ACS Publications. Most Trusted. Most Cited. Most Read
Detection of the Dipicolinic Acid Biomarker in Bacillus Spores Using Curie-Point Pyrolysis Mass Spectrometry and Fourier Transform Infrared Spectroscopy
My Activity
    Article

    Detection of the Dipicolinic Acid Biomarker in Bacillus Spores Using Curie-Point Pyrolysis Mass Spectrometry and Fourier Transform Infrared Spectroscopy
    Click to copy article linkArticle link copied!

    View Author Information
    Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion, SY23 3DD, Wales, U.K., Department of Computer Sciences, University of Wales, Aberystwyth, Ceredigion, SY23 3DB, Wales, U.K., and School of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, U.K.
    Other Access Options

    Analytical Chemistry

    Cite this: Anal. Chem. 2000, 72, 1, 119–127
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac990661i
    Published November 19, 1999
    Copyright © 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Thirty-six strains of aerobic endospore-forming bacteria confirmed by polyphasic taxonomic methods to belong to Bacillus amyloliquefaciens, Bacillus cereus, Bacillus licheniformis, Bacillus megaterium, Bacillus subtilis (including Bacillus niger and Bacillus globigii), Bacillus sphaericus, and Brevi laterosporus were grown axenically on nutrient agar, and vegetative and sporulated biomasses were analyzed by Curie-point pyrolysis mass spectrometry (PyMS) and diffuse reflectance−absorbance Fourier-transform infrared spectroscopy (FT-IR). Chemometric methods based on rule induction and genetic programming were used to determine the physiological state (vegetative cells or spores) correctly, and these methods produced mathematical rules which could be simply interpreted in biochemical terms. For PyMS it was found that m/z 105 was characteristic and is a pyridine ketonium ion (C6H3ON+) obtained from the pyrolysis of dipicolinic acid (pyridine-2,6-dicarboxylic acid; DPA), a substance found in spores but not in vegetative cells; this was confirmed using pyrolysis-gas chromatography/mass spectrometry. In addition, a pyridine ring vibration at 1447−1439 cm-1 from DPA was found to be highly characteristic of spores in FT-IR analysis. Thus, although the original data sets recorded hundreds of spectral variables from whole cells simultaneously, a simple biomarker can be used for the rapid and unequivocal detection of spores of these organisms.

    Copyright © 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author:  (telephone) +44 (0)1970 621947; (telefax) +44 (0)1970 621947; (e-mail) [email protected].

     Institute of Biological Sciences, University of Wales.

     Department of Computer Sciences, University of Wales.

    §

     Glasgow Caledonian University.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 251 publications.

    1. Fangbin Wang, Lianghui Mei, Jing Qi, Liang Zhu. Paper-Based Microfluidic Sensors Utilizing Metal–Organic Framework Materials Modified with Europium and Carbon Quantum Dots for Anthrax Spore Biomarker Detection. ACS Applied Nano Materials 2024, 7 (7) , 7043-7051. https://doi.org/10.1021/acsanm.3c06145
    2. Qin Wang, Jiangnan Dong, Zhangjian Li, Xinyi Wang, Yabing He, Banglin Chen, Dian Zhao. Dual-Emitting Mixed-Lanthanide Metal–Organic Framework for Ratiometric and Quantitative Visual Detection of 2,6-Pyridine Dicarboxylic Acid. Inorganic Chemistry 2023, 62 (35) , 14439-14447. https://doi.org/10.1021/acs.inorgchem.3c02374
    3. L. Edwin Gonzalez, Lucas J. Szalwinski, Thomas C. Sams, Eric T. Dziekonski, R. Graham Cooks. Metabolomic and Lipidomic Profiling of Bacillus Using Two-Dimensional Tandem Mass Spectrometry. Analytical Chemistry 2022, 94 (48) , 16838-16846. https://doi.org/10.1021/acs.analchem.2c03961
    4. Adam P. Lister, William J. Sellors, Chris R. Howle, Sumeet Mahajan. Raman Scattering Techniques for Defense and Security Applications. Analytical Chemistry 2021, 93 (1) , 417-429. https://doi.org/10.1021/acs.analchem.0c04606
    5. Mohamed Ibrahim Halawa, Bing Shi Li, Guobao Xu. Novel Synthesis of Thiolated Gold Nanoclusters Induced by Lanthanides for Ultrasensitive and Luminescent Detection of the Potential Anthrax Spores’ Biomarker. ACS Applied Materials & Interfaces 2020, 12 (29) , 32888-32897. https://doi.org/10.1021/acsami.0c10069
    6. Jun Xu, Xiaoke Shen, Lei Jia, Zhijun Ge, Dong Zhou, Yong Yang, Tieliang Ma, Yifeng Luo, Taofeng Zhu. GdPO4-Based Nanoprobe for Bioimaging and Selective Recognition of Dipicolinic Acid and Cysteine by a Sensing Ensemble Approach. ACS Biomaterials Science & Engineering 2019, 5 (2) , 996-1004. https://doi.org/10.1021/acsbiomaterials.8b01126
    7. Nan Gao, Yunfang Zhang, Pengcheng Huang, Zhehao Xiang, Fang-Ying Wu, Lanqun Mao. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores. Analytical Chemistry 2018, 90 (11) , 7004-7011. https://doi.org/10.1021/acs.analchem.8b01365
    8. Ke Luan, Ruiqian Meng, Changfu Shan, Jing Cao, Jianguo Jia, Weisheng Liu, Yu Tang. Terbium Functionalized Micelle Nanoprobe for Ratiometric Fluorescence Detection of Anthrax Spore Biomarker. Analytical Chemistry 2018, 90 (5) , 3600-3607. https://doi.org/10.1021/acs.analchem.8b00050
    9. Young Hun Kim, Leibniz Hang, Jessica L. Cifelli, David Sept, Michael Mayer, and Jerry Yang . Frequency-Based Analysis of Gramicidin A Nanopores Enabling Detection of Small Molecules with Picomolar Sensitivity. Analytical Chemistry 2018, 90 (3) , 1635-1642. https://doi.org/10.1021/acs.analchem.7b02961
    10. Mohamed A. Farag, Andrea Porzel, Montasser A. Al-Hammady, Mohamed-Elamir F. Hegazy, Achim Meyer, Tarik A. Mohamed, Hildegard Westphal, and Ludger A. Wessjohann . Soft Corals Biodiversity in the Egyptian Red Sea: A Comparative MS and NMR Metabolomics Approach of Wild and Aquarium Grown Species. Journal of Proteome Research 2016, 15 (4) , 1274-1287. https://doi.org/10.1021/acs.jproteome.6b00002
    11. Hee-Jun Park, Soo-Byung Ko, Ian W. Wyman, and Suning Wang . Selective Sensitization of Eu(III) and Tb(III) Emission with Triarylboron-Functionalized Dipicolinic Acids. Inorganic Chemistry 2014, 53 (18) , 9751-9760. https://doi.org/10.1021/ic501335e
    12. Qiong Li, Kai Sun, Kaiwen Chang, Jiangbo Yu, Daniel T. Chiu, Changfeng Wu, and Weiping Qin . Ratiometric Luminescent Detection of Bacterial Spores with Terbium Chelated Semiconducting Polymer Dots. Analytical Chemistry 2013, 85 (19) , 9087-9091. https://doi.org/10.1021/ac4016616
    13. David P. Cowcher, Yun Xu, and Royston Goodacre . Portable, Quantitative Detection of Bacillus Bacterial Spores Using Surface-Enhanced Raman Scattering. Analytical Chemistry 2013, 85 (6) , 3297-3302. https://doi.org/10.1021/ac303657k
    14. Dieter Treutter, Diwei Wang, Mohamed A. Farag, Giselle D. Argueta Baires, Susanne Rühmann, and Michael Neumüller . Diversity of Phenolic Profiles in the Fruit Skin of Prunus domestica Plums and Related Species. Journal of Agricultural and Food Chemistry 2012, 60 (48) , 12011-12019. https://doi.org/10.1021/jf303644f
    15. Franco Basile . Rapid Sample Preparation for Microorganism Analysis by Mass Spectrometry. 2011, 5-34. https://doi.org/10.1021/bk-2011-1065.ch002
    16. Romdhane Karoui, Gerard Downey, and Christophe Blecker. Mid-Infrared Spectroscopy Coupled with Chemometrics: A Tool for the Analysis of Intact Food Systems and the Exploration of Their Molecular Structure−Quality Relationships − A Review. Chemical Reviews 2010, 110 (10) , 6144-6168. https://doi.org/10.1021/cr100090k
    17. Grady Hanrahan. Computational Neural Networks Driving Complex Analytical Problem Solving. Analytical Chemistry 2010, 82 (11) , 4307-4313. https://doi.org/10.1021/ac902636q
    18. Nathan W. Bower and Conor J. K. Blanchet. Analytical Pyrolysis−Chromatography: Something Old, Something New. Journal of Chemical Education 2010, 87 (5) , 467-469. https://doi.org/10.1021/ed100108f
    19. Kashif Ali, Federica Maltese, Eva Zyprian, Martina Rex, Young Hae Choi and Robert Verpoorte . NMR Metabolic Fingerprinting Based Identification of Grapevine Metabolites Associated with Downy Mildew Resistance. Journal of Agricultural and Food Chemistry 2009, 57 (20) , 9599-9606. https://doi.org/10.1021/jf902069f
    20. Tony Lionel Palama, Alfi Khatib, Young Hae Choi, Bertrand Payet, Isabelle Fock, Robert Verpoorte and Hippolyte Kodja . Metabolic Changes in Different Developmental Stages of Vanilla planifolia Pods. Journal of Agricultural and Food Chemistry 2009, 57 (17) , 7651-7658. https://doi.org/10.1021/jf901508f
    21. Carla Bazzicalupi, Andrea Bencini, Antonio Bianchi, Claudia Borri, Andrea Danesi, Enrique Garcia-España, Claudia Giorgi and Barbara Valtancoli. Polyfunctional Recognition of Pyridinedicarboxylate Anions with Macrocyclic Polyamine Receptors Containing Heteroaromatic Groups. The Journal of Organic Chemistry 2008, 73 (21) , 8286-8295. https://doi.org/10.1021/jo801366w
    22. Qingyang Li, Purnendu K. Dasgupta and Henry K. Temkin. Airborne Bacterial Spore Counts by Terbium-enhanced Luminescence Detection: Pitfalls and Real Values. Environmental Science & Technology 2008, 42 (8) , 2799-2804. https://doi.org/10.1021/es702472t
    23. Anand Subramanian, Juhee Ahn, V. M. Balasubramaniam and Luis Rodriguez-Saona. Monitoring Biochemical Changes in Bacterial Spore during Thermal and Pressure-Assisted Thermal Processing using FT-IR Spectroscopy. Journal of Agricultural and Food Chemistry 2007, 55 (22) , 9311-9317. https://doi.org/10.1021/jf0708241
    24. Morgan L. Cable,, James P. Kirby,, Karn Sorasaenee,, Harry B. Gray, and, Adrian Ponce. Bacterial Spore Detection by [Tb3+(macrocycle)(dipicolinate)] Luminescence. Journal of the American Chemical Society 2007, 129 (6) , 1474-1475. https://doi.org/10.1021/ja061831t
    25. Anand Subramanian,, Juhee Ahn,, V. M. Balasubramaniam, and, Luis Rodriguez-Saona. Determination of Spore Inactivation during Thermal and Pressure-Assisted Thermal Processing Using FT-IR Spectroscopy. Journal of Agricultural and Food Chemistry 2006, 54 (26) , 10300-10306. https://doi.org/10.1021/jf0622174
    26. Abneesh Srivastava,, Maurice E. Pitesky,, Paul T. Steele,, Herbert J. Tobias,, David P. Fergenson,, Joanne M. Horn,, Scott C. Russell,, Gregg A. Czerwieniec,, Carlito B. Lebrilla,, Eric E. Gard, and, Matthias Frank. Comprehensive Assignment of Mass Spectral Signatures from Individual Bacillus atrophaeus Spores in Matrix-Free Laser Desorption/Ionization Bioaerosol Mass Spectrometry. Analytical Chemistry 2005, 77 (10) , 3315-3323. https://doi.org/10.1021/ac048298p
    27. Xiaoyu Zhang,, Matthew A. Young,, Olga Lyandres, and, Richard P. Van Duyne. Rapid Detection of an Anthrax Biomarker by Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society 2005, 127 (12) , 4484-4489. https://doi.org/10.1021/ja043623b
    28. Gregg A. Czerwieniec,, Scott C. Russell,, Herbert J. Tobias,, Maurice E. Pitesky,, David P. Fergenson,, Paul Steele,, Abneesh Srivastava,, Joanne M. Horn,, Matthias Frank,, Eric E. Gard, and, Carlito B. Lebrilla. Stable Isotope Labeling of Entire Bacillus atrophaeus Spores and Vegetative Cells Using Bioaerosol Mass Spectrometry. Analytical Chemistry 2005, 77 (4) , 1081-1087. https://doi.org/10.1021/ac0488098
    29. Wei E. Huang,, Robert I. Griffiths,, Ian P. Thompson,, Mark J. Bailey, and, Andrew S. Whiteley. Raman Microscopic Analysis of Single Microbial Cells. Analytical Chemistry 2004, 76 (15) , 4452-4458. https://doi.org/10.1021/ac049753k
    30. Young Hae Choi,, Hye Kyong Kim,, Arno Hazekamp,, Cornelis Erkelens,, Alfons W. M. Lefeber, and, Robert Verpoorte. Metabolomic Differentiation of Cannabis sativa Cultivars Using 1H NMR Spectroscopy and Principal Component Analysis. Journal of Natural Products 2004, 67 (6) , 953-957. https://doi.org/10.1021/np049919c
    31. E. Consuelo López-Díez and, Royston Goodacre. Characterization of Microorganisms Using UV Resonance Raman Spectroscopy and Chemometrics. Analytical Chemistry 2004, 76 (3) , 585-591. https://doi.org/10.1021/ac035110d
    32. David P. Fergenson,, Maurice E. Pitesky,, Herbert J. Tobias,, Paul T. Steele,, Gregg A. Czerwieniec,, Scott C. Russell,, Carlito B. Lebrilla,, Joanne M. Horn,, Keith R. Coffee,, Abneesh Srivastava,, Segaran P. Pillai,, Meng-Ta Peter Shih,, Howard L. Hall,, Albert J. Ramponi,, John T. Chang,, Richard G. Langlois,, Pedro L. Estacio,, Robert T. Hadley,, Matthias Frank, and, Eric E. Gard. Reagentless Detection and Classification of Individual Bioaerosol Particles in Seconds. Analytical Chemistry 2004, 76 (2) , 373-378. https://doi.org/10.1021/ac034467e
    33. E. Consuelo López-Díez,, Giorgio Bianchi, and, Royston Goodacre. Rapid Quantitative Assessment of the Adulteration of Virgin Olive Oils with Hazelnut Oils Using Raman Spectroscopy and Chemometrics. Journal of Agricultural and Food Chemistry 2003, 51 (21) , 6145-6150. https://doi.org/10.1021/jf034493d
    34. Scott W. Huffman, Kara Lukasiewicz, Susan Geldart, Susan Elliott, Jay F. Sperry, and Chris W. Brown . Analysis of Microbial Components Using LC−IR. Analytical Chemistry 2003, 75 (17) , 4606-4611. https://doi.org/10.1021/ac034571w
    35. Seetharaman Vaidyanathan, Douglas B. Kell, Royston Goodacre. Flow-injection electrospray ionization mass spectrometry of crude cell extracts for high-throughput bacterial identification. Journal of the American Society for Mass Spectrometry 2002, 13 (2) , 118-128. https://doi.org/10.1016/S1044-0305(01)00339-7
    36. Seetharaman Vaidyanathan,, Jem J. Rowland,, Douglas B. Kell, and, Royston Goodacre. Discrimination of Aerobic Endospore-forming Bacteria via Electrospray-Ionization Mass Spectrometry of Whole Cell Suspensions. Analytical Chemistry 2001, 73 (17) , 4134-4144. https://doi.org/10.1021/ac0103524
    37. Susan D. Richardson. Mass Spectrometry in Environmental Sciences. Chemical Reviews 2001, 101 (2) , 211-254. https://doi.org/10.1021/cr990090u
    38. Susan D. Richardson. Environmental Mass Spectrometry. Analytical Chemistry 2000, 72 (18) , 4477-4496. https://doi.org/10.1021/ac000755o
    39. Kent J. Voorhees, , Ted L. Hadfield, , Robert B. Cody. Electron Monochromator Mass Spectrometry for the Analysis of Whole Bacteria and Bacterial Spores. Analytical Chemistry 2000, 72 (11) , 2428-2432. https://doi.org/10.1021/ac991318g
    40. Klara Jastak, Nicolas Désilles, Fabrice Burel, Laurence Lecamp. Photocrosslinking of an original biobased and semi-aromatic unsaturated polyester by combined thiol-ene and cycloaddition routes. Reactive and Functional Polymers 2025, 208 , 106166. https://doi.org/10.1016/j.reactfunctpolym.2025.106166
    41. Jesús Guzmán-Moreno, Rosa María Ramírez-Santoyo, José Juan Ortega-Sigala, Carlos Ángeles-Chávez, Vicente Rodríguez-González, Candelario Rodríguez-Serrano, Araceli Patrón-Soberano, Gabriela I. de Ávila-Araiza, Fernando Luna-Álvarez, Luz Elena Vidales-Rodríguez. Fungal biosynthesis of gold nanoparticles with sporicidal activity against bacterial endospores. Green Chemistry Letters and Reviews 2024, 17 (1) https://doi.org/10.1080/17518253.2024.2360489
    42. Lena N. Vincent, Edith C. Fayolle, Robert Hodyss, Paul V. Johnson, Aaron C. Noell. Bacterial spore morphology remains highly recognizable after exposure to simulated Enceladus and Europa surface conditions. Communications Earth & Environment 2024, 5 (1) https://doi.org/10.1038/s43247-024-01872-z
    43. Benjamin Ogunma Gabriel, MacDonald Idu. Fourier Transform Infrared Spectrophotoscopy and Anti-lipidemic Somatic Effect of n-Hexane Leaf Extract of Jatropha gossypiifolia L. in Rats. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 2024, 94 (3) , 587-595. https://doi.org/10.1007/s40011-024-01563-x
    44. Medine Çopur Doğrusöz, Hanife Mut, Uğur Başaran, Erdem Gülümser. Enhancing drought resistance in grass pea: The positive regulatory role of plant-smoke solution. South African Journal of Botany 2024, 166 , 483-491. https://doi.org/10.1016/j.sajb.2024.01.033
    45. Fahad Y. Sabei. Colorimetric and fluorescent sensors based on nanomaterials for the detection of dipicolinic acid: a comprehensive review. Journal of Nanoparticle Research 2023, 25 (12) https://doi.org/10.1007/s11051-023-05881-5
    46. Amin Kassem, Lana Abbas, Oliver Coutinho, Somie Opara, Hawraa Najaf, Diana Kasperek, Keshav Pokhrel, Xiaohua Li, Sonia Tiquia-Arashiro. Applications of Fourier Transform-Infrared spectroscopy in microbial cell biology and environmental microbiology: advances, challenges, and future perspectives. Frontiers in Microbiology 2023, 14 https://doi.org/10.3389/fmicb.2023.1304081
    47. Sonali Rana, Lata Sheo Bachan Upadhyay. Utilization of non-pathogenic bacteria to obtain optimum biofilm production for beneficial applications. Brazilian Journal of Microbiology 2023, 54 (3) , 1875-1883. https://doi.org/10.1007/s42770-023-01044-9
    48. Guang Che, Weiting Yang, Cong Wang, Meiling Li, Xinyi Li, Yamin Fu, Qinhe Pan. Light-driven uranyl-organic frameworks used as signal-enhanced photoelectrochemical sensors for monitoring anthrax. Analytica Chimica Acta 2023, 1265 , 341327. https://doi.org/10.1016/j.aca.2023.341327
    49. Hui-Min Han, Wen-Wen Dong, Meng-Ke Li, Dong-Dong Xu, Zhou Hu, Jun Zhao, Dong-Sheng Li. Ratiometric fluorescence detection of an anthrax biomarker by modulating energy transfer in hetero Eu/Tb-MOFs. Inorganic Chemistry Communications 2023, 153 , 110755. https://doi.org/10.1016/j.inoche.2023.110755
    50. Servet Aras, Ahmet Eşitken, Yaşar Karakurt. The Comprehensive Responses of Young Sweet Cherry Trees Under Moderate Saline Conditions Depending on the Different Rootstocks. Erwerbs-Obstbau 2023, 65 (3) , 443-451. https://doi.org/10.1007/s10341-023-00838-3
    51. Illia Zymak, Ján Žabka, Miroslav Polášek, Arnaud Sanderink, Jean-Pierre Lebreton, Bertrand Gaubicher, Barnabé Cherville, Anna Zymaková, Christelle Briois. A High-Resolution Mass Spectrometer for the Experimental Study of the Gas Composition in Planetary Environments: First Laboratory Results. Aerospace 2023, 10 (6) , 522. https://doi.org/10.3390/aerospace10060522
    52. Seong-Hoon Kim, Gi-An Lee, Parthiban Subramanian, Bum-Soo Hahn. Quantification and Diversity Analyses of Major Glucosinolates in Conserved Chinese Cabbage (Brassica rapa L. ssp. pekinensis) Germplasms. Foods 2023, 12 (6) , 1243. https://doi.org/10.3390/foods12061243
    53. Yixuan Xu, Xuerong Shi, Fanpeng Ran, Ziqi Zhang, Josh Phipps, Xiaoyan Liu, Haixia Zhang. Differential sensitization toward lanthanide metal–organic framework for detection of an anthrax biomarker. Microchimica Acta 2023, 190 (1) https://doi.org/10.1007/s00604-022-05603-z
    54. 浩哲 孙. Phosphate-Modulated Luminol-Tb Fluorescent Probe for the Ratiometric Detection of Anthrax Biomarker. Advances in Analytical Chemistry 2023, 13 (03) , 368-378. https://doi.org/10.12677/AAC.2023.133040
    55. Maxime Pacheco, Jonathan Dikec, Pascale Winckler, Christian Coelho, Jean-Marie Perrier-Cornet. Spectroscopic and microscopic characterization of dipicolinic acid and its salt photoproducts – A UVc effect study on DPA in solution and in bacterial spores. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 280 , 121502. https://doi.org/10.1016/j.saa.2022.121502
    56. Zakaria Benladghem, Sidi Mohammed Lahbib Seddiki, Fayçal Dergal, Yassine Moustafa Mahdad, Mohammed Aissaoui, Noureddine Choukchou-Braham. Biofouling of reverse osmosis membranes: assessment by surface-enhanced Raman spectroscopy and microscopic imaging. Biofouling 2022, 38 (8) , 852-864. https://doi.org/10.1080/08927014.2022.2139610
    57. Xiaoxiao Niu, Meixiang Wang, Mengyu Zhang, Rui Cao, Zhaodi Liu, Fuying Hao, Liangquan Sheng, Huajie Xu. Smart intercalation and coordination strategy to construct stable ratiometric fluorescence nanoprobes for the detection of anthrax biomarker. Inorganic Chemistry Frontiers 2022, 9 (18) , 4582-4593. https://doi.org/10.1039/D2QI00957A
    58. Zhizhou Liu, Tong Wang, Liang He, Xueyan Nan, Xuming Sun, Pengli Bai. A double emission turn-on Eu-MOF-based luminescent sensor towards an anthrax biomarker. Microchemical Journal 2022, 180 , 107618. https://doi.org/10.1016/j.microc.2022.107618
    59. Kang Shao, Siyu Wen, Mengyuan Zhang, Jing Wang, Shiyi Ye, Zaifa Pan. A ratiometric fluorescent nanoprobe based on ZIF-8@AuNCs–Tb for visual detection of 2,6-pyridinedicarboxylic acid. Journal of Rare Earths 2022, 40 (8) , 1165-1172. https://doi.org/10.1016/j.jre.2021.08.005
    60. Yaohua Huang, X. Philip Ye, Christopher J. Doona, Florence E. Feeherry. Real-time FTIR monitoring and modeling Bacillus amyloliquefaciens spore germination: Effect of temperature and sub-lethal treatment by nonthermal plasma. Applied Food Research 2022, 2 (1) , 100049. https://doi.org/10.1016/j.afres.2022.100049
    61. Chaojun Fu, Fanrong Ai, Jianzhen Huang, Zhiying Shi, Xiluan Yan, Xiangjuan Zheng. Eu doped Ti3C2 quantum dots to form a ratiometric fluorescence platform for visual and quantitative point-of-care testing of tetracycline derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 272 , 120956. https://doi.org/10.1016/j.saa.2022.120956
    62. Xiangzhen Chen, Lei Jia, Lina Zhang, Yongxin Li, Jun Xu. Stimulus response of HNT-CDs-Eu nano-sensor: Toward visual point-of-care monitoring of a bacterial spore biomarker with hypersensitive multi-color agarose gel based analytical device. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 639 , 128356. https://doi.org/10.1016/j.colsurfa.2022.128356
    63. Zafar Abbas, Ashis K. Patra. Luminescent β-diketonate coordinated europium(III) sensor for rapid and sensitive detection of Bacillus Anthracis biomarker. Journal of Luminescence 2022, 244 , 118726. https://doi.org/10.1016/j.jlumin.2022.118726
    64. Benjamin W. Redan, Travis R. Morrissey, Catherine A. Rolfe, Viviana L. Aguilar, Guy E. Skinner, N. Rukma Reddy. Rapid detection and quantitation of dipicolinic acid from Clostridium botulinum spores using mixed-mode liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2022, 414 (8) , 2767-2774. https://doi.org/10.1007/s00216-022-03926-7
    65. Lijuan Kuang, Yue Du, Shiqi Wang, Li Yang, Yonghai Song. A novel multiemissive Ln/covalent-organic frameworks for ratiometric detection of 2,6-dipicolinic acid. Journal of Industrial and Engineering Chemistry 2022, 106 , 160-167. https://doi.org/10.1016/j.jiec.2021.10.022
    66. Dylan Chirman, Nancy Pleshko. Characterization of bacterial biofilm infections with Fourier transform infrared spectroscopy: a review. Applied Spectroscopy Reviews 2021, 56 (8-10) , 673-701. https://doi.org/10.1080/05704928.2020.1864392
    67. Wei-Lei Zhou, Yong Chen, Wenjing Lin, Yu Liu. Luminescent lanthanide–macrocycle supramolecular assembly. Chemical Communications 2021, 57 (87) , 11443-11456. https://doi.org/10.1039/D1CC04672A
    68. Yue-Yang Ma, Zi-Jian Wang, Dong-Jin Qian. Ratiometric fluorescence detection of anthrax biomarker based on terbium (III) functionalized graphitic carbon nitride nanosheets. Talanta 2021, 230 , 122311. https://doi.org/10.1016/j.talanta.2021.122311
    69. Tatsuya Shirahata, Hiroshi Ishikawa, Teruhisa Kudo, Yumiko Takada, Azusa Hoshino, Yui Taga, Yusaku Minakuchi, Tomoko Hasegawa, Rina Horiguchi, Takehiro Hirayama, Takahiro Konishi, Hiroaki Takemoto, Noriko Sato, Masako Aragane, Tetsuro Oikawa, Hiroshi Odaguchi, Toshihiko Hanawa, Eiichi Kodaira, Tatsuo Fukuda, Yoshinori Kobayashi. Metabolic fingerprinting for discrimination of DNA-authenticated Atractylodes plants using 1H NMR spectroscopy. Journal of Natural Medicines 2021, 75 (3) , 475-488. https://doi.org/10.1007/s11418-020-01471-0
    70. K.V. Drozd, A.N. Manin, A.P. Voronin, G.L. Perlovich. Sublimation thermodynamics of pyrazinoic, dipicolinic and quinolinic acids: Experiment and theoretical prediction. The Journal of Chemical Thermodynamics 2021, 155 , 106369. https://doi.org/10.1016/j.jct.2020.106369
    71. Servet Aras, Hakan Keles, Erhan Bozkurt. Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions. Scientia Horticulturae 2021, 281 , 109967. https://doi.org/10.1016/j.scienta.2021.109967
    72. Jie Zhao, Yang Chen, Peiyao Du, Jing Li, Zhen Zhang, Xiaoquan Lu. Portable smartphone platform integrated with fluorescent test strip based on Eu3+-functionalized copper nanoclusters for on-site visual recognition of a pathogenic biomarker. Sensors and Actuators B: Chemical 2021, 332 , 129495. https://doi.org/10.1016/j.snb.2021.129495
    73. Amal A. Maamoun, Radwa H. El-akkad, Mohamed A. Farag. Mapping metabolome changes in Luffa aegyptiaca Mill fruits at different maturation stages via MS-based metabolomics and chemometrics. Journal of Advanced Research 2021, 29 , 179-189. https://doi.org/10.1016/j.jare.2019.10.009
    74. Barbara Procacci, Samantha H. Rutherford, Gregory M. Greetham, Michael Towrie, Anthony W. Parker, Camilla V. Robinson, Christopher R. Howle, Neil T. Hunt. Differentiation of bacterial spores via 2D-IR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 249 , 119319. https://doi.org/10.1016/j.saa.2020.119319
    75. Ângela Novais, Luísa Peixe. Fourier Transform Infrared Spectroscopy (FT-IR) for Food and Water Microbiology. 2021, 191-217. https://doi.org/10.1007/978-3-030-62155-1_11
    76. Anne M. Mikelonis, Katherine Ratliff, Sungmin Youn. Laboratory results and mathematical modeling of spore surface interactions in stormwater runoff. Journal of Contaminant Hydrology 2020, 235 , 103707. https://doi.org/10.1016/j.jconhyd.2020.103707
    77. Usman Latif, Serpil Can, Hermann Sussitz, Franz Dickert. Molecular Imprinted Based Quartz Crystal Microbalance Sensors for Bacteria and Spores. Chemosensors 2020, 8 (3) , 64. https://doi.org/10.3390/chemosensors8030064
    78. Meini Wu, Yixi Zhuang, Jianbin Liu, Wenwei Chen, Xinya Li, Rong-Jun Xie. Ratiometric fluorescence detection of 2,6-pyridine dicarboxylic acid with a dual-emitting lanthanide metal-organic framework (MOF). Optical Materials 2020, 106 , 110006. https://doi.org/10.1016/j.optmat.2020.110006
    79. Lan Guo, Maosheng Liang, Xiuli Wang, Rongmei Kong, Guang Chen, Lian Xia, Fengli Qu. The role of l -histidine as molecular tongs: a strategy of grasping Tb 3+ using ZIF-8 to design sensors for monitoring an anthrax biomarker on-the-spot. Chemical Science 2020, 11 (9) , 2407-2413. https://doi.org/10.1039/D0SC00030B
    80. Linli Hou, Yonghai Song, Yingjie Xiao, Rong Wu, Li Wang. Ratiometric fluorescence detection of dipicolinic acid based on Microporous Ln/melamine-terephthaladehyde schiff base networks complex. Talanta 2020, 209 , 120534. https://doi.org/10.1016/j.talanta.2019.120534
    81. Atiyeh Mahdavi, Parviz Moradi, Andrea Mastinu. Variation in Terpene Profiles of Thymus vulgaris in Water Deficit Stress Response. Molecules 2020, 25 (5) , 1091. https://doi.org/10.3390/molecules25051091
    82. Gamze Toydemir, Sema Demirci Cekic, Gulay Ozkan, Seda Uzunboy, Asli Neslihan Avan, Esra Capanoglu, Resat Apak. Nanosensors for Foods. 2020, 327-375. https://doi.org/10.1007/978-3-030-44552-2_12
    83. K. Moschovitis, C.N. Banti, N. Kourkoumelis, E.E. Moushi, T. Lazarides, S.K. Hadjikakou. Fluorescence of copper(I) and mixed valence copper(I/II) complexes with dipicolinic acid and their catalytic activity on catechol oxidation. Inorganica Chimica Acta 2020, 500 , 119209. https://doi.org/10.1016/j.ica.2019.119209
    84. Xiao Liu, Bin Li, Yang Xu, Zhiqiang Li, Ying Zhang, Zhi-Jun Ding, Hui Cui, Jing Wang, Hong-Biao Hou, Huanrong Li. A highly selective lanthanide-containing probe for ratiometric luminescence detection of an anthrax biomarker. Dalton Transactions 2019, 48 (22) , 7714-7719. https://doi.org/10.1039/C9DT01477B
    85. Mozhgan Zangeneh, Hassan Salehi. Genetic Diversity as Revealed by Intersimple Sequence Repeat Polymorphism in Narcissus Accessions to Identify the Tolerant Genotypes for Deficit Irrigation. Journal of the American Society for Horticultural Science 2019, 144 (2) , 92-106. https://doi.org/10.21273/JASHS04583-18
    86. Kanmani Anandan, Ravishankar Rai Vittal. Endophytic Paenibacillus amylolyticus KMCLE06 Extracted Dipicolinic Acid as Antibacterial Agent Derived via Dipicolinic Acid Synthetase Gene. Current Microbiology 2019, 76 (2) , 178-186. https://doi.org/10.1007/s00284-018-1605-y
    87. Yaohua Huang, Xiaofei P Ye, Christopher J Doona, Florence E Feeherry, Mark Radosevich, Siqun Wang. An investigation of inactivation mechanisms of Bacillus amyloliquefaciens spores in non‐thermal plasma of ambient air. Journal of the Science of Food and Agriculture 2019, 99 (1) , 368-378. https://doi.org/10.1002/jsfa.9198
    88. Meng Li Liu, Bin Bin Chen, Jia Hui He, Chun Mei Li, Yuan Fang Li, Cheng Zhi Huang. Anthrax biomarker: An ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium(III)-modified carbon dots. Talanta 2019, 191 , 443-448. https://doi.org/10.1016/j.talanta.2018.08.071
    89. Gerard G. Dumancas, Ghalib Bello, Jeff Hughes, Renita Murimi, Lakshmi Viswanath, Casey O. Orndorff, Glenda Fe G. Dumancas, Jacy O'Dell, Prakash Ghimire, Catherine Setijadi. Chemometrics. International Journal of Fog Computing 2019, 2 (1) , 1-42. https://doi.org/10.4018/IJFC.2019010101
    90. Hassan Nezammahalleh, Seyed Hosein Mousavizadeh, Valiolah Babaeipour. New Potentiometric Sensor Based on Molecularly Imprinted Polymer for Dipicolinic Acid Detection in Aqueous Media. IEEE Sensors Journal 2018, 18 (18) , 7520-7528. https://doi.org/10.1109/JSEN.2018.2861706
    91. Malama Chisanga, Howbeer Muhamadali, David I. Ellis, Royston Goodacre. Surface-Enhanced Raman Scattering (SERS) in Microbiology: Illumination and Enhancement of the Microbial World. Applied Spectroscopy 2018, 72 (7) , 987-1000. https://doi.org/10.1177/0003702818764672
    92. Dalia M. Rasheed, Andrea Porzel, Andrei Frolov, Hesham R. El Seedi, Ludger A. Wessjohann, Mohamed A. Farag. Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition. Food Chemistry 2018, 250 , 236-244. https://doi.org/10.1016/j.foodchem.2018.01.020
    93. Samaneh Shahrokh Esfahani, Giti Emtiazi, Mohsen Rabbani. Germination assay of Bacillus amyloliquefaciens as a spore-based biosensing method for detection of cell wall destruction antibiotics. Journal of Food Measurement and Characterization 2018, 12 (1) , 441-448. https://doi.org/10.1007/s11694-017-9657-4
    94. Denan Zhang, You Zhou, Jing Cuan, Ning Gan. A lanthanide functionalized MOF hybrid for ratiometric luminescence detection of an anthrax biomarker. CrystEngComm 2018, 20 (9) , 1264-1270. https://doi.org/10.1039/C7CE01994G
    95. Gerard G. Dumancas, Ghalib A. Bello, Jeff Hughes, Renita Murimi, Lakshmi Chockalingam Kasi Viswanath, Casey O'Neal Orndorff, Glenda Fe Dumancas, Jacy D. O'Dell. Visualization Tools for Big Data Analytics in Quantitative Chemical Analysis. 2018, 873-917. https://doi.org/10.4018/978-1-5225-3142-5.ch030
    96. Annette S. Ortiz-Miranda, Antonio Doménech-Carbó, María Teresa Doménech-Carbó, Laura Osete-Cortina, Fernando Bolívar-Galiano, Inés Martín-Sánchez. Analyzing chemical changes in verdigris pictorial specimens upon bacteria and fungi biodeterioration using voltammetry of microparticles. Heritage Science 2017, 5 (1) https://doi.org/10.1186/s40494-017-0121-x
    97. Qi-Xian Wang, Shi-Fan Xue, Zi-Han Chen, Shi-Hui Ma, Shengqiang Zhang, Guoyue Shi, Min Zhang. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Biosensors and Bioelectronics 2017, 94 , 388-393. https://doi.org/10.1016/j.bios.2017.03.027
    98. Mohamed A. Farag, Dina M. El-Kersh. Volatiles profiling in Ceratonia siliqua (Carob bean) from Egypt and in response to roasting as analyzed via solid-phase microextraction coupled to chemometrics. Journal of Advanced Research 2017, 8 (4) , 379-385. https://doi.org/10.1016/j.jare.2017.05.002
    99. Parviz Moradi, Brian Ford-Lloyd, Jeremy Pritchard. Metabolomic approach reveals the biochemical mechanisms underlying drought stress tolerance in thyme. Analytical Biochemistry 2017, 527 , 49-62. https://doi.org/10.1016/j.ab.2017.02.006
    100. Clément Trunet, Frédéric Carlin, Louis Coroller. Investigating germination and outgrowth of bacterial spores at several scales. Trends in Food Science & Technology 2017, 64 , 60-68. https://doi.org/10.1016/j.tifs.2017.03.008
    Load more citations

    Analytical Chemistry

    Cite this: Anal. Chem. 2000, 72, 1, 119–127
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac990661i
    Published November 19, 1999
    Copyright © 2000 American Chemical Society

    Article Views

    1669

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.