ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry

View Author Information
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada, DVS Sciences, Inc., 70 Peninsula Crescent, Richmond Hill, Ontario L4S 1Z5, Canada, and University Health Network, Toronto Medical Discovery Tower, 101 College Street, Toronto, Ontario M5G 1L7, Canada
* Corresponding author. Phone: +1 416 946 8420. Fax: +1 416 978 4317. E-mail: [email protected]
†University of Toronto.
‡DVS Sciences, Inc.
§University Health Network.
Cite this: Anal. Chem. 2009, 81, 16, 6813–6822
Publication Date (Web):July 14, 2009
https://doi.org/10.1021/ac901049w
Copyright © 2009 American Chemical Society

    Article Views

    14803

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (934 KB)

    Abstract

    A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma−vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200−300 μs duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions (<3% cerium oxide ratio). At mass resolution (full width at half-maximum) MM > 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 × 108 ion counts per second per mg L−1 of Tb and an abundance sensitivity of (6 × 10−4)−(1.4 × 10−3) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125−215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When <15 elemental tags are used, a higher sensitivity mode at lower resolution (MM > 500) can be used, which provides >2.4 × 108 cps per mg L-1 of Tb, at (1.5 × 10−3)−(5.0 × 10−3) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 μm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.

    Cited By

    This article is cited by 936 publications.

    1. Yan Xu, Beibei Chen, Man He, Zewei Cui, Bin Hu. All-in-One Microfluidic Chip for Online Labeling, Separating, and Focusing Rare Circulating Tumor Cells from Blood Samples Followed by Inductively Coupled Plasma Mass Spectrometry Detection. Analytical Chemistry 2023, 95 (37) , 14061-14067. https://doi.org/10.1021/acs.analchem.3c02680
    2. Sehee Park, My Kieu Ha, Yangsoon Lee, Jaewoo Song, Tae Hyun Yoon. Effects of Immune Cell Heterogeneity and Protein Corona on the Cellular Association and Cytotoxicity of Gold Nanoparticles: A Single-Cell-Based, High-Dimensional Mass Cytometry Study. ACS Nanoscience Au 2023, 3 (4) , 323-334. https://doi.org/10.1021/acsnanoscienceau.3c00001
    3. Manxi Yang, Daisy Unsihuay, Hang Hu, Frederick Nguele Meke, Zihan Qu, Zhong-Yin Zhang, Julia Laskin. Nano-DESI Mass Spectrometry Imaging of Proteoforms in Biological Tissues with High Spatial Resolution. Analytical Chemistry 2023, 95 (12) , 5214-5222. https://doi.org/10.1021/acs.analchem.2c04795
    4. Loryn P. Arnett, Rahul Rana, Wilson Wai-Yip Chung, Xiaochong Li, Mahtab Abtahi, Daniel Majonis, Jay Bassan, Mark Nitz, Mitchell A. Winnik. Reagents for Mass Cytometry. Chemical Reviews 2023, 123 (3) , 1166-1205. https://doi.org/10.1021/acs.chemrev.2c00350
    5. Britt S. R. Claes, Kasper K. Krestensen, Gargey Yagnik, Andrej Grgic, Christel Kuik, Mark J. Lim, Kenneth J. Rothschild, Michiel Vandenbosch, Ron M. A. Heeren. MALDI-IHC-Guided In-Depth Spatial Proteomics: Targeted and Untargeted MSI Combined. Analytical Chemistry 2023, 95 (4) , 2329-2338. https://doi.org/10.1021/acs.analchem.2c04220
    6. Marek Stiborek, Lenka Jindřichová, Stanislava Meliorisová, Antonín Bednařík, Vadym Prysiazhnyi, Jiří Kroupa, Pavel Houška, Barbora Adamová, Jarmila Navrátilová, Viktor Kanický, Jan Preisler. Infrared Laser Desorption of Intact Nanoparticles for Digital Tissue Imaging. Analytical Chemistry 2022, 94 (51) , 18114-18120. https://doi.org/10.1021/acs.analchem.2c05216
    7. Jieyi Liu, Bedilu Allo, Mitchell A. Winnik. Development of Multiplexed Bead-Based Immunoassays for Profiling Soluble Cytokines and CD163 Using Mass Cytometry. ACS Measurement Science Au 2022, 2 (6) , 629-640. https://doi.org/10.1021/acsmeasuresciau.2c00038
    8. Hailong Yu, Qunfei Tai, Chenjie Yang, Lingxiao Weng, Mingxia Gao, Xiangmin Zhang. Counting Protein Number in a Single Cell by a Picoliter Liquid Operating Technology. Analytical Chemistry 2022, 94 (34) , 11925-11933. https://doi.org/10.1021/acs.analchem.2c02701
    9. Bingyun Sun, Sharwan Kumar. Protein Adsorption Loss─The Bottleneck of Single-Cell Proteomics. Journal of Proteome Research 2022, 21 (8) , 1808-1815. https://doi.org/10.1021/acs.jproteome.2c00317
    10. Antonio Delgado-Gonzalez, Jose Antonio Laz-Ruiz, M. Victoria Cano-Cortes, Ying-Wen Huang, Veronica D. Gonzalez, Juan Jose Diaz-Mochon, Wendy J. Fantl, Rosario M. Sanchez-Martin. Hybrid Fluorescent Mass-Tag Nanotrackers as Universal Reagents for Long-Term Live-Cell Barcoding. Analytical Chemistry 2022, 94 (30) , 10626-10635. https://doi.org/10.1021/acs.analchem.2c00795
    11. Yan Xu, Guangyang Xiao, Beibei Chen, Man He, Bin Hu. Single Particle Inductively Coupled Plasma Mass Spectrometry-Based Homogeneous Detection of HBV DNA with Rolling Circle Amplification-Induced Gold Nanoparticle Agglomeration. Analytical Chemistry 2022, 94 (28) , 10011-10018. https://doi.org/10.1021/acs.analchem.2c00272
    12. D. S. Verkhoturov, M. J. Eller, Y. D. Han, B. Crulhas, S. V. Verkhoturov, A. Revzin, E. A. Schweikert. New Methodology for Accurate Determination of Molecular Co-localization at the Nanoscale. Langmuir 2022, 38 (18) , 5626-5632. https://doi.org/10.1021/acs.langmuir.2c00217
    13. Loryn P. Arnett, Jieyi Liu, Yefeng Zhang, Hyungjun Cho, Elsa Lu, Taunia Closson, Bedilu Allo, Mitchell A. Winnik. Biotinylated Lipid-Coated NaLnF4 Nanoparticles: Demonstrating the Use of Lanthanide Nanoparticle-Based Reporters in Suspension and Imaging Mass Cytometry. Langmuir 2022, 38 (8) , 2525-2537. https://doi.org/10.1021/acs.langmuir.1c03002
    14. Yuliang Zhao, Lijia Gu, Hui Sun, Xiaopeng Sha, Wen Jung Li. Physical Cytometry: Detecting Mass-Related Properties of Single Cells. ACS Sensors 2022, 7 (1) , 21-36. https://doi.org/10.1021/acssensors.1c01787
    15. Xiaoyi Gao, Xucong Teng, Yicong Dai, Jinghong Li. Rolling Circle Amplification-Assisted Flow Cytometry Approach for Simultaneous Profiling of Exosomal Surface Proteins. ACS Sensors 2021, 6 (10) , 3611-3620. https://doi.org/10.1021/acssensors.1c01163
    16. Philip A. Doble, Raquel Gonzalez de Vega, David P. Bishop, Dominic J. Hare, David Clases. Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry Imaging in Biology. Chemical Reviews 2021, 121 (19) , 11769-11822. https://doi.org/10.1021/acs.chemrev.0c01219
    17. Jieyi Liu, Jonathan Jarzabek, Megan Roberts, Daniel Majonis, Mitchell A. Winnik. A Silica Coating Approach to Enhance Bioconjugation on Metal-Encoded Polystyrene Microbeads for Bead-Based Assays in Mass Cytometry. Langmuir 2021, 37 (27) , 8240-8252. https://doi.org/10.1021/acs.langmuir.1c00954
    18. Dmitriy S. Verkhoturov, Bruno P. Crulhas, Michael J. Eller, Yong D. Han, Stanislav V. Verkhoturov, Yordanos Bisrat, Alexander Revzin, Emile A. Schweikert. Nanoprojectile Secondary Ion Mass Spectrometry for Analysis of Extracellular Vesicles. Analytical Chemistry 2021, 93 (20) , 7481-7490. https://doi.org/10.1021/acs.analchem.1c00689
    19. Jieyi Liu, Edmond C. N. Wong, Elsa Lu, Jonathan Jarzabek, Daniel Majonis, Mitchell A. Winnik. Control of Metal Content in Polystyrene Microbeads Prepared with Metal Complexes of DTPA Derivatives. Chemistry of Materials 2021, 33 (10) , 3802-3813. https://doi.org/10.1021/acs.chemmater.1c00963
    20. Chandresh Kumar Rastogi, Elsa Lu, Jason Tam, Jothir Mayanantham Pichaandi, Jane Howe, Mitchell A. Winnik. Influence of the Sodium Precursor on the Cubic-to-Hexagonal Phase Transformation and Controlled Preparation of Uniform NaNdF4 Nanoparticles. Langmuir 2021, 37 (6) , 2146-2152. https://doi.org/10.1021/acs.langmuir.0c03346
    21. Heather M. G. Brown, Michelle M. Kuhns, Zoe Maxwell, Edgar A. Arriaga. Nonspecific Binding Correction for Single-Cell Mass Cytometric Analysis of Autophagy and Myoblast Differentiation. Analytical Chemistry 2021, 93 (3) , 1401-1408. https://doi.org/10.1021/acs.analchem.0c03211
    22. Antonio Delgado-Gonzalez, Rosario M. Sanchez-Martin. Mass Cytometry Tags: Where Chemistry Meets Single-Cell Analysis. Analytical Chemistry 2021, 93 (2) , 657-664. https://doi.org/10.1021/acs.analchem.0c03560
    23. Thomas Vonderach, Bodo Hattendorf, Detlef Günther. New Orientation: A Downward-pointing Vertical Inductively Coupled Plasma Mass Spectrometer for the Analysis of Microsamples. Analytical Chemistry 2021, 93 (2) , 1001-1008. https://doi.org/10.1021/acs.analchem.0c03831
    24. Keke Hu, Tho D. K. Nguyen, Stefania Rabasco, Pieter E. Oomen, Andrew G. Ewing. Chemical Analysis of Single Cells and Organelles. Analytical Chemistry 2021, 93 (1) , 41-71. https://doi.org/10.1021/acs.analchem.0c04361
    25. Zili Huang, Ziyan Li, Min Jiang, Rui Liu, Yi Lv. Homogeneous Multiplex Immunoassay for One-Step Pancreatic Cancer Biomarker Evaluation. Analytical Chemistry 2020, 92 (24) , 16105-16112. https://doi.org/10.1021/acs.analchem.0c03780
    26. Qi Wu, Jianbo Shi, Xiaomeng Ji, Tian Xia, Li Zeng, Gengtan Li, Yuanyuan Wang, Jie Gao, Linlin Yao, Junjie Ma, Xiaolei Liu, Nian Liu, Ligang Hu, Bin He, Yong Liang, Guangbo Qu, Guibin Jiang. Heterogenous Internalization of Nanoparticles at Ultra-Trace Concentration in Environmental Individual Unicellular Organisms Unveiled by Single-Cell Mass Cytometry. ACS Nano 2020, 14 (10) , 12828-12839. https://doi.org/10.1021/acsnano.0c03587
    27. Matthew Waas, Thomas Kislinger. Addressing Cellular Heterogeneity in Cancer through Precision Proteomics. Journal of Proteome Research 2020, 19 (9) , 3607-3619. https://doi.org/10.1021/acs.jproteome.0c00338
    28. Sina Alavi, Xiaoman Guo, Seyyed Morteza Javid, Ali Ebrahimi, Javad Mostaghimi. High-Sensitivity and High-Speed Single-Particle Inductively Coupled Plasma Spectrometry with the Conical Torch. Analytical Chemistry 2020, 92 (17) , 11786-11794. https://doi.org/10.1021/acs.analchem.0c01903
    29. Yanlin Zhu, Wenhua Wang, Zhibo Yang. Combining Mass Spectrometry with Paternò–Büchi Reaction to Determine Double-Bond Positions in Lipids at the Single-Cell Level. Analytical Chemistry 2020, 92 (16) , 11380-11387. https://doi.org/10.1021/acs.analchem.0c02245
    30. Sarah C. Shuck, Cu Nguyen, Yin Chan, Timothy O’Connor, Alexandra K. Ciminera, Michael Kahn, John Termini. Metal-Assisted Protein Quantitation (MAPq): Multiplex Analysis of Protein Expression Using Lanthanide-Modified Antibodies with Detection by Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry 2020, 92 (11) , 7556-7564. https://doi.org/10.1021/acs.analchem.0c00058
    31. Yefeng Zhang, Nick Zabinyakov, Daniel Majonis, Alexandre Bouzekri, Olga Ornatsky, Vladimir Baranov, Mitchell A. Winnik. Tantalum Oxide Nanoparticle-Based Mass Tag for Mass Cytometry. Analytical Chemistry 2020, 92 (8) , 5741-5749. https://doi.org/10.1021/acs.analchem.9b04970
    32. Yang Zhou, Zhangqian Chen, Juxing Zeng, Jiaxuan Zhang, Danxia Yu, Bo Zhang, Xiaowen Yan, Limin Yang, Qiuquan Wang. Direct Infusion ICP-qMS of Lined-up Single-Cell Using an Oil-Free Passive Microfluidic System. Analytical Chemistry 2020, 92 (7) , 5286-5293. https://doi.org/10.1021/acs.analchem.9b05838
    33. Elsa Lu, Jothirmayanantham Pichaandi, Chandresh Kumar Rastogi, Loryn P. Arnett, Mitchell A. Winnik. Influence of Cubic-to-Hexagonal-Phase Transformation on the Uniformity of NaLnF4 (Ho, Tb, Eu, Sm) Nanoparticles. Chemistry of Materials 2019, 31 (23) , 9742-9749. https://doi.org/10.1021/acs.chemmater.9b03421
    34. Rahul Rana, Rodolfo F. Gómez-Biagi, Jay Bassan, Mark Nitz. Signal Amplification for Imaging Mass Cytometry. Bioconjugate Chemistry 2019, 30 (11) , 2805-2810. https://doi.org/10.1021/acs.bioconjchem.9b00559
    35. Konrad Löhr, Olga Borovinskaya, Guilhem Tourniaire, Ulrich Panne, Norbert Jakubowski. Arraying of Single Cells for Quantitative High Throughput Laser Ablation ICP-TOF-MS. Analytical Chemistry 2019, 91 (18) , 11520-11528. https://doi.org/10.1021/acs.analchem.9b00198
    36. Ana López-Serrano Oliver, Andrea Haase, Anette Peddinghaus, Doreen Wittke, Norbert Jakubowski, Andreas Luch, Andreas Grützkau, Sabine Baumgart. Mass Cytometry Enabling Absolute and Fast Quantification of Silver Nanoparticle Uptake at the Single Cell Level. Analytical Chemistry 2019, 91 (18) , 11514-11519. https://doi.org/10.1021/acs.analchem.9b01870
    37. Ching-Yu Wang, Cheng-Che Hsu. Online, Continuous, and Interference-Free Monitoring of Trace Heavy Metals in Water Using Plasma Spectroscopy Driven by Actively Modulated Pulsed Power. Environmental Science & Technology 2019, 53 (18) , 10888-10896. https://doi.org/10.1021/acs.est.9b02970
    38. Huan Yao, Hansen Zhao, Xu Zhao, Xingyu Pan, Jiaxin Feng, Fujian Xu, Sichun Zhang, Xinrong Zhang. Label-free Mass Cytometry for Unveiling Cellular Metabolic Heterogeneity. Analytical Chemistry 2019, 91 (15) , 9777-9783. https://doi.org/10.1021/acs.analchem.9b01419
    39. Akihiro Arakawa, Norbert Jakubowski, Gunda Koellensperger, Sarah Theiner, Andreas Schweikert, Sabine Flemig, Daigo Iwahata, Heike Traub, Takafumi Hirata. Quantitative Imaging of Silver Nanoparticles and Essential Elements in Thin Sections of Fibroblast Multicellular Spheroids by High Resolution Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Analytical Chemistry 2019, 91 (15) , 10197-10203. https://doi.org/10.1021/acs.analchem.9b02239
    40. Yong Liang, Qian Liu, Yang Zhou, Shi Chen, Limin Yang, Min Zhu, Qiuquan Wang. Counting and Recognizing Single Bacterial Cells by a Lanthanide-Encoding Inductively Coupled Plasma Mass Spectrometric Approach. Analytical Chemistry 2019, 91 (13) , 8341-8349. https://doi.org/10.1021/acs.analchem.9b01130
    41. Yating Wang, Cheuk-Kuen Lai, Justin Kai-Chi Lau, Alan C. Hopkinson, K. W. Michael Siu. Structures and Dissociation Products of Ce/Peptide Complexes: Competition between Coordination and Charge Delocalization. The Journal of Physical Chemistry B 2019, 123 (25) , 5229-5237. https://doi.org/10.1021/acs.jpcb.9b03098
    42. Elizabeth K. Neumann, Joanna F. Ellis, Amelia E. Triplett, Stanislav S. Rubakhin, Jonathan V. Sweedler. Lipid Analysis of 30 000 Individual Rodent Cerebellar Cells Using High-Resolution Mass Spectrometry. Analytical Chemistry 2019, 91 (12) , 7871-7878. https://doi.org/10.1021/acs.analchem.9b01689
    43. Caixia Ji, Yong Liang, Fuchun Ge, Limin Yang, Qiuquan Wang. Inhibitory Covalent Labeling and Clickable-Eu-Tagging-Based ICPMS: Measurement of pH-Dependent Absolute Activities of the Cathepsins in Hepatocyte Lysosomes. Analytical Chemistry 2019, 91 (11) , 7032-7038. https://doi.org/10.1021/acs.analchem.9b01662
    44. Zhian Hu, Gongwei Sun, Wencan Jiang, Fujian Xu, Yuqing Zhang, Mengchan Xia, Xingyu Pan, Zhi Xing, Sichun Zhang, Xinrong Zhang. Chemical-Modified Nucleotide-Based Elemental Tags for High-Sensitive Immunoassay. Analytical Chemistry 2019, 91 (9) , 5980-5986. https://doi.org/10.1021/acs.analchem.9b00405
    45. Rong Yuan, Fuchun Ge, Yong Liang, Yang Zhou, Limin Yang, Qiuquan Wang. Viruslike Element-Tagged Nanoparticle Inductively Coupled Plasma Mass Spectrometry Signal Multiplier: Membrane Biomarker Mediated Cell Counting. Analytical Chemistry 2019, 91 (8) , 4948-4952. https://doi.org/10.1021/acs.analchem.9b00749
    46. Nicholas D. Schmitt, Catherine M. Rawlins, Elizabeth C. Randall, Xianzhe Wang, Antonius Koller, Jared R. Auclair, Jane-Marie Kowalski, Paul J. Kowalski, Ed Luther, Alexander R. Ivanov, Nathalie Y. R. Agar, Jeffrey N. Agar. Genetically Encoded Fluorescent Proteins Enable High-Throughput Assignment of Cell Cohorts Directly from MALDI-MS Images. Analytical Chemistry 2019, 91 (6) , 3810-3817. https://doi.org/10.1021/acs.analchem.8b03454
    47. Limor Cohen, David R. Walt. Highly Sensitive and Multiplexed Protein Measurements. Chemical Reviews 2019, 119 (1) , 293-321. https://doi.org/10.1021/acs.chemrev.8b00257
    48. Heather M. G. Brown, Edgar A. Arriaga. Quantifying Heterogeneity of Individual Organelles in Mixed Populations via Mass Cytometry. Analytical Chemistry 2018, 90 (22) , 13315-13321. https://doi.org/10.1021/acs.analchem.8b02790
    49. Qiong Pan, Kevin A. Yamauchi, Amy E. Herr. Controlling Dispersion during Single-Cell Polyacrylamide-Gel Electrophoresis in Open Microfluidic Devices. Analytical Chemistry 2018, 90 (22) , 13419-13426. https://doi.org/10.1021/acs.analchem.8b03233
    50. Harrison Specht, Nikolai Slavov. Transformative Opportunities for Single-Cell Proteomics. Journal of Proteome Research 2018, 17 (8) , 2565-2571. https://doi.org/10.1021/acs.jproteome.8b00257
    51. Bedilu Allo, Xudong Lou, Alexandre Bouzekri, Olga Ornatsky. Clickable and High-Sensitivity Metal-Containing Tags for Mass Cytometry. Bioconjugate Chemistry 2018, 29 (6) , 2028-2038. https://doi.org/10.1021/acs.bioconjchem.8b00239
    52. Abdil Ozdemir, Jung-Lee Lin, Mustafa Gulfen, Szu-Hsueh Lai, Chun-Jen Hsiao, Nelson G. Chen, and Chung-Hsuan Chen . ESI MS for Microsized Bioparticles. Analytical Chemistry 2017, 89 (24) , 13195-13202. https://doi.org/10.1021/acs.analchem.7b02937
    53. Rui Liu, Chaoqun Wang, Yuming Xu, Jianyu Hu, Dongyan Deng, and Yi Lv . Label-Free DNA Assay by Metal Stable Isotope Detection. Analytical Chemistry 2017, 89 (24) , 13269-13274. https://doi.org/10.1021/acs.analchem.7b03327
    54. Elsa Lu, Jothirmayanantham Pichaandi, Loryn P. Arnett, Lemuel Tong, and Mitchell A. Winnik . Influence of Lu3+ Doping on the Crystal Structure of Uniform Small (5 and 13 nm) NaLnF4 Upconverting Nanocrystals. The Journal of Physical Chemistry C 2017, 121 (33) , 18178-18185. https://doi.org/10.1021/acs.jpcc.7b03783
    55. Angela Ivask, Andrew J. Mitchell, Christopher M. Hope, Simon C. Barry, Enzo Lombi, and Nicolas H. Voelcker . Single Cell Level Quantification of Nanoparticle–Cell Interactions Using Mass Cytometry. Analytical Chemistry 2017, 89 (16) , 8228-8232. https://doi.org/10.1021/acs.analchem.7b01006
    56. Jothirmayanantham Pichaandi, Lemuel Tong, Alexandre Bouzekri, Qing Yu, Olga Ornatsky, Vladimir Baranov, and Mitchell A. Winnik . Liposome-Encapsulated NaLnF4 Nanoparticles for Mass Cytometry: Evaluating Nonspecific Binding to Cells. Chemistry of Materials 2017, 29 (11) , 4980-4990. https://doi.org/10.1021/acs.chemmater.7b01339
    57. Troy J. Comi, Thanh D. Do, Stanislav S. Rubakhin, and Jonathan V. Sweedler . Categorizing Cells on the Basis of their Chemical Profiles: Progress in Single-Cell Mass Spectrometry. Journal of the American Chemical Society 2017, 139 (11) , 3920-3929. https://doi.org/10.1021/jacs.6b12822
    58. Xing Wei, Lin-Lin Hu, Ming-Li Chen, Ting Yang, and Jian-Hua Wang . Analysis of the Distribution Pattern of Chromium Species in Single Cells. Analytical Chemistry 2016, 88 (24) , 12437-12444. https://doi.org/10.1021/acs.analchem.6b03810
    59. Krishnan K. Palaniappan and Carolyn R. Bertozzi . Chemical Glycoproteomics. Chemical Reviews 2016, 116 (23) , 14277-14306. https://doi.org/10.1021/acs.chemrev.6b00023
    60. Stijn J. M. Van Malderen, Eva Vergucht, Maarten De Rijcke, Colin Janssen, Laszlo Vincze, and Frank Vanhaecke . Quantitative Determination and Subcellular Imaging of Cu in Single Cells via Laser Ablation-ICP-Mass Spectrometry Using High-Density Microarray Gelatin Standards. Analytical Chemistry 2016, 88 (11) , 5783-5789. https://doi.org/10.1021/acs.analchem.6b00334
    61. Rui Liu, Shixi Zhang, Chao Wei, Zhi Xing, Sichun Zhang, and Xinrong Zhang . Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules. Accounts of Chemical Research 2016, 49 (5) , 775-783. https://doi.org/10.1021/acs.accounts.5b00509
    62. Lemuel Tong, Elsa Lu, Jothirmayanantham Pichaandi, Guangyao Zhao, and Mitchell A. Winnik . Synthesis of Uniform NaLnF4 (Ln: Sm to Ho) Nanoparticles for Mass Cytometry. The Journal of Physical Chemistry C 2016, 120 (11) , 6269-6280. https://doi.org/10.1021/acs.jpcc.6b00570
    63. Elise A. Dennis, Steven J. Ray, Christie G. Enke, Gary M. Hieftje. Inductively Coupled Plasma Zoom–Time-of-Flight Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2016, 27 (3) , 380-387. https://doi.org/10.1007/s13361-015-1309-5
    64. Munira F. Fouz, Kosuke Mukumoto, Saadyah Averick, Olivia Molinar, Brooke M. McCartney, Krzysztof Matyjaszewski, Bruce A. Armitage, and Subha R. Das . Bright Fluorescent Nanotags from Bottlebrush Polymers with DNA-Tipped Bristles. ACS Central Science 2015, 1 (8) , 431-438. https://doi.org/10.1021/acscentsci.5b00259
    65. Julea Vlassakis and Amy E. Herr . Effect of Polymer Hydration State on In-Gel Immunoassays. Analytical Chemistry 2015, 87 (21) , 11030-11038. https://doi.org/10.1021/acs.analchem.5b03032
    66. Benita Ramkorun-Schmidt, Spiros A. Pergantis, Diego Esteban-Fernández, Norbert Jakubowski, and Detlef Günther . Investigation of a Combined Microdroplet Generator and Pneumatic Nebulization System for Quantitative Determination of Metal-Containing Nanoparticles Using ICPMS. Analytical Chemistry 2015, 87 (17) , 8687-8694. https://doi.org/10.1021/acs.analchem.5b01604
    67. Adel M. ElSohly, Chawita Netirojjanakul, Ioana L. Aanei, Astraea Jager, Sean C. Bendall, Michelle E. Farkas, Garry P. Nolan, and Matthew B. Francis . Synthetically Modified Viral Capsids as Versatile Carriers for Use in Antibody-Based Cell Targeting. Bioconjugate Chemistry 2015, 26 (8) , 1590-1596. https://doi.org/10.1021/acs.bioconjchem.5b00226
    68. Alexander Gundlach-Graham, Marcel Burger, Steffen Allner, Gunnar Schwarz, Hao A. O. Wang, Luzia Gyr, Daniel Grolimund, Bodo Hattendorf, and Detlef Günther . High-Speed, High-Resolution, Multielemental Laser Ablation-Inductively Coupled Plasma-Time-of-Flight Mass Spectrometry Imaging: Part I. Instrumentation and Two-Dimensional Imaging of Geological Samples. Analytical Chemistry 2015, 87 (16) , 8250-8258. https://doi.org/10.1021/acs.analchem.5b01196
    69. Christoph A. Wehe, Georgina M. Thyssen, Christina Herdering, Indra Raj, Giuliano Ciarimboli, Michael Sperling, Uwe Karst. Elemental Bioimaging by Means of Fast Scanning Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2015, 26 (8) , 1274-1282. https://doi.org/10.1007/s13361-015-1141-y
    70. Lemuel Tong, Elsa Lu, Jothirmayanantham Pichaandi, Pengpeng Cao, Mark Nitz, and Mitchell A. Winnik . Quantification of Surface Ligands on NaYF4 Nanoparticles by Three Independent Analytical Techniques. Chemistry of Materials 2015, 27 (13) , 4899-4910. https://doi.org/10.1021/acs.chemmater.5b02190
    71. Jianbo Tan, Guangyao Zhao, Zhaohua Zeng, and Mitchell A. Winnik . PMMA Microspheres with Embedded Lanthanide Nanoparticles by Photoinitiated Dispersion Polymerization with a Carboxy-Functional Macro-RAFT Agent. Macromolecules 2015, 48 (11) , 3629-3640. https://doi.org/10.1021/acs.macromol.5b00688
    72. Olga Borovinskaya, Sabrina Gschwind, Bodo Hattendorf, Martin Tanner, and Detlef Günther . Simultaneous Mass Quantification of Nanoparticles of Different Composition in a Mixture by Microdroplet Generator-ICPTOFMS. Analytical Chemistry 2014, 86 (16) , 8142-8148. https://doi.org/10.1021/ac501150c
    73. Kathrin Brückner, Robert Zitterbart, Oliver Seitz, Sebastian Beck, and Michael W. Linscheid . Solid Phase Synthesis of Short Peptide-Based Multimetal Tags for Biomolecule Labeling. Bioconjugate Chemistry 2014, 25 (6) , 1069-1077. https://doi.org/10.1021/bc500082k
    74. Pascal E. Verboket, Olga Borovinskaya, Nicole Meyer, Detlef Günther, and Petra S. Dittrich . A New Microfluidics-Based Droplet Dispenser for ICPMS. Analytical Chemistry 2014, 86 (12) , 6012-6018. https://doi.org/10.1021/ac501149a
    75. Wanjuan Lin, Yi Hou, Yijie Lu, Ahmed I. Abdelrahman, Pengpeng Cao, Guangyao Zhao, Lemuel Tong, Jieshu Qian, Vladimir Baranov, Mark Nitz, and Mitchell A. Winnik . A High-Sensitivity Lanthanide Nanoparticle Reporter for Mass Cytometry: Tests on Microgels as a Proxy for Cells. Langmuir 2014, 30 (11) , 3142-3153. https://doi.org/10.1021/la403627p
    76. Alexander Gundlach-Graham, Elise A. Dennis, Steven J. Ray, Christie G. Enke, Charles J. Barinaga, David W. Koppenaal, Gary M. Hieftje. Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor. Journal of the American Society for Mass Spectrometry 2013, 24 (11) , 1736-1744. https://doi.org/10.1007/s13361-013-0718-6
    77. Tobias Konz, Elena Añón Alvarez, Maria Montes-Bayon, and A. Sanz-Medel . Antibody Labeling and Elemental Mass Spectrometry (Inductively Coupled Plasma-Mass Spectrometry) Using Isotope Dilution for Highly Sensitive Ferritin Determination and Iron-Ferritin Ratio Measurements. Analytical Chemistry 2013, 85 (17) , 8334-8340. https://doi.org/10.1021/ac401692k
    78. Daniel Majonis, Olga Ornatsky, Dirk Weinrich, and Mitchell A. Winnik . Dual-Purpose Polymer Labels for Fluorescent and Mass Cytometric Affinity Bioassays. Biomacromolecules 2013, 14 (5) , 1503-1513. https://doi.org/10.1021/bm4001662
    79. Taunia L. L. Closson, Chun Feng, Adrienne Halupa, and Mitchell A. Winnik . Kinetics of Two-Stage Dispersion Copolymerization for the Preparation of Lanthanide-Encoded Polystyrene Microparticles. Macromolecules 2013, 46 (7) , 2523-2534. https://doi.org/10.1021/ma400079q
    80. Peng Liu, Amanda J. Boyle, Yijie Lu, Raymond M. Reilly, and Mitchell A. Winnik . Biotinylated Polyacrylamide-Based Metal-Chelating Polymers and Their Influence on Antigen Recognition Following Conjugation to a Trastuzumab Fab Fragment. Biomacromolecules 2012, 13 (9) , 2831-2842. https://doi.org/10.1021/bm300843u
    81. Nicolas Illy, Daniel Majonis, Isaac Herrera, Olga Ornatsky, and Mitchell A. Winnik . Metal-Chelating Polymers by Anionic Ring-Opening Polymerization and Their Use in Quantitative Mass Cytometry. Biomacromolecules 2012, 13 (8) , 2359-2369. https://doi.org/10.1021/bm300613x
    82. Rui Liu, Yi Lv, Xiandeng Hou, Lu Yang, and Zoltan Mester . Protein Quantitation Using Ru-NHS Ester Tagging and Isotope Dilution High-Pressure Liquid Chromatography–Inductively Coupled Plasma Mass Spectrometry Determination. Analytical Chemistry 2012, 84 (6) , 2769-2775. https://doi.org/10.1021/ac203141d
    83. Daniel Majonis, Olga Ornatsky, Robert Kinach, and Mitchell A. Winnik . Curious Results with Palladium- and Platinum-Carrying Polymers in Mass Cytometry Bioassays and an Unexpected Application as a Dead Cell Stain. Biomacromolecules 2011, 12 (11) , 3997-4010. https://doi.org/10.1021/bm201011t
    84. Charlotte Giesen, Thomas Mairinger, Lina Khoury, Larissa Waentig, Norbert Jakubowski, and Ulrich Panne . Multiplexed Immunohistochemical Detection of Tumor Markers in Breast Cancer Tissue Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry 2011, 83 (21) , 8177-8183. https://doi.org/10.1021/ac2016823
    85. Ahmed I. Abdelrahman, Stuart C. Thickett, Yi Liang, Olga Ornatsky, Vladimir Baranov, and Mitchell A. Winnik . Surface Functionalization Methods To Enhance Bioconjugation in Metal-Labeled Polystyrene Particles. Macromolecules 2011, 44 (12) , 4801-4813. https://doi.org/10.1021/ma200582q
    86. Yuqing Lin, Raphaël Trouillon, Gulnara Safina, and Andrew G. Ewing . Chemical Analysis of Single Cells. Analytical Chemistry 2011, 83 (12) , 4369-4392. https://doi.org/10.1021/ac2009838
    87. Wanjuan Lin, Xiaomei Ma, Jieshu Qian, Ahmed I. Abdelrahman, Adrienne Halupa, Vladimir Baranov, Andrij Pich, and Mitchell A. Winnik . Synthesis and Mass Cytometric Analysis of Lanthanide-Encoded Polyelectrolyte Microgels. Langmuir 2011, 27 (11) , 7265-7275. https://doi.org/10.1021/la201013v
    88. Rui Liu, Xing Liu, Yurong Tang, Li Wu, Xiandeng Hou, and Yi Lv . Highly Sensitive Immunoassay Based on Immunogold−Silver Amplification and Inductively Coupled Plasma Mass Spectrometric Detection. Analytical Chemistry 2011, 83 (6) , 2330-2336. https://doi.org/10.1021/ac103265z
    89. Daniel Majonis, Isaac Herrera, Olga Ornatsky, Maren Schulze, Xudong Lou, Mohsen Soleimani, Mark Nitz, and Mitchell A. Winnik. Synthesis of a Functional Metal-Chelating Polymer and Steps toward Quantitative Mass Cytometry Bioassays. Analytical Chemistry 2010, 82 (21) , 8961-8969. https://doi.org/10.1021/ac101901x
    90. Paul D. Schumacher, Nicholas A. Woods, James O. Schenk and Sue B. Clark. Preconcentration of Trivalent Lanthanide Elements on a Mercury Film from Aqueous Solution Using Rotating Disk Electrode Voltammetry. Analytical Chemistry 2010, 82 (13) , 5663-5668. https://doi.org/10.1021/ac101180w
    91. Nicolas H. Bings, Annemie Bogaerts and José A. C. Broekaert . Atomic Spectroscopy: A Review. Analytical Chemistry 2010, 82 (12) , 4653-4681. https://doi.org/10.1021/ac1010469
    92. Feng Li, Qiang Zhao, Chuan Wang, Xiufen Lu, Xing-Fang Li and X. Chris Le . Detection of Escherichia coli O157:H7 Using Gold Nanoparticle Labeling and Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry 2010, 82 (8) , 3399-3403. https://doi.org/10.1021/ac100325f
    93. Ahmed I. Abdelrahman, Sheng Dai, Stuart C. Thickett, Olga Ornatsky, Dmitry Bandura, Vladimir Baranov and Mitchell A. Winnik. Lanthanide-Containing Polymer Microspheres by Multiple-Stage Dispersion Polymerization for Highly Multiplexed Bioassays. Journal of the American Chemical Society 2009, 131 (42) , 15276-15283. https://doi.org/10.1021/ja9052009
    94. Nathalie Acevedo, Kevin Llinás-Caballero. Mass Cytometry in Food Allergy Research. 2024, 207-219. https://doi.org/10.1007/978-1-0716-3453-0_13
    95. Chengchao Zhang, Zili Huang, Ziyan Li, Jianyu Hu, Rui Liu, Yi Lv. CRISPR-associated “genetic scissors” for multiplexing analysis. TrAC Trends in Analytical Chemistry 2024, 170 , 117431. https://doi.org/10.1016/j.trac.2023.117431
    96. Federica Danzi, Raffaella Pacchiana, Andrea Mafficini, Maria T. Scupoli, Aldo Scarpa, Massimo Donadelli, Alessandra Fiore. To metabolomics and beyond: a technological portfolio to investigate cancer metabolism. Signal Transduction and Targeted Therapy 2023, 8 (1) https://doi.org/10.1038/s41392-023-01380-0
    97. M. Shahid Mansuri, Kenneth Williams, Angus C. Nairn. Uncovering biology by single-cell proteomics. Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-04635-2
    98. Thibaut Van Acker, Sarah Theiner, Eduardo Bolea-Fernandez, Frank Vanhaecke, Gunda Koellensperger. Inductively coupled plasma mass spectrometry. Nature Reviews Methods Primers 2023, 3 (1) https://doi.org/10.1038/s43586-023-00235-w
    99. Lu Tang, Zhong-Pei Huang, Heng Mei, Yu Hu. Insights gained from single-cell analysis of chimeric antigen receptor T-cell immunotherapy in cancer. Military Medical Research 2023, 10 (1) https://doi.org/10.1186/s40779-023-00486-4
    100. Yuqiu Yang, Kaiwen Wang, Zeyu Lu, Tao Wang, Xinlei Wang. Cytomulate: accurate and efficient simulation of CyTOF data. Genome Biology 2023, 24 (1) https://doi.org/10.1186/s13059-023-03099-1
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect