logo
CONTENT TYPES

Two-Dimensional Correlation Optimized Warping Algorithm for Aligning GC×GC−MS Data

View Author Information
Department of Statistics, Department of Chemistry, and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
Cite this: Anal. Chem. 2008, 80, 8, 2664–2671
Publication Date (Web):March 20, 2008
https://doi.org/10.1021/ac7024317
Copyright © 2008 American Chemical Society
Article Views
1040
Altmetric
-
Citations
LEARN ABOUT THESE METRICS

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

Read OnlinePDF (370 KB)

Abstract

A two-dimensional (2-D) correlation optimized warping (COW) algorithm has been developed to align 2-D gas chromatography coupled with time-of-flight mass spectrometry (GC×GC/TOF-MS) data. By partitioning raw chromatographic profiles and warping the grid points simultaneously along the first and second dimensions on the basis of applying a one-dimensional COW algorithm to characteristic vectors, nongrid points can be interpolatively warped. This 2-D algorithm was directly applied to total ion counts (TIC) chromatographic profiles of homogeneous chemical samples, i.e., samples including mostly identical compounds. For heterogeneous chemical samples, the 2-D algorithm is first applied to certain selected ion counts chromatographic profiles, and the resultant warping parameters are then used to warp the corresponding TIC chromatographic profiles. The developed 2-D COW algorithm can also be applied to align other 2-D separation images, e.g., LC×LC data, LC×GC data, GC×GC data, LC×CE data, and CE×CE data.

 Department of Statistics.

 Department of Chemistry.

§

 Bindley Bioscience Center.

*

 To whom correspondence should be addressed. Phone:  (765) 496-7921, Fax:  (765) 494-0558. E-mail:  [email protected]

Cited By


This article is cited by 75 publications.

  1. Guilherme L. Alexandrino, Giorgio Tomasi, Paul G. M. Kienhuis, Fabio Augusto, Jan H. Christensen. Forensic Investigations of Diesel Oil Spills in the Environment Using Comprehensive Two-Dimensional Gas Chromatography–High Resolution Mass Spectrometry and Chemometrics: New Perspectives in the Absence of Recalcitrant Biomarkers. Environmental Science & Technology 2019, 53 (1) , 550-559. https://doi.org/10.1021/acs.est.8b05238
  2. Tze-Feng Tian, San-Yuan Wang, Tien-Chueh Kuo, Cheng-En Tan, Guan-Yuan Chen, Ching-Hua Kuo, Chi-Hsin Sally Chen, Chang-Chuan Chan, Olivia A. Lin, and Y. Jane Tseng . Web Server for Peak Detection, Baseline Correction, and Alignment in Two-Dimensional Gas Chromatography Mass Spectrometry-Based Metabolomics Data. Analytical Chemistry 2016, 88 (21) , 10395-10403. https://doi.org/10.1021/acs.analchem.6b00755
  3. Davis W. Rempe, Stephen E. Reichenbach, Qingping Tao, Chiara Cordero, Wayne E. Rathbun, and Cláudia Alcaraz Zini . Effectiveness of Global, Low-Degree Polynomial Transformations for GCxGC Data Alignment. Analytical Chemistry 2016, 88 (20) , 10028-10035. https://doi.org/10.1021/acs.analchem.6b02254
  4. Stephen E. Reichenbach, Davis W. Rempe, Qingping Tao, Davide Bressanello, Erica Liberto, Carlo Bicchi, Stefano Balducci, and Chiara Cordero . Alignment for Comprehensive Two-Dimensional Gas Chromatography with Dual Secondary Columns and Detectors. Analytical Chemistry 2015, 87 (19) , 10056-10063. https://doi.org/10.1021/acs.analchem.5b02718
  5. Søren Furbo, Asger B. Hansen, Thomas Skov, and Jan H. Christensen . Pixel-Based Analysis of Comprehensive Two-Dimensional Gas Chromatograms (Color Plots) of Petroleum: A Tutorial. Analytical Chemistry 2014, 86 (15) , 7160-7170. https://doi.org/10.1021/ac403650d
  6. Hadi Parastar and Roma Tauler . Multivariate Curve Resolution of Hyphenated and Multidimensional Chromatographic Measurements: A New Insight to Address Current Chromatographic Challenges. Analytical Chemistry 2014, 86 (1) , 286-297. https://doi.org/10.1021/ac402377d
  7. Jonas Gros, Deedar Nabi, Petros Dimitriou-Christidis, Rebecca Rutler, and J. Samuel Arey . Robust Algorithm for Aligning Two-Dimensional Chromatograms. Analytical Chemistry 2012, 84 (21) , 9033-9040. https://doi.org/10.1021/ac301367s
  8. Paul McA. Harvey and Robert A. Shellie . Data Reduction in Comprehensive Two-Dimensional Gas Chromatography for Rapid and Repeatable Automated Data Analysis. Analytical Chemistry 2012, 84 (15) , 6501-6507. https://doi.org/10.1021/ac300664h
  9. Hadi Parastar, Jagoš R. Radović, Mehdi Jalali-Heravi, Sergi Diez, Josep Maria Bayona, and Roma Tauler . Resolution and Quantification of Complex Mixtures of Polycyclic Aromatic Hydrocarbons in Heavy Fuel Oil Sample by Means of GC × GC-TOFMS Combined to Multivariate Curve Resolution. Analytical Chemistry 2011, 83 (24) , 9289-9297. https://doi.org/10.1021/ac201799r
  10. Sandra Castillo, Ismo Mattila, Jarkko Miettinen, Matej Orešič, and Tuulia Hyötyläinen . Data Analysis Tool for Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry. Analytical Chemistry 2011, 83 (8) , 3058-3067. https://doi.org/10.1021/ac103308x
  11. Bing Wang, Aiqin Fang, John Heim, Bogdan Bogdanov, Scott Pugh, Mark Libardoni and Xiang Zhang. DISCO: Distance and Spectrum Correlation Optimization Alignment for Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry-Based Metabolomics. Analytical Chemistry 2010, 82 (12) , 5069-5081. https://doi.org/10.1021/ac100064b
  12. Christin Christin, Huub C. J. Hoefsloot, Age K. Smilde, Frank Suits, Rainer Bischoff and Peter L. Horvatovich. Time Alignment Algorithms Based on Selected Mass Traces for Complex LC-MS Data. Journal of Proteome Research 2010, 9 (3) , 1483-1495. https://doi.org/10.1021/pr9010124
  13. Herbert J. Tobias, Gavin L. Sacks, Ying Zhang and J. Thomas Brenna. Comprehensive Two-Dimensional Gas Chromatography Combustion Isotope Ratio Mass Spectrometry. Analytical Chemistry 2008, 80 (22) , 8613-8621. https://doi.org/10.1021/ac801511d
  14. Josephine S. Lübeck, Guilherme L. Alexandrino, Jan H. Christensen. GC × GC–HRMS nontarget fingerprinting of organic micropollutants in urban freshwater sediments. Environmental Sciences Europe 2020, 32 (1) https://doi.org/10.1186/s12302-020-00353-2
  15. Zeyu Li, Seongho Kim, Sikai Zhong, Zichun Zhong, Ikuko Kato, Xiang Zhang. Coherent point drift peak alignment algorithms using distance and similarity measures for two‐dimensional gas chromatography mass spectrometry data. Journal of Chemometrics 2020, 34 (8) https://doi.org/10.1002/cem.3236
  16. Cristian Quiroz-Moreno, Mayra Fontes Furlan, João Raul Belinato, Fabio Augusto, Guilherme L. Alexandrino, Noroska Gabriela Salazar Mogollón. RGCxGC toolbox: An R-package for data processing in comprehensive two-dimensional gas chromatography-mass spectrometry. Microchemical Journal 2020, 156 , 104830. https://doi.org/10.1016/j.microc.2020.104830
  17. Tijmen S. Bos, Wouter C. Knol, Stef R.A. Molenaar, Leon E. Niezen, Peter J. Schoenmakers, Govert W. Somsen, Bob W.J. Pirok. Recent applications of chemometrics in one‐ and two‐dimensional chromatography. Journal of Separation Science 2020, 43 (9-10) , 1678-1727. https://doi.org/10.1002/jssc.202000011
  18. Ping Luo, Kai Shu, Junjie Wu, Li Wan, Yong Tan. Exploring Correlation Network for Cheating Detection. ACM Transactions on Intelligent Systems and Technology 2020, 11 (1) , 1-23. https://doi.org/10.1145/3364221
  19. Peter Lasch, Isao Noda. Two-Dimensional Correlation Spectroscopy (2D-COS) for Analysis of Spatially Resolved Vibrational Spectra. Applied Spectroscopy 2019, 73 (4) , 359-379. https://doi.org/10.1177/0003702818819880
  20. Meritxell Navarro-Reig, Carmen Bedia, Romà Tauler, Joaquim Jaumot. Chemometric Strategies for Peak Detection and Profiling from Multidimensional Chromatography. PROTEOMICS 2018, 18 (18) , 1700327. https://doi.org/10.1002/pmic.201700327
  21. Breno J. Pollo, Guilherme L. Alexandrino, Fabio Augusto, Leandro W. Hantao. The impact of comprehensive two-dimensional gas chromatography on oil & gas analysis: Recent advances and applications in petroleum industry. TrAC Trends in Analytical Chemistry 2018, 105 , 202-217. https://doi.org/10.1016/j.trac.2018.05.007
  22. Daniella L. Vale, Paula F. de Aguiar, Lize Mirela S.L. de Oliveira, Gabriela Vanini, Vinicius B. Pereira, Larissa O. Alexandre, Giovani S.C. da Silva, Luiz André Mendes, Alexandre O. Gomes, Débora A. Azevedo. Comprehensive and multidimensional tools for crude oil property prediction and petrochemical industry refinery inferences. Fuel 2018, 223 , 188-197. https://doi.org/10.1016/j.fuel.2018.01.109
  23. Peiyan Sun, Kaiwen Bao, Haoshuai Li, Fujuan Li, Xinping Wang, Lixin Cao, Guangmei Li, Qing Zhou, Hongxia Tang, Mutai Bao. An efficient classification method for fuel and crude oil types based on m/z 256 mass chromatography by COW-PCA-LDA. Fuel 2018, 222 , 416-423. https://doi.org/10.1016/j.fuel.2018.02.150
  24. Qing-Xia Zheng, Hai-Yan Fu, He-Dong Li, Bing Wang, Cui-Hua Peng, Sheng Wang, Jun-Lan Cai, Shao-Feng Liu, Xiao-Bing Zhang, Yong-Jie Yu. Automatic time-shift alignment method for chromatographic data analysis. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-00390-7
  25. Yasuyuki Zushi, Jonas Gros, Qingping Tao, Stephen E. Reichenbach, Shunji Hashimoto, J.Samuel Arey. Pixel-by-pixel correction of retention time shifts in chromatograms from comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry. Journal of Chromatography A 2017, 1508 , 121-129. https://doi.org/10.1016/j.chroma.2017.05.065
  26. Victor Abrahamsson, Nenad Ristic, Kristina Franz, Kevin Van Geem. Comprehensive two-dimensional gas chromatography in combination with pixel-based analysis for fouling tendency prediction. Journal of Chromatography A 2017, 1501 , 89-98. https://doi.org/10.1016/j.chroma.2017.04.021
  27. Camille Couprie, Laurent Duval, Maxime Moreaud, Sophie Hénon, Mélinda Tebib, Vincent Souchon. BARCHAN: Blob Alignment for Robust CHromatographic ANalysis. Journal of Chromatography A 2017, 1484 , 65-72. https://doi.org/10.1016/j.chroma.2017.01.003
  28. Wei Fu, Zhixin Du, Yan He, Wenjie Zheng, Chenggui Han, Baofeng Liu, Shuifang Zhu. Metabolic profiling of virus-infected transgenic wheat with resistance to wheat yellow mosaic virus. Physiological and Molecular Plant Pathology 2016, 96 , 60-68. https://doi.org/10.1016/j.pmpp.2016.08.001
  29. Beichuan Deng, Seongho Kim, Hengguang LI, Elisabeth Heath, Xiang Zhang. Global peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry using point matching algorithms. Journal of Bioinformatics and Computational Biology 2016, 14 (06) , 1650032. https://doi.org/10.1142/S0219720016500323
  30. Andjoe Sampat, Martin Lopatka, Marjan Sjerps, Gabriel Vivo-Truyols, Peter Schoenmakers, Arian van Asten. Forensic potential of comprehensive two-dimensional gas chromatography. TrAC Trends in Analytical Chemistry 2016, 80 , 345-363. https://doi.org/10.1016/j.trac.2015.10.011
  31. Robert K. Nelson, Christoph Aeppli, J. Samuel Arey, Huan Chen, André H.B. de Oliveira, Christiane Eiserbeck, Glenn S. Frysinger, Richard B. Gaines, Kliti Grice, Jonas Gros, Gregory J. Hall, Hector H.F. Koolen, Karin L. Lemkau, Amy M. McKenna, Christopher M. Reddy, Ryan P. Rodgers, Robert F. Swarthout, David L. Valentine, Helen K. White. Applications of comprehensive two-dimensional gas chromatography (GC × GC) in studying the source, transport, and fate of petroleum hydrocarbons in the environment. 2016,,, 399-448. https://doi.org/10.1016/B978-0-12-803832-1.00008-8
  32. Björn Egert, Christoph H. Weinert, Sabine E. Kulling. A peaklet-based generic strategy for the untargeted analysis of comprehensive two-dimensional gas chromatography mass spectrometry data sets. Journal of Chromatography A 2015, 1405 , 168-177. https://doi.org/10.1016/j.chroma.2015.05.056
  33. Karisa M. Pierce, Brendon A. Parsons, Robert E. Synovec. Pixel-Level Data Analysis Methods for Comprehensive Two-Dimensional Chromatography. 2015,,, 427-463. https://doi.org/10.1016/B978-0-444-63527-3.00010-2
  34. Martin Schmidt, Mathias Baumert, Alberto Porta, Hagen Malberg, Sebastian Zaunseder. Two-Dimensional Warping for One-Dimensional Signals—Conceptual Framework and Application to ECG Processing. IEEE Transactions on Signal Processing 2014, 62 (21) , 5577-5588. https://doi.org/10.1109/TSP.2014.2354313
  35. Christophe Junot, François Fenaille, Benoit Colsch, François Bécher. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrometry Reviews 2014, 33 (6) , 471-500. https://doi.org/10.1002/mas.21401
  36. Wim P.H. de Boer, Jan Lankelma. Two-dimensional semi-parametric alignment of chromatograms. Journal of Chromatography A 2014, 1345 , 193-199. https://doi.org/10.1016/j.chroma.2014.04.034
  37. Zhongda Zeng, Jia Li, Helmut M. Hugel, Guowang Xu, Philip J. Marriott. Interpretation of comprehensive two-dimensional gas chromatography data using advanced chemometrics. TrAC Trends in Analytical Chemistry 2014, 53 , 150-166. https://doi.org/10.1016/j.trac.2013.08.009
  38. Wei Jiang, Zhi-Min Zhang, YongHuan Yun, De-Jian Zhan, Yi-Bao Zheng, Yi-Zeng Liang, Zhen Yu Yang, Ling Yu. Comparisons of Five Algorithms for Chromatogram Alignment. Chromatographia 2013, 76 (17-18) , 1067-1078. https://doi.org/10.1007/s10337-013-2513-8
  39. Xiaoli Wei, Xue Shi, Imhoi Koo, Seongho Kim, Robin H. Schmidt, Gavin E. Arteel, Walter H. Watson, Craig McClain, Xiang Zhang. MetPP: a computational platform for comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics. Bioinformatics 2013, 29 (14) , 1786-1792. https://doi.org/10.1093/bioinformatics/btt275
  40. Hadi Parastar, Jagoš R. Radović, Josep M. Bayona, Roma Tauler. Solving chromatographic challenges in comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry using multivariate curve resolution–alternating least squares. Analytical and Bioanalytical Chemistry 2013, 405 (19) , 6235-6249. https://doi.org/10.1007/s00216-013-7067-y
  41. Zhong Li, Jia-Jun Wang, Jing Huang, Zhi-Min Zhang, Hong-Mei Lu, Yi-Bao Zheng, De-Jian Zhan, Yi-Zeng Liang. Nonlinear alignment of chromatograms by means of moving window fast Fourier transfrom cross-correlation. Journal of Separation Science 2013, 36 (9-10) , 1677-1684. https://doi.org/10.1002/jssc.201201021
  42. Yi-Bao Zheng, Zhi-Min Zhang, Yi-Zeng Liang, De-Jian Zhan, Jian-Hua Huang, Yong-Huan Yun, Hua-Lin Xie. Application of fast Fourier transform cross-correlation and mass spectrometry data for accurate alignment of chromatograms. Journal of Chromatography A 2013, 1286 , 175-182. https://doi.org/10.1016/j.chroma.2013.02.063
  43. Bing Wang. A TWO-STAGE PEAK ALIGNMENT ALGORITHM FOR TWO-DIMENSIONAL GAS CHROMATOGRAPHY TIME-OF-FLIGHT MASS SPECTROMETRY-BASED METABOLOMICS. Computational and Structural Biotechnology Journal 2013, 7 (8) , e201304002. https://doi.org/10.5936/csbj.201304002
  44. A K Buryak, T M Serdyuk. Chromatography – mass spectrometry in aerospace industry. Russian Chemical Reviews 2013, 82 (4) , 369-392. https://doi.org/10.1070/RC2013v082n04ABEH004304
  45. Seongho Kim, Xiang Zhang. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry. Computational and Mathematical Methods in Medicine 2013, 2013 , 1-12. https://doi.org/10.1155/2013/509761
  46. Jaesik Jeong, Xiang Zhang, Xue Shi, Seongho Kim, Changyu Shen. An efficient post-hoc integration method improving peak alignment of metabolomics data from GCxGC/TOF-MS. BMC Bioinformatics 2013, 14 (1) , 123. https://doi.org/10.1186/1471-2105-14-123
  47. João T.V. Matos, Regina M.B.O. Duarte, Armando C. Duarte. Trends in data processing of comprehensive two-dimensional chromatography: State of the art. Journal of Chromatography B 2012, 910 , 31-45. https://doi.org/10.1016/j.jchromb.2012.06.039
  48. Jagoš R. Radović, Diego Rial, Brett P. Lyons, Christopher Harman, Lucia Viñas, Ricardo Beiras, James W. Readman, Kevin V. Thomas, Josep M. Bayona. Post-incident monitoring to evaluate environmental damage from shipping incidents: Chemical and biological assessments. Journal of Environmental Management 2012, 109 , 136-153. https://doi.org/10.1016/j.jenvman.2012.04.042
  49. Hadi Parastar, Mehdi Jalali-Heravi, Roma Tauler. Comprehensive two-dimensional gas chromatography (GC×GC) retention time shift correction and modeling using bilinear peak alignment, correlation optimized shifting and multivariate curve resolution. Chemometrics and Intelligent Laboratory Systems 2012, 117 , 80-91. https://doi.org/10.1016/j.chemolab.2012.02.003
  50. Leandro Wang Hantao, Helga Gabriela Aleme, Marcio Pozzobon Pedroso, Guilherme Post Sabin, Ronei Jesus Poppi, Fabio Augusto. Multivariate curve resolution combined with gas chromatography to enhance analytical separation in complex samples: A review. Analytica Chimica Acta 2012, 731 , 11-23. https://doi.org/10.1016/j.aca.2012.04.003
  51. Johannes Kiefl, Chiara Cordero, Luca Nicolotti, Peter Schieberle, Stephen E. Reichenbach, Carlo Bicchi. Performance evaluation of non-targeted peak-based cross-sample analysis for comprehensive two-dimensional gas chromatography–mass spectrometry data and application to processed hazelnut profiling. Journal of Chromatography A 2012, 1243 , 81-90. https://doi.org/10.1016/j.chroma.2012.04.048
  52. Jos J.A.M. Weusten, Eduard P.P.A. Derks, John H.M. Mommers, Sjoerd van der Wal. Alignment and clustering strategies for GC×GC–MS features using a cylindrical mapping. Analytica Chimica Acta 2012, 726 , 9-21. https://doi.org/10.1016/j.aca.2012.03.009
  53. Robert C. Allen, Sarah C. Rutan. Semi-automated alignment and quantification of peaks using parallel factor analysis for comprehensive two-dimensional liquid chromatography–diode array detector data sets. Analytica Chimica Acta 2012, 723 , 7-17. https://doi.org/10.1016/j.aca.2012.02.019
  54. Karisa M. Pierce, Rachel E. Mohler. A Review of Chemometrics Applied to Comprehensive Two-dimensional Separations from 2008–2010. Separation & Purification Reviews 2012, 41 (2) , 143-168. https://doi.org/10.1080/15422119.2011.591868
  55. Martin F. Almstetter, Peter J. Oefner, Katja Dettmer. Comprehensive two-dimensional gas chromatography in metabolomics. Analytical and Bioanalytical Chemistry 2012, 402 (6) , 1993-2013. https://doi.org/10.1007/s00216-011-5630-y
  56. Stephen E. Reichenbach, Xue Tian, Chiara Cordero, Qingping Tao. Features for non-targeted cross-sample analysis with comprehensive two-dimensional chromatography. Journal of Chromatography A 2012, 1226 , 140-148. https://doi.org/10.1016/j.chroma.2011.07.046
  57. Peter Carr, Joe Davis, Sarah Rutan, Dwight Stoll. Principles of Online Comprehensive Multidimensional Liquid Chromatography. 2012,,, 139-235. https://doi.org/10.1201/b11636-5
  58. Bing Wang, Aiqin Fang, Xue Shi, Seong Ho Kim, Xiang Zhang. DISCO2: A Comprehensive Peak Alignment Algorithm for Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry. 2012,,, 486-491. https://doi.org/10.1007/978-3-642-24553-4_64
  59. Karisa M. Pierce, Jeremy S. Nadeau, Robert E. Synovec. Data Analysis Methods. 2012,,, 415-434. https://doi.org/10.1016/B978-0-12-385540-4.00017-1
  60. Jeremy S. Nadeau, Ryan B. Wilson, Jamin C. Hoggard, Bob W. Wright, Robert E. Synovec. Study of the interdependency of the data sampling ratio with retention time alignment and principal component analysis for gas chromatography. Journal of Chromatography A 2011, 1218 (50) , 9091-9101. https://doi.org/10.1016/j.chroma.2011.10.031
  61. Seongho Kim, Imhoi Koo, Aiqin Fang, Xiang Zhang. Smith-Waterman peak alignment for comprehensive two-dimensional gas chromatography-mass spectrometry. BMC Bioinformatics 2011, 12 (1) https://doi.org/10.1186/1471-2105-12-235
  62. Martin F. Almstetter, Inka J. Appel, Katja Dettmer, Michael A. Gruber, Peter J. Oefner. Comparison of two algorithmic data processing strategies for metabolic fingerprinting by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Journal of Chromatography A 2011, https://doi.org/10.1016/j.chroma.2011.08.006
  63. Peter Q. Tranchida, Luigi Mondello, Samuel D. H. Poynter, Robert A. Shellie. Comprehensive Two-Dimensional Gas Chromatography Combined with Mass Spectrometry. 2011,,, 171-242. https://doi.org/10.1002/9781118003466.ch6
  64. Seongho Kim, Aiqin Fang, Bing Wang, Jaesik Jeong, Xiang Zhang. An optimal peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry using mixture similarity measure. Bioinformatics 2011, 27 (12) , 1660-1666. https://doi.org/10.1093/bioinformatics/btr188
  65. John Mommers, Jeroen Knooren, Ynze Mengerink, Arno Wilbers, Rene Vreuls, Sjoerd van der Wal. Retention time locking procedure for comprehensive two-dimensional gas chromatography. Journal of Chromatography A 2011, 1218 (21) , 3159-3165. https://doi.org/10.1016/j.chroma.2010.08.065
  66. Jérôme Vial, Benoît Pezous, Didier Thiébaut, Patrick Sassiat, Béatrice Teillet, Xavier Cahours, Isabelle Rivals. The discriminant pixel approach: A new tool for the rational interpretation of GCxGC-MS chromatograms. Talanta 2011, 83 (4) , 1295-1301. https://doi.org/10.1016/j.talanta.2010.07.059
  67. John V. Simpson, Olayinka Oshokoya, Nicole Wagner, Jing Liu, Renee D. JiJi. Pre-processing of ultraviolet resonance Raman spectra. The Analyst 2011, 136 (6) , 1239. https://doi.org/10.1039/c0an00774a
  68. J. Yvette Gardner, Darcy E. Brillhart, Melissa M. Benjamin, Lurlene G. Dixon, LaTonya M. Mitchell, Jean-Marie D. Dimandja. The use of GC×GC/TOF MS with multivariate analysis for the characterization of foodborne pathogen bacteria profiles. Journal of Separation Science 2011, 34 (2) , 176-185. https://doi.org/10.1002/jssc.201000612
  69. Stephen E. Reichenbach, Xue Tian, Qingping Tao, Dwight R. Stoll, Peter W. Carr. Comprehensive feature analysis for sample classification with comprehensive two‐dimensional LC. Journal of Separation Science 2010, 33 (10) , 1365-1374. https://doi.org/10.1002/jssc.200900859
  70. Qun Gu, Frank David, Frédéric Lynen, Klaus Rumpel, Guowang Xu, Paul De Vos, Pat Sandra. Analysis of bacterial fatty acids by flow modulated comprehensive two-dimensional gas chromatography with parallel flame ionization detector/mass spectrometry. Journal of Chromatography A 2010, 1217 (26) , 4448-4453. https://doi.org/10.1016/j.chroma.2010.04.057
  71. Hans-Georg Schmarr, Jörg Bernhardt. Profiling analysis of volatile compounds from fruits using comprehensive two-dimensional gas chromatography and image processing techniques. Journal of Chromatography A 2010, 1217 (4) , 565-574. https://doi.org/10.1016/j.chroma.2009.11.063
  72. Blagoj S Mitrevski, Konstantinos A Kouremenos, Philip J Marriott. Accelerating analysis for metabolomics, drugs and their metabolites in biological samples using multidimensional gas chromatography. Bioanalysis 2009, 1 (2) , 367-391. https://doi.org/10.4155/bio.09.28
  73. Jérôme Vial, Hicham Noçairi, Patrick Sassiat, Sreedhar Mallipatu, Guillaume Cognon, Didier Thiébaut, Béatrice Teillet, Douglas N. Rutledge. Combination of dynamic time warping and multivariate analysis for the comparison of comprehensive two-dimensional gas chromatograms. Journal of Chromatography A 2009, 1216 (14) , 2866-2872. https://doi.org/10.1016/j.chroma.2008.09.027
  74. Hernan J. Cortes, Bill Winniford, Jim Luong, Matthias Pursch. Comprehensive two dimensional gas chromatography review. Journal of Separation Science 2009, 32 (5-6) , 883-904. https://doi.org/10.1002/jssc.200800654
  75. . Current literature in mass spectrometry. Journal of Mass Spectrometry 2008,,, 1291-1300. https://doi.org/10.1002/jms.1306

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

OOPS

You have to login with your ACS ID befor you can login with your Mendeley account.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE