Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVAccelerated ArticleNEXT

Molecular Imaging of Biological Samples:  Localization of Peptides and Proteins Using MALDI-TOF MS

View Author Information
Department of Biochemistry and Molecular Biology and Analytical Chemistry Center, University of Texas Medical School, 6431 Fannin Street, Houston, Texas 77030
Cite this: Anal. Chem. 1997, 69, 23, 4751–4760
Publication Date (Web):December 1, 1997
https://doi.org/10.1021/ac970888i
Copyright © 1997 American Chemical Society

    Article Views

    17243

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been used to generate ion images of samples in one or more mass-to-charge (m/z) values, providing the capability of mapping specific molecules to two-dimensional coordinates of the original sample. The high sensitivity of the technique (low-femtomole to attomole levels for proteins and peptides) allows the study of organized biochemical processes occurring in, for example, mammalian tissue sections. The mass spectrometer is used to determine the molecular weights of the molecules in the surface layers of the tissue. Molecules desorbed from the sample typically are singly protonated, giving an ion at (M + H)+, where M is the molecular mass. The procedure involves coating the tissue section, or a blotted imprint of the section, with a thin layer of energy-absorbing matrix and then analyzing the sample to produce an ordered array of mass spectra, each containing nominal m/z values typically covering a range of over 50 000 Da. Images can be displayed in individual m/z values as a selected ion image, which would localize individual compounds in the tissue, or as summed ion images. MALDI ion images of tissue sections can be obtained directly from tissue slices following preparative steps, and this is demonstrated for the mapping of insulin contained in an islet in a section of rat pancreas, hormone peptides in a small area of a section of rat pituitary, and a small protein bound to the membrane of human mucosa cells. Alternatively, imprints of the tissue can be analyzed by blotting the tissue sections on specially prepared targets containing an adsorbent material, e.g., C-18 coated resin beads. Peptides and small proteins bind to the C-18 and create a positive imprint of the tissue which can then be imaged by the mass spectrometer. This is demonstrated for the MALDI ion image analysis of regions of rat splenic pancreas and for an area of rat pituitary traversing the anterior, intermediate, and posterior regions where localized peptides were mapped. In a single spectrum from the anterior/intermediate lobe of a rat pituitary print, over 50 ions corresponding to the peptides present in this tissue were observed as well as precursors, isoforms, and metabolic frag ments.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Abstract published in Advance ACS Abstracts, November 1, 1997.

    Cited By

    This article is cited by 1765 publications.

    1. Dheeraj K. Agrohia, Ritabrita Goswami, Teerapong Jantarat, Yağız Anil Çiçek, Korndanai Thongsukh, Taewon Jeon, Jonathan M. Bell, Vincent M. Rotello, Richard W. Vachet. Suborgan Level Quantitation of Proteins in Tissues Delivered by Polymeric Nanocarriers. ACS Nano 2024, Article ASAP.
    2. Alexander Denker, Jens Behrmann, Tobias Boskamp. Improved Mass Calibration in MALDI MSI Using Neural Network-Based Recalibration. Analytical Chemistry 2024, 96 (19) , 7542-7549. https://doi.org/10.1021/acs.analchem.4c00304
    3. Dustin R. Klein, Emilio S. Rivera, Richard M. Caprioli, Jeffrey M. Spraggins. Imaging Mass Spectrometry of Isotopically Resolved Intact Proteins on a Trapped Ion-Mobility Quadrupole Time-of-Flight Mass Spectrometer. Analytical Chemistry 2024, 96 (13) , 5065-5070. https://doi.org/10.1021/acs.analchem.3c05252
    4. Yan-Xia Zhang, Yi-Da Zhang, Yan-Ping Shi. Novel Small Molecule Matrix Screening for Simultaneous MALDI Mass Spectrometry Imaging of Multiple Lipids and Phytohormones. Journal of Agricultural and Food Chemistry 2024, 72 (12) , 6762-6771. https://doi.org/10.1021/acs.jafc.4c00309
    5. Emily R. Sekera, Kubra B. Akkaya-Colak, Arbil Lopez, Maria M. Mihaylova, Amanda B. Hummon. Mass Spectrometry Imaging and Histology for the Analysis of Budding Intestinal Organoids. Analytical Chemistry 2024, 96 (10) , 4251-4258. https://doi.org/10.1021/acs.analchem.3c05725
    6. Tassiani Sarretto, Wil Gardner, Daniel Brungs, Sarbar Napaki, Paul J. Pigram, Shane R. Ellis. A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging. Journal of the American Society for Mass Spectrometry 2024, 35 (3) , 466-475. https://doi.org/10.1021/jasms.3c00357
    7. Yueguang Lv, Shuxiong Yan, Ka Deng, Zhiyu Chen, Zhiyi Yang, Fang Li, Qian Luo. Unlocking the Molecular Variations of a Micron-Scale Amyloid Plaque in an Early Stage Alzheimer’s Disease by a Cellular-Resolution Mass Spectrometry Imaging Platform. ACS Chemical Neuroscience 2024, 15 (2) , 337-345. https://doi.org/10.1021/acschemneuro.3c00660
    8. Andrej Grgic, Konstantin O. Nagornov, Anton N. Kozhinov, Jesse A. Michael, Ian G.M. Anthony, Yury O. Tsybin, Ron M.A. Heeren, Shane R. Ellis. Ultrahigh-Mass Resolution Mass Spectrometry Imaging with an Orbitrap Externally Coupled to a High-Performance Data Acquisition System. Analytical Chemistry 2024, 96 (2) , 794-801. https://doi.org/10.1021/acs.analchem.3c04146
    9. Marceau Levasseur, Edith Nicol, Nicolas Elie, Emeline Houël, Véronique Eparvier, David Touboul. Spatialized Metabolomic Annotation Combining MALDI Imaging and Molecular Networks. Analytical Chemistry 2024, 96 (1) , 18-22. https://doi.org/10.1021/acs.analchem.3c03482
    10. Yuhao Han, Xinyan Qu, Haoyuan Geng, Lei Wang, Zihan Zhu, Yaqi Zhang, Xiaoqing Cui, Heng Lu, Xiao Wang, Panpan Chen, Quanbo Wang, Chenglong Sun. Isotope-Coded On-Tissue Derivatization for Quantitative Mass Spectrometry Imaging of Short-Chain Fatty Acids in Biological Tissues. Analytical Chemistry 2023, 95 (48) , 17622-17628. https://doi.org/10.1021/acs.analchem.3c03308
    11. Kayle J. Bender, Yongheng Wang, Chuo Ying Zhai, Zoe Saenz, Aijun Wang, Elizabeth K. Neumann. Sample Preparation Method for MALDI Mass Spectrometry Imaging of Fresh-Frozen Spines. Analytical Chemistry 2023, 95 (47) , 17337-17346. https://doi.org/10.1021/acs.analchem.3c03672
    12. Lei Xing, Cong-Lin Zhao, Han-Zhang Mou, JianBin Pan, Bin Kang, Hong-Yuan Chen, Jing-Juan Xu. Next Generation of Mass Spectrometry Imaging: from Micrometer to Subcellular Resolution. Chemical & Biomedical Imaging 2023, 1 (8) , 670-682. https://doi.org/10.1021/cbmi.3c00061
    13. Jessica L. Moore, Georgia Charkoftaki. A Guide to MALDI Imaging Mass Spectrometry for Tissues. Journal of Proteome Research 2023, 22 (11) , 3401-3417. https://doi.org/10.1021/acs.jproteome.3c00167
    14. Jonathan T. Specker, Boone M. Prentice. Separation of Isobaric Lipids in Imaging Mass Spectrometry Using Gas-Phase Charge Inversion Ion/Ion Reactions. Journal of the American Society for Mass Spectrometry 2023, 34 (9) , 1868-1878. https://doi.org/10.1021/jasms.3c00081
    15. Johan Lillja, Kyle D. Duncan, Ingela Lanekoff. Ion-to-Image, i2i, a Mass Spectrometry Imaging Data Analysis Platform for Continuous Ionization Techniques. Analytical Chemistry 2023, 95 (31) , 11589-11595. https://doi.org/10.1021/acs.analchem.3c01615
    16. Sylwia A. Stopka, Daniela Ruiz, Gerard Baquer, Clément Bodineau, Md Amin Hossain, Valentina T. Pellens, Michael S. Regan, Olivier Pourquié, Marcia C. Haigis, Wenya L. Bi, Shannon M. Coy, Sandro Santagata, Nathalie Y. R. Agar, Sankha S. Basu. Chemical QuantArray: A Quantitative Tool for Mass Spectrometry Imaging. Analytical Chemistry 2023, 95 (30) , 11243-11253. https://doi.org/10.1021/acs.analchem.3c00803
    17. Allison B. Esselman, Nathan Heath Patterson, Lukasz G. Migas, Martin Dufresne, Katerina V. Djambazova, Madeline E. Colley, Raf Van de Plas, Jeffrey M. Spraggins. Microscopy-Directed Imaging Mass Spectrometry for Rapid High Spatial Resolution Molecular Imaging of Glomeruli. Journal of the American Society for Mass Spectrometry 2023, 34 (7) , 1305-1314. https://doi.org/10.1021/jasms.3c00033
    18. Md. Al Mamun, Md. Muedur Rahman, Takumi Sakamoto, Ariful Islam, Soho Oyama, Md. Mahamodun Nabi, Tomohito Sato, Tomoaki Kahyo, Yutaka Takahashi, Mitsutoshi Setou. Detection of Distinct Distributions of Acetaminophen and Acetaminophen-Cysteine in Kidneys up to 10 μm Resolution and Identification of a Novel Acetaminophen Metabolite Using an AP-MALDI Imaging Mass Microscope. Journal of the American Society for Mass Spectrometry 2023, 34 (7) , 1491-1500. https://doi.org/10.1021/jasms.3c00149
    19. Yijia Wang, Amanda B. Hummon. Quantification of Irinotecan in Single Spheroids Using Internal Standards by MALDI Mass Spectrometry Imaging. Analytical Chemistry 2023, 95 (24) , 9227-9236. https://doi.org/10.1021/acs.analchem.3c00699
    20. Kavya Sharman, Nathan Heath Patterson, Andy Weiss, Elizabeth K. Neumann, Emma R. Guiberson, Daniel J. Ryan, Danielle B. Gutierrez, Jeffrey M. Spraggins, Raf Van de Plas, Eric P. Skaar, Richard M. Caprioli. Rapid Multivariate Analysis Approach to Explore Differential Spatial Protein Profiles in Tissue. Journal of Proteome Research 2023, 22 (5) , 1394-1405. https://doi.org/10.1021/acs.jproteome.2c00206
    21. Kavya Sharman, Nathan Heath Patterson, Lukasz G. Migas, Elizabeth K. Neumann, Jamie Allen, Katherine N. Gibson-Corley, Jeffrey M. Spraggins, Raf Van de Plas, Eric P. Skaar, Richard M. Caprioli. MALDI IMS-Derived Molecular Contour Maps: Augmenting Histology Whole-Slide Images. Journal of the American Society for Mass Spectrometry 2023, 34 (5) , 905-912. https://doi.org/10.1021/jasms.2c00370
    22. Xiaowei Song, Qingce Zang, Jin Zhang, Shanshan Gao, Kailu Zheng, Yan Li, Zeper Abliz, Jiuming He. Metabolic Perturbation Score-Based Mass Spectrometry Imaging Spatially Resolves a Functional Metabolic Response. Analytical Chemistry 2023, 95 (17) , 6775-6784. https://doi.org/10.1021/acs.analchem.2c01723
    23. Raquel L. Shortt, Yijia Wang, Amanda B. Hummon, Lisa M. Jones. Development of Spheroid-FPOP: An In-Cell Protein Footprinting Method for 3D Tumor Spheroids. Journal of the American Society for Mass Spectrometry 2023, 34 (3) , 417-425. https://doi.org/10.1021/jasms.2c00307
    24. Katerina V. Djambazova, Martin Dufresne, Lukasz G. Migas, Angela R. S. Kruse, Raf Van de Plas, Richard M. Caprioli, Jeffrey M. Spraggins. MALDI TIMS IMS of Disialoganglioside Isomers─GD1a and GD1b in Murine Brain Tissue. Analytical Chemistry 2023, 95 (2) , 1176-1183. https://doi.org/10.1021/acs.analchem.2c03939
    25. Benjamin-Florian Hempel, Maik Damm, Daniel Petras, Taline D. Kazandjian, Claudia A. Szentiks, Guido Fritsch, Grit Nebrich, Nicholas R. Casewell, Oliver Klein, Roderich D. Süssmuth. Spatial Venomics─Cobra Venom System Reveals Spatial Differentiation of Snake Toxins by Mass Spectrometry Imaging. Journal of Proteome Research 2023, 22 (1) , 26-35. https://doi.org/10.1021/acs.jproteome.2c00424
    26. Aleksandra Antevska, Connor C. Long, Samuel D. Dupuy, J. Jason Collier, Michael D. Karlstad, Thanh D. Do. Mouse Pancreatic Peptide Hormones Probed at the Sub-Single-Islet Level: The Effects of Acute Corticosterone Treatment. Journal of Proteome Research 2023, 22 (1) , 235-245. https://doi.org/10.1021/acs.jproteome.2c00668
    27. Hang Hu, David Helminiak, Manxi Yang, Daisy Unsihuay, Ryan T. Hilger, Dong Hye Ye, Julia Laskin. High-Throughput Mass Spectrometry Imaging with Dynamic Sparse Sampling. ACS Measurement Science Au 2022, 2 (5) , 466-474. https://doi.org/10.1021/acsmeasuresciau.2c00031
    28. Annick Menetrey, Raphael Legouffe, Amina Haouala, David Bonnel, Elisabeth Rouits, Jacques Bosq, Jonathan Stauber. Tumor Distribution by Quantitative Mass Spectrometry Imaging of the Inhibitor of Apoptosis Protein Antagonist Xevinapant in Patients with Resectable Squamous Cell Carcinoma of the Head and Neck (EudraCT Number: 2014-004655-31). Analytical Chemistry 2022, 94 (36) , 12333-12341. https://doi.org/10.1021/acs.analchem.2c00943
    29. Dawei Dong, Yafei Xiao, Minghua Zhang, Peixin Gong, Yingqing Ye, Shuhua Peng, Ke Wang, Minmin Fan. Solid-Phase Synthesis of Polysaccharides from Unprotected Glucose Catalyzed by Hβ Zeolites. ACS Sustainable Chemistry & Engineering 2022, 10 (30) , 9707-9718. https://doi.org/10.1021/acssuschemeng.1c08583
    30. Emma R. Guiberson, Christopher J. Good, Aaron G. Wexler, Eric P. Skaar, Jeffrey M. Spraggins, Richard M. Caprioli. Multimodal Imaging Mass Spectrometry of Murine Gastrointestinal Tract with Retained Luminal Content. Journal of the American Society for Mass Spectrometry 2022, 33 (6) , 1073-1076. https://doi.org/10.1021/jasms.1c00360
    31. Rory A. H. McEwen, Matthias Hermann, Haidy Metwally, Katherine Donovan, Chang Liu, J. C. Yves Le Blanc, Thomas R. Covey, Richard Oleschuk. Discontinuously Dewetting Solvent Arrays: Droplet Formation and Poly-Synchronous Surface Extraction for Mass Spectrometry Imaging Applications. Analytical Chemistry 2022, 94 (20) , 7219-7228. https://doi.org/10.1021/acs.analchem.2c00161
    32. Adinda Putri Wisman, Eiichiro Fukusaki, Shuichi Shimma. Structure-Based Non-targeted Mass Spectrometry Imaging Analysis of Dried Long Pepper (Piper longum). ACS Food Science & Technology 2022, 2 (5) , 872-877. https://doi.org/10.1021/acsfoodscitech.2c00025
    33. Lingwei Meng, Jing Han, Junyu Chen, Xiao Wang, Xi Huang, Huihui Liu, Zongxiu Nie. Development of an Automatic Ultrasonic Matrix Sprayer for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Analytical Chemistry 2022, 94 (17) , 6457-6462. https://doi.org/10.1021/acs.analchem.2c00403
    34. Luke T. Richardson, Elizabeth K. Neumann, Richard M. Caprioli, Jeffrey M. Spraggins, Touradj Solouki. Referenced Kendrick Mass Defect Annotation and Class-Based Filtering of Imaging MS Lipidomics Experiments. Analytical Chemistry 2022, 94 (14) , 5504-5513. https://doi.org/10.1021/acs.analchem.1c03715
    35. Oliver J. Hale, James W. Hughes, Emma K. Sisley, Helen J. Cooper. Native Ambient Mass Spectrometry Enables Analysis of Intact Endogenous Protein Assemblies up to 145 kDa Directly from Tissue. Analytical Chemistry 2022, 94 (14) , 5608-5614. https://doi.org/10.1021/acs.analchem.1c05353
    36. Yarixa L. Cintron-Diaz, Mario E. Gomez-Hernandez, Marthe M. H. A. Verhaert, Peter D. E. M. Verhaert, Francisco Fernandez-Lima. Spatially Resolved Neuropeptide Characterization from Neuropathological Formalin-Fixed, Paraffin-Embedded Tissue Sections by a Combination of Imaging MALDI FT-ICR Mass Spectrometry Histochemistry and Liquid Extraction Surface Analysis-Trapped Ion Mobility Spectrometry-Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2022, 33 (4) , 681-687. https://doi.org/10.1021/jasms.1c00376
    37. Crystal L. Pace, Jared Simmons, Ryan T. Kelly, David C. Muddiman. Multimodal Mass Spectrometry Imaging of Rat Brain Using IR-MALDESI and NanoPOTS-LC-MS/MS. Journal of Proteome Research 2022, 21 (3) , 713-720. https://doi.org/10.1021/acs.jproteome.1c00641
    38. Brett R. Hamilton, Weili Chan, Karen L. Cheney, Robert K. P. Sullivan, Matthias Floetenmeyer, Mary J. Garson, Roger Wepf. Cryo-ultramicrotomy and Mass Spectrometry Imaging Analysis of Nudibranch Microstructures. Journal of the American Society for Mass Spectrometry 2022, 33 (3) , 592-597. https://doi.org/10.1021/jasms.1c00254
    39. Christopher J. Good, Elizabeth K. Neumann, Casey E. Butrico, James E. Cassat, Richard M. Caprioli, Jeffrey M. Spraggins. High Spatial Resolution MALDI Imaging Mass Spectrometry of Fresh-Frozen Bone. Analytical Chemistry 2022, 94 (7) , 3165-3172. https://doi.org/10.1021/acs.analchem.1c04604
    40. Yuri Yamada, Masakazu Murase, Kenichi Yatsugi, Norihiro Mizoshita. Laser Desorption/Ionization Mass Spectrometry Using TiO2 Nanopillar Array Substrates with Tunable Surface Roughness and Wettability. ACS Applied Nano Materials 2021, 4 (12) , 13884-13895. https://doi.org/10.1021/acsanm.1c03222
    41. Caitlin Tressler, Sloane Tilley, Ethan Yang, Christopher Donohue, Eric Barton, Alain Creissen, Kristine Glunde. Factorial Design to Optimize Matrix Spraying Parameters for MALDI Mass Spectrometry Imaging. Journal of the American Society for Mass Spectrometry 2021, 32 (12) , 2728-2737. https://doi.org/10.1021/jasms.1c00081
    42. Philip A. Doble, Raquel Gonzalez de Vega, David P. Bishop, Dominic J. Hare, David Clases. Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry Imaging in Biology. Chemical Reviews 2021, 121 (19) , 11769-11822. https://doi.org/10.1021/acs.chemrev.0c01219
    43. Jarod A. Fincher, Katerina V. Djambazova, Dustin R. Klein, Martin Dufresne, Lukasz G. Migas, Raf Van de Plas, Richard M. Caprioli, Jeffrey M. Spraggins. Molecular Mapping of Neutral Lipids Using Silicon Nanopost Arrays and TIMS Imaging Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2021, 32 (10) , 2519-2527. https://doi.org/10.1021/jasms.1c00159
    44. Josiah C. McMillen, Danielle B. Gutierrez, Audra M. Judd, Jeffrey M. Spraggins, Richard M. Caprioli. Enhancement of Tryptic Peptide Signals from Tissue Sections Using MALDI IMS Postionization (MALDI-2). Journal of the American Society for Mass Spectrometry 2021, 32 (10) , 2583-2591. https://doi.org/10.1021/jasms.1c00213
    45. Mira Merdas, Mélanie Lagarrigue, Thierry Umbdenstock, Antoine Lhumeau, Françoise Dartiguelongue, Quentin Vanbellingen, Georges Da Violante, Charles Pineau. Study of the Distribution of Acetaminophen and Its Metabolites in Rats, from the Whole-Body to Isolated Organ Levels, by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging after On-Tissue Chemical Derivatization. Analytical Chemistry 2021, 93 (39) , 13242-13250. https://doi.org/10.1021/acs.analchem.1c02487
    46. Martin Dufresne, Jarod A. Fincher, Nathan Heath Patterson, Kevin L. Schey, Jeremy L. Norris, Richard M. Caprioli, Jeffrey M. Spraggins. α-Cyano-4-hydroxycinnamic Acid and Tri-Potassium Citrate Salt Pre-Coated Silicon Nanopost Array Provides Enhanced Lipid Detection for High Spatial Resolution MALDI Imaging Mass Spectrometry. Analytical Chemistry 2021, 93 (36) , 12243-12249. https://doi.org/10.1021/acs.analchem.1c01560
    47. Tobias Boskamp, Rita Casadonte, Lena Hauberg-Lotte, Sören Deininger, Jörg Kriegsmann, Peter Maass. Cross-Normalization of MALDI Mass Spectrometry Imaging Data Improves Site-to-Site Reproducibility. Analytical Chemistry 2021, 93 (30) , 10584-10592. https://doi.org/10.1021/acs.analchem.1c01792
    48. Emi Takeo, Yuki Sugiura, Yuichiro Ohnishi, Haruhiko Kishima, Eiichiro Fukusaki, Shuichi Shimma. Mass Spectrometric Enzyme Histochemistry for Choline Acetyltransferase Reveals De Novo Acetylcholine Synthesis in Rodent Brain and Spinal Cord. ACS Chemical Neuroscience 2021, 12 (12) , 2079-2087. https://doi.org/10.1021/acschemneuro.0c00720
    49. Julia R. Bonney, Boone M. Prentice. Perspective on Emerging Mass Spectrometry Technologies for Comprehensive Lipid Structural Elucidation. Analytical Chemistry 2021, 93 (16) , 6311-6322. https://doi.org/10.1021/acs.analchem.1c00061
    50. Gargey Yagnik, Ziying Liu, Kenneth J. Rothschild, Mark J. Lim. Highly Multiplexed Immunohistochemical MALDI-MS Imaging of Biomarkers in Tissues. Journal of the American Society for Mass Spectrometry 2021, 32 (4) , 977-988. https://doi.org/10.1021/jasms.0c00473
    51. Lei Guo, Zhenxing Hu, Chao Zhao, Xiangnan Xu, Shujuan Wang, Jingjing Xu, Jiyang Dong, Zongwei Cai. Data Filtering and Its Prioritization in Pipelines for Spatial Segmentation of Mass Spectrometry Imaging. Analytical Chemistry 2021, 93 (11) , 4788-4793. https://doi.org/10.1021/acs.analchem.0c05242
    52. Roberto Angelini, Eylan Yutuc, Mark F. Wyatt, Jillian Newton, Fowzi A. Yusuf, Lauren Griffiths, Benjamin J. Cooze, Dana El Assad, Gilles Frache, Wei Rao, Luke B. Allen, Zeljka Korade, Thu T. A. Nguyen, Rathnayake A. C. Rathnayake, Stephanie M. Cologna, Owain W. Howell, Malcolm R. Clench, Yuqin Wang, William J. Griffiths. Visualizing Cholesterol in the Brain by On-Tissue Derivatization and Quantitative Mass Spectrometry Imaging. Analytical Chemistry 2021, 93 (11) , 4932-4943. https://doi.org/10.1021/acs.analchem.0c05399
    53. Oliver J. Hale, Helen J. Cooper. Native Mass Spectrometry Imaging of Proteins and Protein Complexes by Nano-DESI. Analytical Chemistry 2021, 93 (10) , 4619-4627. https://doi.org/10.1021/acs.analchem.0c05277
    54. Raphaël La Rocca, Christopher Kune, Mathieu Tiquet, Lachlan Stuart, Gauthier Eppe, Theodore Alexandrov, Edwin De Pauw, Loïc Quinton. Adaptive Pixel Mass Recalibration for Mass Spectrometry Imaging Based on Locally Endogenous Biological Signals. Analytical Chemistry 2021, 93 (8) , 4066-4074. https://doi.org/10.1021/acs.analchem.0c05071
    55. Anastasia Sarycheva, Anton Grigoryev, Dmitry Sidorchuk, Gleb Vladimirov, Philipp Khaitovich, Olga Efimova, Olga Gavrilenko, Elena Stekolshchikova, Evgeny N. Nikolaev, Yury Kostyukevich. Structure-Preserving and Perceptually Consistent Approach for Visualization of Mass Spectrometry Imaging Datasets. Analytical Chemistry 2021, 93 (3) , 1677-1685. https://doi.org/10.1021/acs.analchem.0c04256
    56. James E. Keener, Guozhi Zhang, Michael T. Marty. Native Mass Spectrometry of Membrane Proteins. Analytical Chemistry 2021, 93 (1) , 583-597. https://doi.org/10.1021/acs.analchem.0c04342
    57. Michael Tuck, Landry Blanc, Rita Touti, Nathan Heath Patterson, Sebastiaan Van Nuffel, Sandrine Villette, Jean-Christophe Taveau, Andreas Römpp, Alain Brunelle, Sophie Lecomte, Nicolas Desbenoit. Multimodal Imaging Based on Vibrational Spectroscopies and Mass Spectrometry Imaging Applied to Biological Tissue: A Multiscale and Multiomics Review. Analytical Chemistry 2021, 93 (1) , 445-477. https://doi.org/10.1021/acs.analchem.0c04595
    58. David M. G. Anderson, Jeffrey D. Messinger, Nathan H. Patterson, Emilio S. Rivera, Ankita Kotnala, Jeffrey M. Spraggins, Richard M. Caprioli, Christine A. Curcio, Kevin L. Schey. Lipid Landscape of the Human Retina and Supporting Tissues Revealed by High-Resolution Imaging Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2020, 31 (12) , 2426-2436. https://doi.org/10.1021/jasms.0c00119
    59. Nolan McLaughlin, Tyler M. Bielinski, Caitlin M. Tressler, Eric Barton, Kristine Glunde, Katherine A. Stumpo. Pneumatically Sprayed Gold Nanoparticles for Mass Spectrometry Imaging of Neurotransmitters. Journal of the American Society for Mass Spectrometry 2020, 31 (12) , 2452-2461. https://doi.org/10.1021/jasms.0c00156
    60. Emily R. Sekera, Darpan Saraswat, Kevin J. Zemaitis, Fraser J. Sim, Troy D. Wood. MALDI Mass Spectrometry Imaging in a Primary Demyelination Model of Murine Spinal Cord. Journal of the American Society for Mass Spectrometry 2020, 31 (12) , 2462-2468. https://doi.org/10.1021/jasms.0c00187
    61. Oliver J. Hale, Helen J. Cooper. Native Mass Spectrometry Imaging and In Situ Top-Down Identification of Intact Proteins Directly from Tissue. Journal of the American Society for Mass Spectrometry 2020, 31 (12) , 2531-2537. https://doi.org/10.1021/jasms.0c00226
    62. Elizabeth K. Neumann, Katerina V. Djambazova, Richard M. Caprioli, Jeffrey M. Spraggins. Multimodal Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. Journal of the American Society for Mass Spectrometry 2020, 31 (12) , 2401-2415. https://doi.org/10.1021/jasms.0c00232
    63. Christina Meisenbichler, Florian Kluibenschedl, Thomas Müller. A 3-in-1 Hand-Held Ambient Mass Spectrometry Interface for Identification and 2D Localization of Chemicals on Surfaces. Analytical Chemistry 2020, 92 (21) , 14314-14318. https://doi.org/10.1021/acs.analchem.0c02615
    64. Patrik Källback, Theodosia Vallianatou, Anna Nilsson, Reza Shariatgorji, Nicoletta Schintu, Marcela Pereira, Florian Barré, Henrik Wadensten, Per Svenningsson, Per E. Andrén. Cross-validated Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Quantitation Protocol for a Pharmaceutical Drug and Its Drug-Target Effects in the Brain Using Time-of-Flight and Fourier Transform Ion Cyclotron Resonance Analyzers. Analytical Chemistry 2020, 92 (21) , 14676-14684. https://doi.org/10.1021/acs.analchem.0c03203
    65. Juha-Pekka Hieta, Jaakko Kopra, Heikki Räikkönen, Tiina J. Kauppila, Risto Kostiainen. Sub-100 μm Spatial Resolution Ambient Mass Spectrometry Imaging of Rodent Brain with Laser Ablation Atmospheric Pressure Photoionization (LAAPPI) and Laser Ablation Electrospray Ionization (LAESI). Analytical Chemistry 2020, 92 (20) , 13734-13741. https://doi.org/10.1021/acs.analchem.0c01597
    66. Elizabeth K. Neumann, Lukasz G. Migas, Jamie L. Allen, Richard M. Caprioli, Raf Van de Plas, Jeffrey M. Spraggins. Spatial Metabolomics of the Human Kidney using MALDI Trapped Ion Mobility Imaging Mass Spectrometry. Analytical Chemistry 2020, 92 (19) , 13084-13091. https://doi.org/10.1021/acs.analchem.0c02051
    67. Boone M. Prentice, Daniel J. Ryan, Kerri J. Grove, D. Shannon Cornett, Richard M. Caprioli, Jeffrey M. Spraggins. Dynamic Range Expansion by Gas-Phase Ion Fractionation and Enrichment for Imaging Mass Spectrometry. Analytical Chemistry 2020, 92 (19) , 13092-13100. https://doi.org/10.1021/acs.analchem.0c02121
    68. Katerina V. Djambazova, Dustin R. Klein, Lukasz G. Migas, Elizabeth K. Neumann, Emilio S. Rivera, Raf Van de Plas, Richard M. Caprioli, Jeffrey M. Spraggins. Resolving the Complexity of Spatial Lipidomics Using MALDI TIMS Imaging Mass Spectrometry. Analytical Chemistry 2020, 92 (19) , 13290-13297. https://doi.org/10.1021/acs.analchem.0c02520
    69. Emi Takeo, Eiichiro Fukusaki, Shuichi Shimma. Mass Spectrometric Enzyme Histochemistry Method Developed for Visualizing In Situ Cholinesterase Activity in Mus musculus and Drosophila melanogaster. Analytical Chemistry 2020, 92 (18) , 12379-12386. https://doi.org/10.1021/acs.analchem.0c02106
    70. Matthew Waas, Thomas Kislinger. Addressing Cellular Heterogeneity in Cancer through Precision Proteomics. Journal of Proteome Research 2020, 19 (9) , 3607-3619. https://doi.org/10.1021/acs.jproteome.0c00338
    71. Andreas Dannhorn, Emine Kazanc, Stephanie Ling, Chelsea Nikula, Evdoxia Karali, Maria Paola Serra, Jean-Luc Vorng, Paolo Inglese, Gareth Maglennon, Gregory Hamm, John Swales, Nicole Strittmatter, Simon T. Barry, Owen J. Sansom, George Poulogiannis, Josephine Bunch, Richard JA Goodwin, Zoltan Takats. Universal Sample Preparation Unlocking Multimodal Molecular Tissue Imaging. Analytical Chemistry 2020, 92 (16) , 11080-11088. https://doi.org/10.1021/acs.analchem.0c00826
    72. Sanghwan Park, Sook Yoon, Hyegi Min, Seung Min Moon, Yoon Ji Choi, Il Shin Kim, Ga Hyang Lee, Min Sun Kim, Jungju Seo, Woonggyu Jung, Chang Young Lee. Compartmentalized Arrays of Matrix Droplets for Quantitative Mass Spectrometry Imaging of Adsorbed Peptides. Analytical Chemistry 2020, 92 (13) , 8715-8721. https://doi.org/10.1021/acs.analchem.9b05316
    73. David Hua, Xin Liu, Eden P. Go, Yijia Wang, Amanda B. Hummon, Heather Desaire. How to Apply Supervised Machine Learning Tools to MS Imaging Files: Case Study with Cancer Spheroids Undergoing Treatment with the Monoclonal Antibody Cetuximab. Journal of the American Society for Mass Spectrometry 2020, 31 (7) , 1350-1357. https://doi.org/10.1021/jasms.0c00010
    74. Katsuhiro Shiono, Shu Taira. Imaging of Multiple Plant Hormones in Roots of Rice (Oryza sativa) Using Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry. Journal of Agricultural and Food Chemistry 2020, 68 (24) , 6770-6775. https://doi.org/10.1021/acs.jafc.0c00749
    75. Marissa A. Jones, Sung Hoon Cho, Nathan Heath Patterson, Raf Van de Plas, Jeffrey M. Spraggins, Mark R. Boothby, Richard M. Caprioli. Discovering New Lipidomic Features Using Cell Type Specific Fluorophore Expression to Provide Spatial and Biological Specificity in a Multimodal Workflow with MALDI Imaging Mass Spectrometry. Analytical Chemistry 2020, 92 (10) , 7079-7086. https://doi.org/10.1021/acs.analchem.0c00446
    76. Penghsuan Huang, Chun-Ying Huang, Ta-Chun Lin, Li-En Lin, Ethan Yang, Chuping Lee, Cheng-Chih Hsu, Pi-Tai Chou. Toward the Rational Design of Universal Dual Polarity Matrix for MALDI Mass Spectrometry. Analytical Chemistry 2020, 92 (10) , 7139-7145. https://doi.org/10.1021/acs.analchem.0c00570
    77. Hélène Cazier, Carole Malgorn, Nathalie Fresneau, Dominique Georgin, Antoine Sallustrau, Céline Chollet, Jean-Claude Tabet, Stéphane Campidelli, Mathieu Pinault, Martine Mayne, Frédéric Taran, Vincent Dive, Christophe Junot, François Fenaille, Benoit Colsch. Development of a Mass Spectrometry Imaging Method for Detecting and Mapping Graphene Oxide Nanoparticles in Rodent Tissues. Journal of the American Society for Mass Spectrometry 2020, 31 (5) , 1025-1036. https://doi.org/10.1021/jasms.9b00070
    78. Amanda R. Buchberger, Nhu Q. Vu, Jillian Johnson, Kellen DeLaney, Lingjun Li. A Simple and Effective Sample Preparation Strategy for MALDI-MS Imaging of Neuropeptide Changes in the Crustacean Brain Due to Hypoxia and Hypercapnia Stress. Journal of the American Society for Mass Spectrometry 2020, 31 (5) , 1058-1065. https://doi.org/10.1021/jasms.9b00107
    79. Qian Wu, Stanislav S. Rubakhin, Jonathan V. Sweedler. Quantitative Imprint Mass Spectrometry Imaging of Endogenous Ceramides in Rat Brain Tissue with Kinetic Calibration. Analytical Chemistry 2020, 92 (9) , 6613-6621. https://doi.org/10.1021/acs.analchem.0c00392
    80. Dae Won Moon, Young Ho Park, Sun Young Lee, Heejin Lim, SuHwa Kwak, Minseok S. Kim, Hyunmin Kim, Eunjoo Kim, Yebin Jung, Hyang-Sook Hoe, Sungjee Kim, Dong-Kwon Lim, Chul-Hoon Kim, Su-Il In. Multiplex Protein Imaging with Secondary Ion Mass Spectrometry Using Metal Oxide Nanoparticle-Conjugated Antibodies. ACS Applied Materials & Interfaces 2020, 12 (15) , 18056-18064. https://doi.org/10.1021/acsami.9b21800
    81. Tina Smets, Etienne Waelkens, Bart De Moor. Prioritization of m/z-Values in Mass Spectrometry Imaging Profiles Obtained Using Uniform Manifold Approximation and Projection for Dimensionality Reduction. Analytical Chemistry 2020, 92 (7) , 5240-5248. https://doi.org/10.1021/acs.analchem.9b05764
    82. Joanna Nizioł, Jan Sunner, Iwona Beech, Krzysztof Ossoliński, Anna Ossolińska, Tadeusz Ossoliński, Aneta Płaza, Tomasz Ruman. Localization of Metabolites of Human Kidney Tissue with Infrared Laser-Based Selected Reaction Monitoring Mass Spectrometry Imaging and Silver-109 Nanoparticle-Based Surface Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Analytical Chemistry 2020, 92 (6) , 4251-4258. https://doi.org/10.1021/acs.analchem.9b04580
    83. Dušan Veličković, Guanshi Zhang, Dejan Bezbradica, Arunima Bhattacharjee, Ljiljana Paša-Tolić, Kumar Sharma, Theodore Alexandrov, Christopher R. AndertonKPMP Consortium. Response Surface Methodology As a New Approach for Finding Optimal MALDI Matrix Spraying Parameters for Mass Spectrometry Imaging. Journal of the American Society for Mass Spectrometry 2020, 31 (3) , 508-516. https://doi.org/10.1021/jasms.9b00074
    84. Tongtong Wang, Xiaoling Cheng, Hexin Xu, Yifan Meng, Zhibin Yin, Xiaoping Li, Wei Hang. Perspective on Advances in Laser-Based High-Resolution Mass Spectrometry Imaging. Analytical Chemistry 2020, 92 (1) , 543-553. https://doi.org/10.1021/acs.analchem.9b04067
    85. Tobias Boskamp, Delf Lachmund, Rita Casadonte, Lena Hauberg-Lotte, Jan Hendrik Kobarg, Jörg Kriegsmann, Peter Maass. Using the Chemical Noise Background in MALDI Mass Spectrometry Imaging for Mass Alignment and Calibration. Analytical Chemistry 2020, 92 (1) , 1301-1308. https://doi.org/10.1021/acs.analchem.9b04473
    86. Holly-May Lewis, Roger P. Webb, Guido F. Verbeck, Josephine Bunch, Janella de Jesus, Catia Costa, Vladimir Palitsin, John Swales, Richard J. A. Goodwin, Patrick Sears, Melanie J. Bailey. Nanoextraction Coupled to Liquid Chromatography Mass Spectrometry Delivers Improved Spatially Resolved Analysis. Analytical Chemistry 2019, 91 (24) , 15411-15417. https://doi.org/10.1021/acs.analchem.9b02821
    87. Mark R. Condina, Parul Mittal, Matthew T. Briggs, Martin K. Oehler, Manuela Klingler-Hoffmann, Peter Hoffmann. Egg White as a Quality Control in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI). Analytical Chemistry 2019, 91 (23) , 14846-14853. https://doi.org/10.1021/acs.analchem.9b03091
    88. Jeffrey M. Spraggins, Katerina V. Djambazova, Emilio S. Rivera, Lukasz G. Migas, Elizabeth K. Neumann, Arne Fuetterer, Juergen Suetering, Niels Goedecke, Alice Ly, Raf Van de Plas, Richard M. Caprioli. High-Performance Molecular Imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) Mass Spectrometry. Analytical Chemistry 2019, 91 (22) , 14552-14560. https://doi.org/10.1021/acs.analchem.9b03612
    89. Yury Kostyukevich, Gleb Vladimirov, Elena Stekolschikova, Daniil Ivanov, Arthur Yablokov, Alexander Zherebker, Sergey Sosnin, Alexey Orlov, Maxim Fedorov, Philipp Khaitovich, Evgeny Nikolaev. Hydrogen/Deuterium Exchange Aiding Compound Identification for LC-MS and MALDI Imaging Lipidomics. Analytical Chemistry 2019, 91 (21) , 13465-13474. https://doi.org/10.1021/acs.analchem.9b02461
    90. Patrick M. Wehrli, Wojciech Michno, Kaj Blennow, Henrik Zetterberg, Jörg Hanrieder. Chemometric Strategies for Sensitive Annotation and Validation of Anatomical Regions of Interest in Complex Imaging Mass Spectrometry Data. Journal of the American Society for Mass Spectrometry 2019, 30 (11) , 2278-2288. https://doi.org/10.1007/s13361-019-02327-y
    91. Martin Dufresne, Nathan Heath Patterson, Jeremy Lynn Norris, Richard Micheal Caprioli. Combining Salt Doping and Matrix Sublimation for High Spatial Resolution MALDI Imaging Mass Spectrometry of Neutral Lipids. Analytical Chemistry 2019, 91 (20) , 12928-12934. https://doi.org/10.1021/acs.analchem.9b02974
    92. Ting-Hao Kuo, Min-Shan Kuei, Yi Hsiao, Hsin-Hsiang Chung, Cheng-Chih Hsu, Hong-Jhang Chen. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Typings of Edible Oils through Spectral Networking of Triacylglycerol Fingerprints. ACS Omega 2019, 4 (13) , 15734-15741. https://doi.org/10.1021/acsomega.9b02433
    93. Tomomi Morikawa-Ichinose, Yoshinori Fujimura, Fusa Murayama, Yuzo Yamazaki, Takushi Yamamoto, Hiroyuki Wariishi, Daisuke Miura. Improvement of Sensitivity and Reproducibility for Imaging of Endogenous Metabolites by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2019, 30 (8) , 1512-1520. https://doi.org/10.1007/s13361-019-02221-7
    94. Chunxue Yang, Hin Kiu Lee, Yanhao Zhang, Li-Long Jiang, Zhi-Feng Chen, Arthur Chi Kong Chung, Zongwei Cai. In Situ Detection and Imaging of PFOS in Mouse Kidney by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry. Analytical Chemistry 2019, 91 (14) , 8783-8788. https://doi.org/10.1021/acs.analchem.9b00711
    95. Qi Li, Fei Tang, Xinming Huo, Xi Huang, Yan Zhang, Xiaohao Wang, Xinrong Zhang. Native State Single-Cell Printing System and Analysis for Matrix Effects. Analytical Chemistry 2019, 91 (13) , 8115-8122. https://doi.org/10.1021/acs.analchem.9b00344
    96. Jiaquan Xu, Dacai Zhong, Konstantin Chingin, Lili Song, Huanwen Chen. Chemical Profiling of Bulk Alloys Using Micro-Electrochemical Probe Mass Spectrometry. Analytical Chemistry 2019, 91 (13) , 8304-8309. https://doi.org/10.1021/acs.analchem.9b01056
    97. Daniel J. Ryan, Nathan Heath Patterson, Nicole E. Putnam, Aimee D. Wilde, Andy Weiss, William J. Perry, James E. Cassat, Eric P. Skaar, Richard M. Caprioli, Jeffrey M. Spraggins. MicroLESA: Integrating Autofluorescence Microscopy, In Situ Micro-Digestions, and Liquid Extraction Surface Analysis for High Spatial Resolution Targeted Proteomic Studies. Analytical Chemistry 2019, 91 (12) , 7578-7585. https://doi.org/10.1021/acs.analchem.8b05889
    98. Sankha S. Basu, Madison H. McMinn, Begoña Giménez-Cassina Lopéz, Michael S. Regan, Elizabeth C. Randall, Amanda R. Clark, Christopher R. Cox, Nathalie Y. R. Agar. Metal Oxide Laser Ionization Mass Spectrometry Imaging (MOLI MSI) Using Cerium(IV) Oxide. Analytical Chemistry 2019, 91 (10) , 6800-6807. https://doi.org/10.1021/acs.analchem.9b00894
    99. Tina Smets, Nico Verbeeck, Marc Claesen, Arndt Asperger, Gerard Griffioen, Thomas Tousseyn, Wim Waelput, Etienne Waelkens, Bart De Moor. Evaluation of Distance Metrics and Spatial Autocorrelation in Uniform Manifold Approximation and Projection Applied to Mass Spectrometry Imaging Data. Analytical Chemistry 2019, 91 (9) , 5706-5714. https://doi.org/10.1021/acs.analchem.8b05827
    100. Walid M. Abdelmoula, Michael S. Regan, Begona G. C. Lopez, Elizabeth C. Randall, Sean Lawler, Ann C. Mladek, Michal O. Nowicki, Bianca M. Marin, Jeffrey N. Agar, Kristin R. Swanson, Tina Kapur, Jann N. Sarkaria, William Wells, Nathalie Y. R. Agar. Automatic 3D Nonlinear Registration of Mass Spectrometry Imaging and Magnetic Resonance Imaging Data. Analytical Chemistry 2019, 91 (9) , 6206-6216. https://doi.org/10.1021/acs.analchem.9b00854
    Load more citations