomagnetic Nanospheres. ACS Applied Nano Materials 2018, 1 (8) , 4019-4027. https://doi.org/10.1021/acsanm.8b00802
    5. Xiang Ren, Brittni M. Foster, Parham Ghassemi, Jeannine S. Strobl, Bethany A. Kerr, Masoud Agah. Entrapment of Prostate Cancer Circulating Tumor Cells with a Sequential Size-Based Microfluidic Chip. Analytical Chemistry 2018, 90 (12) , 7526-7534. https://doi.org/10.1021/acs.analchem.8b01134
    6. Hyun-Kyung Woo, Vijaya Sunkara, Juhee Park, Tae-Hyeong Kim, Ja-Ryoung Han, Chi-Ju Kim, Hyun-Il Choi, Yoon-Keun Kim, and Yoon-Kyoung Cho . Exodisc for Rapid, Size-Selective, and Efficient Isolation and Analysis of Nanoscale Extracellular Vesicles from Biological Samples. ACS Nano 2017, 11 (2) , 1360-1370. https://doi.org/10.1021/acsnano.6b06131
    7. Xiang Ren, Parham Ghassemi, Hesam Babahosseini, Jeannine S. Strobl, and Masoud Agah . Single-Cell Mechanical Characteristics Analyzed by Multiconstriction Microfluidic Channels. ACS Sensors 2017, 2 (2) , 290-299. https://doi.org/10.1021/acssensors.6b00823
    8. Tae-Hyeong Kim, Minji Lim, Juhee Park, Jung Min Oh, Hyeongeun Kim, Hyunjin Jeong, Sun Ju Lee, Hee Chul Park, Sungmok Jung, Byung Chul Kim, Kyusang Lee, Mi-Hyun Kim, Do Youn Park, Gwang Ha Kim, and Yoon-Kyoung Cho . FAST: Size-Selective, Clog-Free Isolation of Rare Cancer Cells from Whole Blood at a Liquid–Liquid Interface. Analytical Chemistry 2017, 89 (2) , 1155-1162. https://doi.org/10.1021/acs.analchem.6b03534
    9. Vahid Kordzadeh-Kermani, Seyed Nezameddin Ashrafizadeh, Masoud Madadelahi. Dielectrophoretic separation/classification/focusing of microparticles using electrified lab-on-a-disc platforms. Analytica Chimica Acta 2024, 1310 , 342719. https://doi.org/10.1016/j.aca.2024.342719
    10. Chun-Chi Lin, Jui-Chi Tsai, Yi-Zhi Liu, Ju-Nan Kuo. Label-free cancer cell separation from whole blood on centrifugal microfluidic platform using hydrodynamic technique. Microfluidics and Nanofluidics 2024, 28 (2) https://doi.org/10.1007/s10404-023-02704-w
    11. Yuang Li, Xue Li, Lina Zhang, Xiaofeng Luan, Jiahong Jiang, Lingqian Zhang, Mingxiao Li, Jinghui Wang, Jiangang Duan, Haiping Zhao, Yang Zhao, Chengjun Huang. From the teapot effect to tap-triggered self-wetting: a 3D self-driving sieve for whole blood filtration. Microsystems & Nanoengineering 2023, 9 (1) https://doi.org/10.1038/s41378-023-00490-7
    12. Ziyi Guo, Chenchen Zhuang, Yihang Song, Joel Yong, Yi Li, Zhong Guo, Biao Kong, John M. Whitelock, Joseph Wang, Kang Liang. Biocatalytic Buoyancy-Driven Nanobots for Autonomous Cell Recognition and Enrichment. Nano-Micro Letters 2023, 15 (1) https://doi.org/10.1007/s40820-023-01207-1
    13. Seren Kecili, Esra Yilmaz, Ozge Solmaz Ozcelik, Muge Anil-Inevi, Zehra Elif Gunyuz, Ozden Yalcin-Ozuysal, Engin Ozcivici, H. Cumhur Tekin. μDACS platform: A hybrid microfluidic platform using magnetic levitation technique and integrating magnetic, gravitational, and drag forces for density-based rare cancer cell sorting. Biosensors and Bioelectronics: X 2023, 15 , 100392. https://doi.org/10.1016/j.biosx.2023.100392
    14. Killian C. O'Connell, James P. Landers. Integrated membranes within centrifugal microfluidic devices: a review. Lab on a Chip 2023, 23 (14) , 3130-3159. https://doi.org/10.1039/D3LC00175J
    15. Yujiao Xie, Xiawei Xu, Jing Wang, Jie Lin, Yong Ren, Aiguo Wu. Latest advances and perspectives of liquid biopsy for cancer diagnostics driven by microfluidic on-chip assays. Lab on a Chip 2023, 23 (13) , 2922-2941. https://doi.org/10.1039/D2LC00837H
    16. Alireza Farahinia, Wenjun Zhang, Ildiko Badea. Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review. Sensors 2023, 23 (11) , 5300. https://doi.org/10.3390/s23115300
    17. Kimberley Clack, Narshone Soda, Surasak Kasetsirikul, Rabbee G. Mahmudunnabi, Nam‐Trung Nguyen, Muhammad J. A. Shiddiky. Toward Personalized Nanomedicine: The Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Analysis in Liquid Biopsy. Small 2023, 19 (15) https://doi.org/10.1002/smll.202205856
    18. Lihua Guo, Chang Liu, Manlin Qi, Liang Cheng, Lin Wang, Chunxia Li, Biao Dong. Recent progress of nanostructure-based enrichment of circulating tumor cells and downstream analysis. Lab on a Chip 2023, 23 (6) , 1493-1523. https://doi.org/10.1039/D2LC00890D
    19. Cheol-Kyu Park, Sung-Woo Lee, Hyun-Ju Cho, Hyung-Joo Oh, Young-Chul Kim, Yong-Hyub Kim, Sung-Ja Ahn, Jae-Ho Cho, In-Jae Oh. Blood-Based Biomarker Analysis for Predicting Efficacy of Chemoradiotherapy and Durvalumab in Patients with Unresectable Stage III Non-Small Cell Lung Cancer. Cancers 2023, 15 (4) , 1151. https://doi.org/10.3390/cancers15041151
    20. Yanchao Mao, Yujia Zhang, Yue Yu, Nanhang Zhu, Xiaoxi Zhou, Guohao Li, Qiangying Yi, Yao Wu. Self-assembled supramolecular immunomagnetic nanoparticles through π–π stacking strategy for the enrichment of circulating tumor cells. Regenerative Biomaterials 2023, 10 https://doi.org/10.1093/rb/rbad016
    21. Abigél Balla, Jong Bhak, Orsolya Biró. The application of circulating tumor cell and cell-free DNA liquid biopsies in ovarian cancer. Molecular and Cellular Probes 2022, 66 , 101871. https://doi.org/10.1016/j.mcp.2022.101871
    22. Xiao Li, Yijia Yang, Sarah C. Villareal, Kitiara Griffin, Dimitri Pappas. High-recovery sorting of cancer cells from whole blood via periodic-focusing inertial microchip. The Analyst 2022, 147 (20) , 4536-4546. https://doi.org/10.1039/D2AN01310J
    23. Reilly Fankhauser, Matthew Chang, Zachary Garrison, Rachel Berryman, Olivia M. Lucero, Allison Fuiten, Nicholas DePatie, Hilary Seifert, Rajan P. Kulkarni. Single-Cell Identification of Melanoma Biomarkers in Circulating Tumor Cells. Cancers 2022, 14 (19) , 4921. https://doi.org/10.3390/cancers14194921
    24. Jie Cheng, Lina Zhang, Yiran Zhang, Yifei Ye, Wenjie Zhao, Lingqian Zhang, Yuang Li, Yang Liu, Wenchang Zhang, Hongyan Guo, Mingxiao Li, Yang Zhao, Chengjun Huang. 3D spiral channels combined with flexible micro-sieve for high-throughput rare tumor cell enrichment and assay from clinical pleural effusion samples. Bio-Design and Manufacturing 2022, 5 (2) , 358-370. https://doi.org/10.1007/s42242-021-00167-y
    25. Mahesh Padmalaya Bhat, Venkatachalam Thendral, Uluvangada Thammaiah Uthappa, Kyeong-Hwan Lee, Madhuprasad Kigga, Tariq Altalhi, Mahaveer D. Kurkuri, Krishna Kant. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. Biosensors 2022, 12 (4) , 220. https://doi.org/10.3390/bios12040220
    26. Yejong Park, Hye Ryeong Jun, Hwi Wan Choi, Dae Wook Hwang, Jae Hoon Lee, Ki Byung Song, Woohyung Lee, Jaewoo Kwon, Su Hyeon Ha, Eunsung Jun, Song Cheol Kim. Circulating tumour cells as an indicator of early and systemic recurrence after surgical resection in pancreatic ductal adenocarcinoma. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-020-80383-1
    27. Amir Shamloo, Amin Naghdloo, Mohsen Besanjideh. Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-81661-2
    28. Kiersten D. Lenz, Shailja Jakhar, Jing W. Chen, Aaron S. Anderson, Dylan C. Purcell, Mohammad O. Ishak, Jennifer F. Harris, Leyla E. Akhadov, Jessica Z. Kubicek-Sutherland, Pulak Nath, Harshini Mukundan. A centrifugal microfluidic cross-flow filtration platform to separate serum from whole blood for the detection of amphiphilic biomarkers. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-84353-z
    29. Jiaxuan CUI, Lu LIU, Donghao LI, Xiangfan PIAO. Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales. Chinese Journal of Chromatography 2021, 39 (11) , 1157-1170. https://doi.org/10.3724/SP.J.1123.2020.12032
    30. Joon Hyung Jhi, Gwang Ha Kim, Su Jin Park, Dong Uk Kim, Moon Won Lee, Bong Eun Lee, Chae Hwa Kwon, Yoon-Kyoung Cho. Circulating Tumor Cells and TWIST Expression in Patients with Metastatic Gastric Cancer: A Preliminary Study. Journal of Clinical Medicine 2021, 10 (19) , 4481. https://doi.org/10.3390/jcm10194481
    31. Bozhen Zhang, Canran Wang, Yingjie Du, Rebecca Paxton, Ximin He. A ‘smart’ aptamer-functionalized continuous label-free cell catch–transport–release system. Journal of Materials Chemistry B 2021, 9 (35) , 7196-7204. https://doi.org/10.1039/D1TB00739D
    32. Song‐I Han, Deborah A. Sarkes, Justin P. Jahnke, Margaret M. Hurley, Victor M. Ugaz, Rebecca L. Renberg, James J. Sumner, Dimitra N. Stratis‐Cullum, Arum Han. Discovery of Targeted Material Binding Microorganisms Using a Centrifugal Microfluidic Platform. Advanced Materials Technologies 2021, 6 (9) https://doi.org/10.1002/admt.202100282
    33. Meisam Madadi, Morteza Fathipour, Jahan B. Ghasemi. Separation of human granulocytes and mononuclear cells from whole blood using percoll on a centrifugal microfluidic disc. Microchemical Journal 2021, 167 , 106316. https://doi.org/10.1016/j.microc.2021.106316
    34. Hyun Jung Lee, Gwang Ha Kim, Su Jin Park, Chae Hwa Kwon, Moon Won Lee, Bong Eun Lee, Dong Hoon Baek, Hoseok I. Clinical Significance of TWIST-Positive Circulating Tumor Cells in Patients with Esophageal Squamous Cell Carcinoma. Gut and Liver 2021, 15 (4) , 553-561. https://doi.org/10.5009/gnl20194
    35. Noga Nissim, Matan Dudaie, Itay Barnea, Natan T. Shaked. Real‐Time Stain‐Free Classification of Cancer Cells and Blood Cells Using Interferometric Phase Microscopy and Machine Learning. Cytometry Part A 2021, 99 (5) , 511-523. https://doi.org/10.1002/cyto.a.24227
    36. Qilin Zhang, Kelin Zhang, Yuping Guo, Xiaoyun Wei, Yue Sun, Bo Cai, Yunfan Shi, Yunxiao Du, Yuling Liu, Cuifang Fan, Xing-Zhong Zhao. The isolation and analysis of fetal nucleated red blood cells using multifunctional microbeads with a nanostructured coating toward early noninvasive prenatal diagnostics. Journal of Materials Chemistry B 2021, 9 (13) , 3047-3054. https://doi.org/10.1039/D1TB00005E
    37. Xiaofen Zhang, Xu Lu, Wanlei Gao, Yanmin Wang, Chunping Jia, Hui Cong. A label-free microfluidic chip for the highly selective isolation of single and cluster CTCs from breast cancer patients. Translational Oncology 2021, 14 (1) , 100959. https://doi.org/10.1016/j.tranon.2020.100959
    38. Mahmoud Labib, Zongjie Wang, Sharif U. Ahmed, Reza M. Mohamadi, Bill Duong, Brenda Green, Edward H. Sargent, Shana O. Kelley. Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting. Nature Biomedical Engineering 2021, 5 (1) , 41-52. https://doi.org/10.1038/s41551-020-0590-1
    39. Matan Dudaie, Noga Nissim, Itay Barnea, Tobias Gerling, Claus Duschl, Michael Kirschbaum, Natan T. Shaked. Label‐free discrimination and selection of cancer cells from blood during flow using holography‐induced dielectrophoresis. Journal of Biophotonics 2020, 13 (11) https://doi.org/10.1002/jbio.202000151
    40. Celina M. Miyazaki, Eadaoin Carthy, David J. Kinahan. Biosensing on the Centrifugal Microfluidic Lab-on-a-Disc Platform. Processes 2020, 8 (11) , 1360. https://doi.org/10.3390/pr8111360
    41. Rohollah Nasiri, Amir Shamloo, Samad Ahadian, Leyla Amirifar, Javad Akbari, Marcus J. Goudie, KangJu Lee, Nureddin Ashammakhi, Mehmet R. Dokmeci, Dino Di Carlo, Ali Khademhosseini. Microfluidic‐Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. Small 2020, 16 (29) https://doi.org/10.1002/smll.202000171
    42. Rohollah Nasiri, Amir Shamloo, Javad Akbari, Peyton Tebon, Mehmet R. Dokmeci, Samad Ahadian. Design and Simulation of an Integrated Centrifugal Microfluidic Device for CTCs Separation and Cell Lysis. Micromachines 2020, 11 (7) , 699. https://doi.org/10.3390/mi11070699
    43. Lingfei Zhou, Aihua Zhang, Jingshan Mo, Shengjie Xiu, Tian Hang, Jianming Feng, Rui Wen, Di Liu, Cheng Yang, Yuping Feng, Yan Huang, Ning Hu, Xi Xie, Gen He. Degradable porous nanoflower substrate-embedded microfluidic device for capture, release and in situ manipulation of cancer cells. Applied Materials Today 2020, 19 , 100617. https://doi.org/10.1016/j.apmt.2020.100617
    44. Issac Michael, Dongyoung Kim, Oleksandra Gulenko, Sumit Kumar, Saravana Kumar, Jothi Clara, Dong Yeob Ki, Juhee Park, Hyun Yong Jeong, Taek Soo Kim, Sunghoon Kwon, Yoon-Kyoung Cho. A fidget spinner for the point-of-care diagnosis of urinary tract infection. Nature Biomedical Engineering 2020, 4 (6) , 591-600. https://doi.org/10.1038/s41551-020-0557-2
    45. Masoud Madadelahi, Luis F. Acosta-Soto, Samira Hosseini, Sergio O. Martinez-Chapa, Marc J. Madou. Mathematical modeling and computational analysis of centrifugal microfluidic platforms: a review. Lab on a Chip 2020, 20 (8) , 1318-1357. https://doi.org/10.1039/C9LC00775J
    46. Jianming Feng, Jingshan Mo, Aihua Zhang, Di Liu, Lingfei Zhou, Tian Hang, Cheng Yang, Qianni Wu, Dehua Xia, Rui Wen, Jiang Yang, Yuping Feng, Yan Huang, Ning Hu, Gen He, Xi Xie. Antibody-free isolation and regulation of adherent cancer cells via hybrid branched microtube-sandwiched hydrodynamic system. Nanoscale 2020, 12 (8) , 5103-5113. https://doi.org/10.1039/D0NR00153H
    47. Silvina Ribeiro-Samy, Marta I. Oliveira, Thais Pereira-Veiga, Laura Muinelo-Romay, Sandra Carvalho, João Gaspar, Paulo P. Freitas, Rafael López-López, Clotilde Costa, Lorena Diéguez. Fast and efficient microfluidic cell filter for isolation of circulating tumor cells from unprocessed whole blood of colorectal cancer patients. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-44401-1
    48. Chen Zhu, Wilfred Villariza Espulgar, Woosik Yoo, Shohei Koyama, Xiaoming Dou, Atsushi Kumanogoh, Eiichi Tamiya, Hyota Takamatsu, Masato Saito. Single Cell Receptor Analysis Aided by a Centrifugal Microfluidic Device for Immune Cells Profiling. Bulletin of the Chemical Society of Japan 2019, 92 (11) , 1834-1839. https://doi.org/10.1246/bcsj.20190175
    49. Wenzhe Li, Huayi Wang, Zijian Zhao, Houqian Gao, Changliang Liu, Ling Zhu, Chen Wang, Yanlian Yang. Emerging Nanotechnologies for Liquid Biopsy: The Detection of Circulating Tumor Cells and Extracellular Vesicles. Advanced Materials 2019, 31 (45) https://doi.org/10.1002/adma.201805344
    50. Shi-Bo Cheng, Miao-Miao Chen, Yi-Ke Wang, Zi-Han Sun, Min Xie, Wei-Hua Huang. Current techniques and future advance of microfluidic devices for circulating tumor cells. TrAC Trends in Analytical Chemistry 2019, 117 , 116-127. https://doi.org/10.1016/j.trac.2019.06.018
    51. Mun Ki Choi, Gwang Ha Kim, Hoseok I, Su Jin Park, Moon Won Lee, Bong Eun Lee, Do Youn Park, Yoon‐Kyoung Cho. Circulating tumor cells detected using fluid‐assisted separation technique in esophageal squamous cell carcinoma. Journal of Gastroenterology and Hepatology 2019, 34 (3) , 552-560. https://doi.org/10.1111/jgh.14543
    52. Dong Hoon Baek, Gwang Ha Kim, Geun Am Song, In Sub Han, Eun Young Park, Hyun Sung Kim, Hong Jae Jo, Sang Hwa Ko, Do Youn Park, Yoon-Kyung Cho. Clinical Potential of Circulating Tumor Cells in Colorectal Cancer: A Prospective Study. Clinical and Translational Gastroenterology 2019, 10 (7) , e00055. https://doi.org/10.14309/ctg.0000000000000055
    53. Md Kowsar Alam, Emmanuel Koomson, Heng Zou, Changqing Yi, Cheuk-Wing Li, Tao Xu, Mengsu Yang. Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Analytica Chimica Acta 2018, 1044 , 29-65. https://doi.org/10.1016/j.aca.2018.06.054
    54. Yanyan Yu, Yuan Yang, Fan Wang, Jinhua Ding, Si Meng, Chenglin Li, Daoquan Tang, Xiaoxing Yin. Functional and biocompatible polymeric ionic liquid (PIL) - Decorated immunomagnetic nanospheres for the efficient capture of rare number CTCs. Analytica Chimica Acta 2018, 1044 , 162-173. https://doi.org/10.1016/j.aca.2018.07.066
    55. Konstantinos Mitsakakis, Valérie D'Acremont, Sebastian Hin, Felix von Stetten, Roland Zengerle. Diagnostic tools for tackling febrile illness and enhancing patient management. Microelectronic Engineering 2018, 201 , 26-59. https://doi.org/10.1016/j.mee.2018.10.001
    56. Hongmei Chen, Zhifeng Zhang, Bin Wang. Size- and deformability-based isolation of circulating tumor cells with microfluidic chips and their applications in clinical studies. AIP Advances 2018, 8 (12) https://doi.org/10.1063/1.5072769
    57. Wanlei Gao, Ting Huang, Haojun Yuan, Jun Yang, Qinghui Jin, Chunping Jia, Guoxin Mao, Jianlong Zhao. Highly sensitive detection and mutational analysis of lung cancer circulating tumor cells using integrated combined immunomagnetic beads with a droplet digital PCR chip. Talanta 2018, 185 , 229-236. https://doi.org/10.1016/j.talanta.2018.03.083
    58. Naoto Kihara, Daiki Kuboyama, Daisuke Onoshima, Kenji Ishikawa, Hiromasa Tanaka, Naoya Ozawa, Tetsunari Hase, Ryohei Koguchi, Hiroshi Yukawa, Hidefumi Odaka, Yoshinori Hasegawa, Yoshinobu Baba, Masaru Hori. Low-autofluorescence fluoropolymer membrane filters for cell filtration. Japanese Journal of Applied Physics 2018, 57 (6S2) , 06JF03. https://doi.org/10.7567/JJAP.57.06JF03
    59. Ye Zhang, Veronica Lyons, Dimitri Pappas. Fundamentals of affinity cell separations. ELECTROPHORESIS 2018, 39 (5-6) , 732-741. https://doi.org/10.1002/elps.201700311
    60. Joo Chuan Yeo, Kenry, Zhihai Zhao, Pan Zhang, Zhiping Wang, Chwee Teck Lim. Label-free extraction of extracellular vesicles using centrifugal microfluidics. Biomicrofluidics 2018, 12 (2) https://doi.org/10.1063/1.5019983
    61. Naoto Kihara, Hidefumi Odaka, Daiki Kuboyama, Daisuke Onoshima, Kenji Ishikawa, Yoshinobu Baba, Masaru Hori. Facile fabrication of a poly(ethylene terephthalate) membrane filter with precise arrangement of through-holes. Japanese Journal of Applied Physics 2018, 57 (3) , 037001. https://doi.org/10.7567/JJAP.57.037001
    62. Jun‐Tao Cao. Microfluidics for Disease Diagnosis. 2018, 261-278. https://doi.org/10.1002/9783527800643.ch8
    63. Si-Jie Hao, Yuan Wan, Yi-Qiu Xia, Xin Zou, Si-Yang Zheng. Size-based separation methods of circulating tumor cells. Advanced Drug Delivery Reviews 2018, 125 , 3-20. https://doi.org/10.1016/j.addr.2018.01.002
    64. Luyao Lin, Jin-Ming Lin. Design and Preparation of Microfluidics Device. 2018, 1-42. https://doi.org/10.1007/978-981-10-5394-8_1
    65. Hye Kyung Jeon, Gwang Ha Kim. Clinical Significance of Circulating Tumor Cells in Gastric Cancer. The Korean Journal of Helicobacter and Upper Gastrointestinal Research 2018, 18 (3) , 162. https://doi.org/10.7704/kjhugr.2018.18.3.162
    66. Lei Wang, Coraline Dumenil, Catherine Julié, Violaine Giraud, Jennifer Dumoulin, Sylvie Labrune, Thierry Chinet, Jean-François Emile, Biao He, Etienne Giroux Leprieur. Molecular characterization of circulating tumor cells in lung cancer: moving beyond enumeration. Oncotarget 2017, 8 (65) , 109818-109835. https://doi.org/10.18632/oncotarget.22651
    67. Hongmei Chen, Baoshan Cao, Bo Sun, Yapeng Cao, Ke Yang, Yu-Sheng Lin. Highly-sensitive capture of circulating tumor cells using micro-ellipse filters. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-00232-6
    68. Jiheum Park, Gi-Hun Lee, Joong Yull Park, Jung Chan Lee, Hee Chan Kim. Hypergravity-induced multicellular spheroid generation with different morphological patterns precisely controlled on a centrifugal microfluidic platform. Biofabrication 2017, 9 (4) , 045006. https://doi.org/10.1088/1758-5090/aa9472
    69. Ze-Jie ZHANG, Xi SU, Yi XU, Li CHEN. Detection of HepG2 Cells in Artificial Samples by Multifunctional Microfluidic Chip. Chinese Journal of Analytical Chemistry 2017, 45 (11) , 1589-1594. https://doi.org/10.1016/S1872-2040(17)61046-6
    70. Elif Gencturk, Senol Mutlu, Kutlu O. Ulgen. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. Biomicrofluidics 2017, 11 (5) https://doi.org/10.1063/1.4998604
    71. Ji Hyun Seo, Byung Hyun Park, Seung Jun Oh, Goro Choi, Do Hyun Kim, Eun Yeol Lee, Tae Seok Seo. Development of a high-throughput centrifugal loop-mediated isothermal amplification microdevice for multiplex foodborne pathogenic bacteria detection. Sensors and Actuators B: Chemical 2017, 246 , 146-153. https://doi.org/10.1016/j.snb.2017.02.051
    72. Hwa Mi Kang, Gwang Ha Kim, Hye Kyung Jeon, Dae Hwan Kim, Tae Yong Jeon, Do Youn Park, Hyunjin Jeong, Won Joo Chun, Mi-Hyun Kim, Juhee Park, Minji Lim, Tae-Hyeong Kim, Yoon-Kyung Cho, . Circulating tumor cells detected by lab-on-a-disc: Role in early diagnosis of gastric cancer. PLOS ONE 2017, 12 (6) , e0180251. https://doi.org/10.1371/journal.pone.0180251
    73. Wisam Al-Faqheri, Tzer Hwai Gilbert Thio, Mohammad Ameen Qasaimeh, Andreas Dietzel, Marc Madou, Ala’aldeen Al-Halhouli. Particle/cell separation on microfluidic platforms based on centrifugation effect: a review. Microfluidics and Nanofluidics 2017, 21 (6) https://doi.org/10.1007/s10404-017-1933-4
    74. M. Robinson, H. Marks, T. Hinsdale, K. Maitland, G. Coté. Rapid isolation of blood plasma using a cascaded inertial microfluidic device. Biomicrofluidics 2017, 11 (2) https://doi.org/10.1063/1.4979198
    75. Huan Li, Jianfeng Chen, Wenqiang Du, Youjun Xia, Depei Wang, Gang Zhao, Jiaru Chu. The Optimization of a Microfluidic CTC Filtering Chip by Simulation. Micromachines 2017, 8 (3) , 79. https://doi.org/10.3390/mi8030079
    76. Wanlei Gao, Haojun Yuan, Fengxiang Jing, Shan Wu, Hongbo Zhou, Hongju Mao, Qinghui Jin, Jianlong Zhao, Hui Cong, Chunping Jia. Analysis of circulating tumor cells from lung cancer patients with multiple biomarkers using high-performance size-based microfluidic chip. Oncotarget 2017, 8 (8) , 12917-12928. https://doi.org/10.18632/oncotarget.14203
    77. Jia-Yang Chen, Ying-Chih Chang. Strategies for Isolation and Molecular Profiling of Circulating Tumor Cells. 2017, 43-66. https://doi.org/10.1007/978-3-319-55947-6_2
    78. James Che, Victor Yu, Edward B. Garon, Jonathan W. Goldman, Dino Di Carlo. Biophysical isolation and identification of circulating tumor cells. Lab on a Chip 2017, 17 (8) , 1452-1461. https://doi.org/10.1039/C7LC00038C
    79. Caffiyar Yousuff, Eric Ho, Ismail Hussain K., Nor Hamid. Microfluidic Platform for Cell Isolation and Manipulation Based on Cell Properties. Micromachines 2017, 8 (1) , 15. https://doi.org/10.3390/mi8010015
    80. Vasudha Murlidhar, Lianette Rivera‐Báez, Sunitha Nagrath. Affinity Versus Label‐Free Isolation of Circulating Tumor Cells: Who Wins?. Small 2016, 12 (33) , 4450-4463. https://doi.org/10.1002/smll.201601394
    81. Ling X. Kong, Alexandra Perebikovsky, Jacob Moebius, Lawrence Kulinsky, Marc Madou. Lab-on-a-CD: A Fully Integrated Molecular Diagnostic System. SLAS Technology 2016, 21 (3) , 323-355. https://doi.org/10.1177/2211068215588456
    82. Chufeng Zhang, Lijie Wang, Yan Guan, Yulan Sun, Xiuju Liu, Dongyuan Zhu, Qisen Guo. Progress of Circulating Tumor Cells in Cancer Management. Technology in Cancer Research & Treatment 2016, 15 (3) , 509-516. https://doi.org/10.1177/1533034615583762
    83. James Che, Victor Yu, Manjima Dhar, Corinne Renier, Melissa Matsumoto, Kyra Heirich, Edward B. Garon, Jonathan Goldman, Jianyu Rao, George W. Sledge, Mark D. Pegram, Shruti Sheth, Stefanie S. Jeffrey, Rajan P. Kulkarni, Elodie Sollier, Dino Di Carlo. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology. Oncotarget 2016, 7 (11) , 12748-12760. https://doi.org/10.18632/oncotarget.7220
    84. Amir Shamloo, AmirAli Selahi, Masoud Madadelahi. Designing and modeling a centrifugal microfluidic device to separate target blood cells. Journal of Micromechanics and Microengineering 2016, 26 (3) , 035017. https://doi.org/10.1088/0960-1317/26/3/035017
    85. Suzanne Smith, Dario Mager, Alexandra Perebikovsky, Ehsan Shamloo, David Kinahan, Rohit Mishra, Saraí Torres Delgado, Horacio Kido, Satadal Saha, Jens Ducrée, Marc Madou, Kevin Land, Jan Korvink. CD-Based Microfluidics for Primary Care in Extreme Point-of-Care Settings. Micromachines 2016, 7 (2) , 22. https://doi.org/10.3390/mi7020022
    86. Minghui Tang, Guanghui Wang, Siu-Kai Kong, Ho-Pui Ho. A Review of Biomedical Centrifugal Microfluidic Platforms. Micromachines 2016, 7 (2) , 26. https://doi.org/10.3390/mi7020026
    87. Dimitri Pappas. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems. The Analyst 2016, 141 (2) , 525-535. https://doi.org/10.1039/C5AN01778E
    88. Henrik Frithiof, Charlotte Welinder, Anna-Maria Larsson, Lisa Rydén, Kristina Aaltonen. A novel method for downstream characterization of breast cancer circulating tumor cells following CellSearch isolation. Journal of Translational Medicine 2015, 13 (1) https://doi.org/10.1186/s12967-015-0493-1
    89. Hashem Etayash, Keren Jiang, Sarfuddin Azmi, Thomas Thundat, Kamaljit Kaur. Real-time Detection of Breast Cancer Cells Using Peptide-functionalized Microcantilever Arrays. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep13967
    90. Joo Chuan Yeo, Zhiping Wang, Chwee Teck Lim. Microfluidic size separation of cells and particles using a swinging bucket centrifuge. Biomicrofluidics 2015, 9 (5) https://doi.org/10.1063/1.4931953
    91. Charles E. Nwankire, Anita Venkatanarayanan, Thomas Glennon, Tia E. Keyes, Robert J. Forster, Jens Ducrée. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosensors and Bioelectronics 2015, 68 , 382-389. https://doi.org/10.1016/j.bios.2014.12.049
    92. Chun-Li Chang, Wanfeng Huang, Shadia I. Jalal, Bin-Da Chan, Aamer Mahmood, Safi Shahda, Bert H. O'Neil, Daniela E. Matei, Cagri A. Savran. Circulating tumor cell detection using a parallel flow micro-aperture chip system. Lab on a Chip 2015, 15 (7) , 1677-1688. https://doi.org/10.1039/C5LC00100E
    93. O. Strohmeier, M. Keller, F. Schwemmer, S. Zehnle, D. Mark, F. von Stetten, R. Zengerle, N. Paust. Centrifugal microfluidic platforms: advanced unit operations and applications. Chemical Society Reviews 2015, 44 (17) , 6187-6229. https://doi.org/10.1039/C4CS00371C
    94. Mikhail Blagosklonny, Andrei Gudkov. Introducing, OncoTarget. Oncotarget 2010, 1 (1) , 2-2. https://doi.org/10.18632/oncotarget.101

    Analytical Chemistry

    Cite this: Anal. Chem. 2014, 86, 22, 11349–11356
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac5035049
    Published October 15, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    3270

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.