ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Statistical Recoupling Prior to Significance Testing in Nuclear Magnetic Resonance Based Metabonomics

View Author Information
Université de Lyon, Centre de RMN à Très Hauts Champs, CNRS/ENS Lyon/UCB Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France
* To whom correspondence should be addressed. P. Toulhoat, e-mail: [email protected]
Cite this: Anal. Chem. 2009, 81, 15, 6242–6251
Publication Date (Web):July 2, 2009
https://doi.org/10.1021/ac9007754
Copyright © 2009 American Chemical Society

    Article Views

    1346

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Significance testing is a crucial step in metabolic biomarker recovery from the metabolome-wide latent variables computed by multivariate statistical analysis. In this study we propose an algorithm based on the landscape of the covariance/correlation ratio of consecutive variables along the chemical shift axis to restore, prior to significance testing, the spectral dependency and recouple variables in clusters which correspond to physical, chemical, and biological entities: statistical recoupling of variables (SRV). Variables are associated into a series of clusters, which are then considered as individual objects for the control of the false discovery rate. Compared to classical procedures, it is found that SRV allows efficient recovery of statistically significant metabolic variables. The proposed SRV method when associated with the Benjamini−Yekutieli correction retains a low level of significant variables in the noise areas of the nuclear magnetic resonance (NMR) spectrum, close to that observed using the conservative Bonferroni correction (false positive rate), while also allowing successful identification of statistically significant metabolic NMR signals in cases where the classical procedures of Benjamini−Yekutieli and Benjamini-Hochberg (false discovery rate) fail. This procedure improves the interpretability of latent variables for metabolic biomarker recovery.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional information as noted in text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 80 publications.

    1. Arthur S. Edison, Maxwell Colonna, Goncalo J. Gouveia, Nicole R. Holderman, Michael T. Judge, Xunan Shen, Sicong Zhang. NMR: Unique Strengths That Enhance Modern Metabolomics Research. Analytical Chemistry 2021, 93 (1) , 478-499. https://doi.org/10.1021/acs.analchem.0c04414
    2. Pablo A. Hoijemberg and István Pelczer . Fast Metabolite Identification in Nuclear Magnetic Resonance Metabolomic Studies: Statistical Peak Sorting and Peak Overlap Detection for More Reliable Database Queries. Journal of Proteome Research 2018, 17 (1) , 392-401. https://doi.org/10.1021/acs.jproteome.7b00617
    3. Aurélien Scalabre, Elodie Jobard, Delphine Demède, Ségolène Gaillard, Clément Pontoizeau, Pierre Mouriquand, Bénédicte Elena-Herrmann, Pierre-Yves Mure. Evolution of Newborns’ Urinary Metabolomic Profiles According to Age and Growth. Journal of Proteome Research 2017, 16 (10) , 3732-3740. https://doi.org/10.1021/acs.jproteome.7b00421
    4. Benjamin J. Blaise, Gonçalo Correia, Adrienne Tin, J. Hunter Young, Anne-Claire Vergnaud, Matthew Lewis, Jake T. M. Pearce, Paul Elliott, Jeremy K. Nicholson, Elaine Holmes, and Timothy M. D. Ebbels . Power Analysis and Sample Size Determination in Metabolic Phenotyping. Analytical Chemistry 2016, 88 (10) , 5179-5188. https://doi.org/10.1021/acs.analchem.6b00188
    5. Lyamine Hedjazi, Dominique Gauguier, Pierre A. Zalloua, Jeremy K. Nicholson, Marc-Emmanuel Dumas, and Jean-Baptiste Cazier . mQTL.NMR: An Integrated Suite for Genetic Mapping of Quantitative Variations of 1H NMR-Based Metabolic Profiles. Analytical Chemistry 2015, 87 (8) , 4377-4384. https://doi.org/10.1021/acs.analchem.5b00145
    6. Clément Pontoizeau, Laurent Mouchiroud, Laurent Molin, Adeline Mergoud-dit-Lamarche, Nicolas Dallière, Pierre Toulhoat, Bénédicte Elena-Herrmann, and Florence Solari . Metabolomics Analysis Uncovers That Dietary Restriction Buffers Metabolic Changes Associated with Aging in Caenorhabditis elegans. Journal of Proteome Research 2014, 13 (6) , 2910-2919. https://doi.org/10.1021/pr5000686
    7. Xin Zou, Elaine Holmes, Jeremy K. Nicholson, and Ruey Leng Loo . Statistical HOmogeneous Cluster SpectroscopY (SHOCSY): An Optimized Statistical Approach for Clustering of 1H NMR Spectral Data to Reduce Interference and Enhance Robust Biomarkers Selection. Analytical Chemistry 2014, 86 (11) , 5308-5315. https://doi.org/10.1021/ac500161k
    8. Benjamin J. Blaise, Aurélie Gouel-Chéron, Bernard Floccard, Guillaume Monneret, and Bernard Allaouchiche . Metabolic Phenotyping of Traumatized Patients Reveals a Susceptibility to Sepsis. Analytical Chemistry 2013, 85 (22) , 10850-10855. https://doi.org/10.1021/ac402235q
    9. Benjamin J. Blaise . Data-Driven Sample Size Determination for Metabolic Phenotyping Studies. Analytical Chemistry 2013, 85 (19) , 8943-8950. https://doi.org/10.1021/ac4022314
    10. Steven L. Robinette, John C. Lindon, and Jeremy K. Nicholson . Statistical Spectroscopic Tools for Biomarker Discovery and Systems Medicine. Analytical Chemistry 2013, 85 (11) , 5297-5303. https://doi.org/10.1021/ac4007254
    11. Jean-Baptise Cazier, Pamela J. Kaisaki, Karène Argoud, Benjamin J. Blaise, Kirill Veselkov, Timothy M. D. Ebbels, Tsz Tsang, Yulan Wang, Marie-Thérèse Bihoreau, Steve C. Mitchell, Elaine C. Holmes, John C. Lindon, James Scott, Jeremy K. Nicholson, Marc-Emmanuel Dumas, and Dominique Gauguier . Untargeted Metabolome Quantitative Trait Locus Mapping Associates Variation in Urine Glycerate to Mutant Glycerate Kinase. Journal of Proteome Research 2012, 11 (2) , 631-642. https://doi.org/10.1021/pr200566t
    12. Siwei Wei, Jian Zhang, Lingyan Liu, Tao Ye, G. A. Nagana Gowda, Fariba Tayyari, and Daniel Raftery . Ratio Analysis Nuclear Magnetic Resonance Spectroscopy for Selective Metabolite Identification in Complex Samples. Analytical Chemistry 2011, 83 (20) , 7616-7623. https://doi.org/10.1021/ac201625f
    13. Benjamin J. Blaise, Vincent Navratil, Lyndon Emsley, and Pierre Toulhoat . Orthogonal Filtered Recoupled-STOCSY to Extract Metabolic Networks Associated with Minor Perturbations from NMR Spectroscopy. Journal of Proteome Research 2011, 10 (9) , 4342-4348. https://doi.org/10.1021/pr200489n
    14. Caroline J. Sands, Muireann Coen, Timothy M. D. Ebbels, Elaine Holmes, John C. Lindon, and Jeremy K. Nicholson . Data-Driven Approach for Metabolite Relationship Recovery in Biological 1H NMR Data Sets Using Iterative Statistical Total Correlation Spectroscopy. Analytical Chemistry 2011, 83 (6) , 2075-2082. https://doi.org/10.1021/ac102870u
    15. Iola F. Duarte, Inês Lamego, Joana Marques, M. Paula M. Marques, Benjamin J. Blaise, and Ana M. Gil . Nuclear Magnetic Resonance (NMR) Study of the Effect of Cisplatin on the Metabolic Profile of MG-63 Osteosarcoma Cells. Journal of Proteome Research 2010, 9 (11) , 5877-5886. https://doi.org/10.1021/pr100635n
    16. Benjamin J. Blaise, Vincent Navratil, Céline Domange, Laetitia Shintu, Marc-Emmanuel Dumas, Bénédicte Elena-Herrmann, Lyndon Emsley and Pierre Toulhoat . Two-Dimensional Statistical Recoupling for the Identification of Perturbed Metabolic Networks from NMR Spectroscopy. Journal of Proteome Research 2010, 9 (9) , 4513-4520. https://doi.org/10.1021/pr1002615
    17. Barry Lavine and Jerry Workman . Chemometrics. Analytical Chemistry 2010, 82 (12) , 4699-4711. https://doi.org/10.1021/ac101202z
    18. Luciano A. González, Julia G. S. Carvalho, Bruno C. Kuinchtner, Anthony C. Dona, Pietro S. Baruselli, Michael J. D’Occhio. Plasma metabolomics reveals major changes in carbohydrate, lipid, and protein metabolism of abruptly weaned beef calves. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-35383-2
    19. Xu Han, Wanli Wang, Li-Hua Ma, Ismael AI-Ramahi, Juan Botas, Kevin MacKenzie, Genevera I Allen, Damian W Young, Zhandong Liu, Mirjana Maletic-Savatic, . SPA-STOCSY: an automated tool for identifying annotated and non-annotated metabolites in high-throughput NMR spectra. Bioinformatics 2023, 39 (10) https://doi.org/10.1093/bioinformatics/btad593
    20. Michael Altenbuchinger, Henry Berndt, Robin Kosch, Iris Lang, Jürgen Dönitz, Peter J. Oefner, Wolfram Gronwald, Helena U. Zacharias, . Bucket Fuser: Statistical Signal Extraction for 1D 1H NMR Metabolomic Data. Metabolites 2022, 12 (9) , 812. https://doi.org/10.3390/metabo12090812
    21. Wuping Liu, Xiulin Shi, Tao Dai, Guiping Shen, Jianghua Feng. Recoupled-STOCSY-based co-expression network analysis to extract phenotype-driven metabolite modules in NMR-based metabolomics dataset. Analytica Chimica Acta 2022, 1197 , 339528. https://doi.org/10.1016/j.aca.2022.339528
    22. Luke Hall, Chaouri Guo, Sarah Tandy, Kathryn Broadhouse, Anthony C. Dona, Ernst Malle, Emil D. Bartels, Christina Christoffersen, Stuart M. Grieve, Gemma Figtree, Clare L. Hawkins, Michael J. Davies. Oral pre-treatment with thiocyanate (SCN−) protects against myocardial ischaemia–reperfusion injury in rats. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-92142-x
    23. François Brial, Julien Chilloux, Trine Nielsen, Sara Vieira-Silva, Gwen Falony, Petros Andrikopoulos, Michael Olanipekun, Lesley Hoyles, Fatima Djouadi, Ana L Neves, Andrea Rodriguez-Martinez, Ghiwa Ishac Mouawad, Nicolas Pons, Sofia Forslund, Emmanuelle Le-chatelier, Aurélie Le Lay, Jeremy Nicholson, Torben Hansen, Tuulia Hyötyläinen, Karine Clément, Matej Oresic, Peer Bork, Stanislav Dusko Ehrlich, Jeroen Raes, Oluf Borbye Pedersen, Dominique Gauguier, Marc-Emmanuel Dumas. Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut 2021, 70 (11) , 2105-2114. https://doi.org/10.1136/gutjnl-2020-323314
    24. Benjamin J. Blaise, Gonçalo D. S. Correia, Gordon A. Haggart, Izabella Surowiec, Caroline Sands, Matthew R. Lewis, Jake T. M. Pearce, Johan Trygg, Jeremy K. Nicholson, Elaine Holmes, Timothy M. D. Ebbels. Statistical analysis in metabolic phenotyping. Nature Protocols 2021, 16 (9) , 4299-4326. https://doi.org/10.1038/s41596-021-00579-1
    25. Ulla T. Schultheiss, Robin Kosch, Fruzsina Kotsis, Michael Altenbuchinger, Helena U. Zacharias. Chronic Kidney Disease Cohort Studies: A Guide to Metabolome Analyses. Metabolites 2021, 11 (7) , 460. https://doi.org/10.3390/metabo11070460
    26. C. Blakebrough-Hall, A. Dona, M. J. D’occhio, J. McMeniman, L. A González. Diagnosis of Bovine Respiratory Disease in feedlot cattle using blood 1H NMR metabolomics. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-019-56809-w
    27. Bénédicte Elena-Herrmann, Emilie Montellier, Anne Fages, Reut Bruck-Haimson, Arieh Moussaieff. Multi-platform NMR Study of Pluripotent Stem Cells Unveils Complementary Metabolic Signatures towards Differentiation. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-58377-w
    28. Samantha Connolly, Anthony Dona, Darren Hamblin, Michael J. D’Occhio, Luciano A. González. Changes in the blood metabolome of Wagyu crossbred steers with time in the feedlot and relationships with marbling. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-76101-6
    29. Wimal Pathmasiri, Kristine Kay, Susan McRitchie, Susan Sumner. Analysis of NMR Metabolomics Data. 2020, 61-97. https://doi.org/10.1007/978-1-0716-0239-3_5
    30. Samantha Connolly, Anthony Dona, Lorna Wilkinson-White, Darren Hamblin, Michael D’Occhio, Luciano A. González. Relationship of the blood metabolome to subsequent carcass traits at slaughter in feedlot Wagyu crossbred steers. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-51655-2
    31. Kyrillos N. Adesina-Georgiadis, Nicola Gray, Robert S. Plumb, David F. Thompson, Elaine Holmes, Jeremy K. Nicholson, Ian D. Wilson. The metabolic fate and effects of 2-Bromophenol in male Sprague–Dawley rats. Xenobiotica 2019, 49 (11) , 1352-1359. https://doi.org/10.1080/00498254.2018.1559376
    32. Ioanna Tzoulaki, Raphaële Castagné, Claire L Boulangé, Ibrahim Karaman, Elena Chekmeneva, Evangelos Evangelou, Timothy M D Ebbels, Manuja R Kaluarachchi, Marc Chadeau-Hyam, David Mosen, Abbas Dehghan, Alireza Moayyeri, Diana L Santos Ferreira, Xiuqing Guo, Jerome I Rotter, Kent D Taylor, Maryam Kavousi, Paul S de Vries, Benjamin Lehne, Marie Loh, Albert Hofman, Jeremy K Nicholson, John Chambers, Christian Gieger, Elaine Holmes, Russell Tracy, Jaspal Kooner, Philip Greenland, Oscar H Franco, David Herrington, John C Lindon, Paul Elliott. Serum metabolic signatures of coronary and carotid atherosclerosis and subsequent cardiovascular disease. European Heart Journal 2019, 40 (34) , 2883-2896. https://doi.org/10.1093/eurheartj/ehz235
    33. Wei Jie Seow, Xiao-Ou Shu, Jeremy K. Nicholson, Elaine Holmes, Douglas I. Walker, Wei Hu, Qiuyin Cai, Yu-Tang Gao, Yong-Bing Xiang, Steven C. Moore, Bryan A. Bassig, Jason Y. Y. Wong, Jinming Zhang, Bu-Tian Ji, Claire L. Boulangé, Manuja Kaluarachchi, Anisha Wijeyesekera, Wei Zheng, Paul Elliott, Nathaniel Rothman, Qing Lan. Association of Untargeted Urinary Metabolomics and Lung Cancer Risk Among Never-Smoking Women in China. JAMA Network Open 2019, 2 (9) , e1911970. https://doi.org/10.1001/jamanetworkopen.2019.11970
    34. Houda Boumaza, Suzy Markossian, Baptiste Busi, Gilles J.P. Rautureau, Karine Gauthier, Bénédicte Elena-Herrmann, Frédéric Flamant. Metabolomic Profiling of Body Fluids in Mouse Models Demonstrates that Nuclear Magnetic Resonance Is a Putative Diagnostic Tool for the Presence of Thyroid Hormone Receptor α1 Mutations. Thyroid 2019, 29 (9) , 1327-1335. https://doi.org/10.1089/thy.2018.0730
    35. Andrea Rodriguez-Martinez, Rafael Ayala, Joram M Posma, Nikita Harvey, Beatriz Jiménez, Kazuhiro Sonomura, Taka-Aki Sato, Fumihiko Matsuda, Pierre Zalloua, Dominique Gauguier, Jeremy K Nicholson, Marc-Emmanuel Dumas, . pJRES Binning Algorithm (JBA): a new method to facilitate the recovery of metabolic information from pJRES 1H NMR spectra. Bioinformatics 2019, 35 (11) , 1916-1922. https://doi.org/10.1093/bioinformatics/bty837
    36. Maria Carlota Dao, Nataliya Sokolovska, Rémi Brazeilles, Séverine Affeldt, Véronique Pelloux, Edi Prifti, Julien Chilloux, Eric O. Verger, Brandon D. Kayser, Judith Aron-Wisnewsky, Farid Ichou, Estelle Pujos-Guillot, Lesley Hoyles, Catherine Juste, Joël Doré, Marc-Emmanuel Dumas, Salwa W. Rizkalla, Bridget A. Holmes, Jean-Daniel Zucker, Karine Clément, . A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity. Frontiers in Physiology 2019, 9 https://doi.org/10.3389/fphys.2018.01958
    37. Timothy M. D. Ebbels, Ibrahim Karaman, Gonçalo Graça. Processing and Analysis of Untargeted Multicohort NMR Data. 2019, 453-470. https://doi.org/10.1007/978-1-4939-9690-2_25
    38. Quan Gu, Kirill Veselkov. Bi-clustering of metabolic data using matrix factorization tools. Methods 2018, 151 , 12-20. https://doi.org/10.1016/j.ymeth.2018.02.004
    39. Lesley Hoyles, Maria L. Jiménez-Pranteda, Julien Chilloux, Francois Brial, Antonis Myridakis, Thomas Aranias, Christophe Magnan, Glenn R. Gibson, Jeremy D. Sanderson, Jeremy K. Nicholson, Dominique Gauguier, Anne L. McCartney, Marc-Emmanuel Dumas. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome 2018, 6 (1) https://doi.org/10.1186/s40168-018-0461-0
    40. Ibrahim Karaman, Rui Climaco Pinto, Gonçalo Graça. Metabolomics Data Preprocessing: From Raw Data to Features for Statistical Analysis. 2018, 197-225. https://doi.org/10.1016/bs.coac.2018.08.003
    41. Sebastian Döhler. A discrete modification of the Benjamini–Yekutieli procedure. Econometrics and Statistics 2018, 5 , 137-147. https://doi.org/10.1016/j.ecosta.2016.12.002
    42. Elodie Jobard, Olivier Trédan, Thomas Bachelot, Arnaud M. Vigneron, Céline Mahier Aït-Oukhatar, Monica Arnedos, Maria Rios, Jacques Bonneterre, Véronique Diéras, Marta Jimenez, Jean-Louis Merlin, Mario Campone, Bénédicte Elena-Herrmann. Longitudinal serum metabolomics evaluation of trastuzumab and everolimus combination as pre-operative treatment for HER-2 positive breast cancer patients. Oncotarget 2017, 8 (48) , 83570-83584. https://doi.org/10.18632/oncotarget.18784
    43. Fabienne Venet, Julie Demaret, Benjamin J. Blaise, Christelle Rouget, Thibaut Girardot, Estellie Idealisoa, Thomas Rimmelé, François Mallet, Alain Lepape, Julien Textoris, Guillaume Monneret. IL-7 Restores T Lymphocyte Immunometabolic Failure in Septic Shock Patients through mTOR Activation. The Journal of Immunology 2017, 199 (5) , 1606-1615. https://doi.org/10.4049/jimmunol.1700127
    44. Raffaele Lamanna, Giovanna Imparato, Paola Tano, Angela Braca, Mario D'Ercole, Giovanni Ghianni. Territorial origin of olive oil: representing georeferenced maps of olive oils by NMR profiling. Magnetic Resonance in Chemistry 2017, 55 (7) , 639-647. https://doi.org/10.1002/mrc.4566
    45. Marc-Emmanuel Dumas, Alice R. Rothwell, Lesley Hoyles, Thomas Aranias, Julien Chilloux, Sophie Calderari, Elisa M. Noll, Noémie Péan, Claire L. Boulangé, Christine Blancher, Richard H. Barton, Quan Gu, Jane F. Fearnside, Chloé Deshayes, Christophe Hue, James Scott, Jeremy K. Nicholson, Dominique Gauguier. Microbial-Host Co-metabolites Are Prodromal Markers Predicting Phenotypic Heterogeneity in Behavior, Obesity, and Impaired Glucose Tolerance. Cell Reports 2017, 20 (1) , 136-148. https://doi.org/10.1016/j.celrep.2017.06.039
    46. Li-jian Zhang, Bin Chen, Jun-jie Zhang, Jian Li, Qingjing Yang, Qi-sheng Zhong, Song Zhan, Huwei Liu, Chun Cai. Serum polyunsaturated fatty acid metabolites as useful tool for screening potential biomarker of colorectal cancer. Prostaglandins, Leukotrienes and Essential Fatty Acids 2017, 120 , 25-31. https://doi.org/10.1016/j.plefa.2017.04.003
    47. Jasper Engel, Lutgarde Buydens, Lionel Blanchet. An overview of large‐dimensional covariance and precision matrix estimators with applications in chemometrics. Journal of Chemometrics 2017, 31 (4) https://doi.org/10.1002/cem.2880
    48. Ibrahim Karaman. Preprocessing and Pretreatment of Metabolomics Data for Statistical Analysis. 2017, 145-161. https://doi.org/10.1007/978-3-319-47656-8_6
    49. Elodie Jobard, Olivier Trédan, Déborah Postoly, Fabrice André, Anne-Laure Martin, Bénédicte Elena-Herrmann, Sandrine Boyault. A Systematic Evaluation of Blood Serum and Plasma Pre-Analytics for Metabolomics Cohort Studies. International Journal of Molecular Sciences 2016, 17 (12) , 2035. https://doi.org/10.3390/ijms17122035
    50. M.A. Anwar, P.A. Vorkas, J. Li, K.N. Adesina-Georgiadis, O.M. Reslan, J.D. Raffetto, E.J. Want, R.A. Khalil, E. Holmes, A.H. Davies. Prolonged Mechanical Circumferential Stretch Induces Metabolic Changes in Rat Inferior Vena Cava. European Journal of Vascular and Endovascular Surgery 2016, 52 (4) , 544-552. https://doi.org/10.1016/j.ejvs.2016.07.002
    51. Jinping Gu, Xiaomin Hu, Wei Shao, Tianhai Ji, Wensheng Yang, Huiqin Zhuo, Zeyu Jin, Huiying Huang, Jiacheng Chen, Caihua Huang, Donghai Lin. Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis. Oncotarget 2016, 7 (37) , 60053-60073. https://doi.org/10.18632/oncotarget.11049
    52. Maria Carlota Dao, Amandine Everard, Judith Aron-Wisnewsky, Nataliya Sokolovska, Edi Prifti, Eric O Verger, Brandon D Kayser, Florence Levenez, Julien Chilloux, Lesley Hoyles, , Marc-Emmanuel Dumas, Salwa W Rizkalla, Joel Doré, Patrice D Cani, Karine Clément. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016, 65 (3) , 426-436. https://doi.org/10.1136/gutjnl-2014-308778
    53. Dominique Gauguier. Application of quantitative metabolomics in systems genetics in rodent models of complex phenotypes. Archives of Biochemistry and Biophysics 2016, 589 , 158-167. https://doi.org/10.1016/j.abb.2015.09.016
    54. Anne Fages, Talita Duarte-Salles, Magdalena Stepien, Pietro Ferrari, Veronika Fedirko, Clément Pontoizeau, Antonia Trichopoulou, Krasimira Aleksandrova, Anne Tjønneland, Anja Olsen, Françoise Clavel-Chapelon, Marie-Christine Boutron-Ruault, Gianluca Severi, Rudolf Kaaks, Tilman Kuhn, Anna Floegel, Heiner Boeing, Pagona Lagiou, Christina Bamia, Dimitrios Trichopoulos, Domenico Palli, Valeria Pala, Salvatore Panico, Rosario Tumino, Paolo Vineis, H. Bas Bueno-de-Mesquita, Petra H. Peeters, Elisabete Weiderpass, Antonio Agudo, Esther Molina-Montes, José María Huerta, Eva Ardanaz, Miren Dorronsoro, Klas Sjöberg, Bodil Ohlsson, Kay-Tee Khaw, Nick Wareham, Ruth C. Travis, Julie A. Schmidt, Amanda Cross, Marc Gunter, Elio Riboli, Augustin Scalbert, Isabelle Romieu, Benedicte Elena-Herrmann, Mazda Jenab. Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort. BMC Medicine 2015, 13 (1) https://doi.org/10.1186/s12916-015-0462-9
    55. Elodie Jobard, Ellen Blanc, Sylvie Négrier, Bernard Escudier, Gwenaelle Gravis, Christine Chevreau, Bénédicte Elena-Herrmann, Olivier Trédan. A serum metabolomic fingerprint of bevacizumab and temsirolimus combination as first-line treatment of metastatic renal cell carcinoma. British Journal of Cancer 2015, 113 (8) , 1148-1157. https://doi.org/10.1038/bjc.2015.322
    56. Elise Billoir, Vincent Navratil, Benjamin J. Blaise. Sample size calculation in metabolic phenotyping studies. Briefings in Bioinformatics 2015, 16 (5) , 813-819. https://doi.org/10.1093/bib/bbu052
    57. Nada Assi, Anne Fages, Paolo Vineis, Marc Chadeau-Hyam, Magdalena Stepien, Talita Duarte-Salles, Graham Byrnes, Houda Boumaza, Sven Knüppel, Tilman Kühn, Domenico Palli, Christina Bamia, Hendriek Boshuizen, Catalina Bonet, Kim Overvad, Mattias Johansson, Ruth Travis, Marc J. Gunter, Eiliv Lund, Laure Dossus, Bénédicte Elena-Herrmann, Elio Riboli, Mazda Jenab, Vivian Viallon, Pietro Ferrari. A statistical framework to model the meeting-in-the-middle principle using metabolomic data: application to hepatocellular carcinoma in the EPIC study. Mutagenesis 2015, 1842 , gev045. https://doi.org/10.1093/mutage/gev045
    58. James M. Arnold, William T. Choi, Arun Sreekumar, Mirjana Maletić-Savatić. Analytical strategies for studying stem cell metabolism. Frontiers in Biology 2015, 10 (2) , 141-153. https://doi.org/10.1007/s11515-015-1357-z
    59. Quan Gu, Yong-Sheng Ding, Tong-Liang Zhang. An ensemble classifier based prediction of G-protein-coupled receptor classes in low homology. Neurocomputing 2015, 154 , 110-118. https://doi.org/10.1016/j.neucom.2014.12.013
    60. S.E. Richards, E. Holmes. Chemometrics methods for the analysis of genomics, transcriptomics, proteomics, metabolomics, and metagenomics datasets. 2015, 37-60. https://doi.org/10.1016/B978-1-78242-084-2.00003-4
    61. Benjamin J. Blaise, Claire Lopez, Cécile Vercherat, Annie Lacheretz-Bernigaud, Mathilde Bayet-Robert, Lamya Rezig, Jean-Yves Scoazec, Alain Calender, Lyndon Emsley, Bénédicte Elena-Herrmann, Martine Cordier-Bussat. Metabolic expressivity of human genetic variants: NMR metabotyping of MEN1 pathogenic mutants. Journal of Pharmaceutical and Biomedical Analysis 2014, 93 , 118-124. https://doi.org/10.1016/j.jpba.2013.09.029
    62. B.J. Blaise, A. Gouel-Chéron, B. Floccard, G. Monneret, F. Plaisant, D. Chassard, E. Javouhey, O. Claris, B. Allaouchiche. Phénotypage métabolique par résonance magnétique nucléaire pour l’évaluation périopératoire et en réanimation. Annales Françaises d'Anesthésie et de Réanimation 2014, 33 (3) , 167-175. https://doi.org/10.1016/j.annfar.2013.12.005
    63. Elodie Jobard, Clément Pontoizeau, Benjamin J. Blaise, Thomas Bachelot, Bénédicte Elena-Herrmann, Olivier Trédan. A serum nuclear magnetic resonance-based metabolomic signature of advanced metastatic human breast cancer. Cancer Letters 2014, 343 (1) , 33-41. https://doi.org/10.1016/j.canlet.2013.09.011
    64. Martin Jaeger, Ruud L.E.G. Aspers. Covariance NMR and Small Molecule Applications. 2014, 271-349. https://doi.org/10.1016/B978-0-12-800183-7.00005-8
    65. Marc–Emmanuel Dumas, James Kinross, Jeremy K. Nicholson. Metabolic Phenotyping and Systems Biology Approaches to Understanding Metabolic Syndrome and Fatty Liver Disease. Gastroenterology 2014, 146 (1) , 46-62. https://doi.org/10.1053/j.gastro.2013.11.001
    66. Joseph Shalhoub, Markus B. Sikkel, Kerry J. Davies, Panagiotis A. Vorkas, Elizabeth J. Want, Alun H. Davies. Systems Biology of Human Atherosclerosis. Vascular and Endovascular Surgery 2014, 48 (1) , 5-17. https://doi.org/10.1177/1538574413510628
    67. Anne Fages, Clément Pontoizeau, Elodie Jobard, Pierre Lévy, Birke Bartosch, Bénédicte Elena-Herrmann. Batch profiling calibration for robust NMR metabonomic data analysis. Analytical and Bioanalytical Chemistry 2013, 405 (27) , 8819-8827. https://doi.org/10.1007/s00216-013-7296-0
    68. Bo Wang, Zhanquan Shi, Georg F. Weber, Michael A. Kennedy. Introduction of a new critical p value correction method for statistical significance analysis of metabonomics data. Analytical and Bioanalytical Chemistry 2013, 405 (26) , 8419-8429. https://doi.org/10.1007/s00216-013-7284-4
    69. Xiaoli Zhang, Luan Xu, Jianmin Shen, Bei Cao, Ting Cheng, Tong Zhao, Xiaoyan Liu, Haixia Zhang. Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2013, 1832 (8) , 1207-1216. https://doi.org/10.1016/j.bbadis.2013.03.009
    70. Vincent Navratil, Clément Pontoizeau, Elise Billoir, Benjamin J. Blaise. SRV: an open-source toolbox to accelerate the recovery of metabolic biomarkers and correlations from metabolic phenotyping datasets. Bioinformatics 2013, 29 (10) , 1348-1349. https://doi.org/10.1093/bioinformatics/btt136
    71. Sandrine P. Claus, Jonathan R. Swann. Nutrimetabonomics:Applications for Nutritional Sciences, with Specific Reference to Gut Microbial Interactions. Annual Review of Food Science and Technology 2013, 4 (1) , 381-399. https://doi.org/10.1146/annurev-food-030212-182612
    72. Samia Boudah, Alain Paris, Christophe Junot. Liquid Chromatography Coupled to Mass Spectrometry-Based Metabolomics and the Concept of Biomarker. 2013, 159-218. https://doi.org/10.1016/B978-0-12-397922-3.00004-6
    73. Pratima Tripathi, Pachiyappan Kamarajan, Bagganahalli S. Somashekar, Neil MacKinnon, Arul M. Chinnaiyan, Yvonne L. Kapila, Thekkelnaycke M. Rajendiran, Ayyalusamy Ramamoorthy. Delineating metabolic signatures of head and neck squamous cell carcinoma: Phospholipase A2, a potential therapeutic target. The International Journal of Biochemistry & Cell Biology 2012, 44 (11) , 1852-1861. https://doi.org/10.1016/j.biocel.2012.06.025
    74. Marc-Emmanuel Dumas, Dominique Gauguier. Mapping Metabolomic Quantitative Trait Loci (mQTL): A Link Between Metabolome-Wide Association Studies and Systems Biology. 2012, 233-254. https://doi.org/10.1007/978-1-4614-1689-0_14
    75. Marc-Emmanuel Dumas. Metabolome 2.0: quantitative genetics and network biology of metabolic phenotypes. Molecular BioSystems 2012, 8 (10) , 2494. https://doi.org/10.1039/c2mb25167a
    76. Steven L Robinette, Elaine Holmes, Jeremy K Nicholson, Marc E Dumas. Genetic determinants of metabolism in health and disease: from biochemical genetics to genome-wide associations. Genome Medicine 2012, 4 (4) , 30. https://doi.org/10.1186/gm329
    77. Yohei Miyagi, Masahiko Higashiyama, Akira Gochi, Makoto Akaike, Takashi Ishikawa, Takeshi Miura, Nobuhiro Saruki, Etsuro Bando, Hideki Kimura, Fumio Imamura, Masatoshi Moriyama, Ichiro Ikeda, Akihiko Chiba, Fumihiro Oshita, Akira Imaizumi, Hiroshi Yamamoto, Hiroshi Miyano, Katsuhisa Horimoto, Osamu Tochikubo, Toru Mitsushima, Minoru Yamakado, Naoyuki Okamoto, . Plasma Free Amino Acid Profiling of Five Types of Cancer Patients and Its Application for Early Detection. PLoS ONE 2011, 6 (9) , e24143. https://doi.org/10.1371/journal.pone.0024143
    78. Peter Sandusky, Emmanuel Appiah-Amponsah, Daniel Raftery. Use of optimized 1D TOCSY NMR for improved quantitation and metabolomic analysis of biofluids. Journal of Biomolecular NMR 2011, 49 (3-4) , 281-290. https://doi.org/10.1007/s10858-011-9483-7
    79. William P. Power. High-Resolution Magic Angle Spinning—Enabling Applications of NMR Spectroscopy to Semi-Solid Phases. 2011, 111-156. https://doi.org/10.1016/B978-0-12-385857-3.00003-7
    80. Judith M. Fonville, Selena E. Richards, Richard H. Barton, Claire L. Boulange, Timothy M. D. Ebbels, Jeremy K. Nicholson, Elaine Holmes, Marc‐Emmanuel Dumas. The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. Journal of Chemometrics 2010, 24 (11-12) , 636-649. https://doi.org/10.1002/cem.1359

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect