ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

A Comprehensive Approach to Investigate CO2 Reduction Electrocatalysts at High Current Densities

Cite this: Acc. Mater. Res. 2021, 2, 4, 220–229
Publication Date (Web):April 7, 2021
https://doi.org/10.1021/accountsmr.1c00004
Copyright © 2021 Accounts of Materials Research. Co-published by ShanghaiTech University and American Chemical Society. All rights reserved.

    Article Views

    4617

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)

    Abstract

    Abstract Image
    Conspectus

    As electrochemical CO2 reduction studies progress from beaker or H-cell devices operating at low current densities to gas diffusion electrode (GDE)-based devices that sustain high reaction rates and provide an avenue toward commercialization, the overall system becomes significantly more complex. While the current densities may vary for the different approaches, it is essential to maintain the same scientific rigor when analyzing these systems. The mass transfer optimizations used in GDE based approaches necessarily add complexity and provide new challenges that need to be analyzed and overcome in terms of both engineering as well as analysis techniques. This Account puts into perspective our recent works analyzing high current density CO2 electrolysis performance via a comprehensive investigation of the entire system.

    In particular, we show the importance of monitoring (i) the gas flow rates at the outlet of the cathodic compartment, (ii) the anodic gas composition for CO2/O2 ratio, and (iii) pH variations in the electrolyte. A rigorous analysis of these parameters allows us to achieve a complete carbon balance, in addition to accounting for a total of 100% Faradaic efficiency. By analyzing both the cathode outlet and anodic CO2:O2 ratio, we demonstrate that these methods can be used to self-validate results providing robustness. We show that this analysis approach holds for both a zero-gap membrane electrode assembly device and a flowing-catholyte device. In addition, a comprehensive monitoring approach reveals that having an alkaline environment in the vicinity of the cathode can absorb substantial amounts of CO2, which may greatly distort Faradaic efficiencies if not accounted for. While monitoring the outlet flow rate of a reactor appears a simple task, the mixed gases and small flow rates in lab-scale reactors can add challenges and we discuss various methods to measure these flow rates.

    While pH is well-known to play a role in the activity and selectivity of CO2 reduction, we demonstrate that (i) the operational pH is not necessarily the pH of the initial electrolyte, (ii) there are long transients in pH before steady state is reached (on the order of hours), and (iii) the pH of the anolyte and catholyte can be significantly different over the duration of the electrolysis.

    By varying the membrane type in a flowing-catholyte reactor (anion exchange, cation exchange, or bipolar membrane), we can use this monitoring approach to quantitatively identify the major differences in CO2 reduction performance related to these distinct membrane types. The overall conclusion is that complex engineering processes entail that a thorough monitoring of parameters is necessary to accurately analyze the performance of high current density electrochemical CO2 reduction devices.

    Cited By

    This article is cited by 27 publications.

    1. Kevin Fernández-Caso, Guillermo Díaz-Sainz, Manuel Alvarez-Guerra, Angel Irabien. Electroreduction of CO2: Advances in the Continuous Production of Formic Acid and Formate. ACS Energy Letters 2023, 8 (4) , 1992-2024. https://doi.org/10.1021/acsenergylett.3c00489
    2. Joseph W. Blake, Vojtěch Konderla, Lorenz M. Baumgartner, David A. Vermaas, Johan T. Padding, J. W. Haverkort. Inhomogeneities in the Catholyte Channel Limit the Upscaling of CO2 Flow Electrolysers. ACS Sustainable Chemistry & Engineering 2023, 11 (7) , 2840-2852. https://doi.org/10.1021/acssuschemeng.2c06129
    3. Steven A. Hawks, Victoria M. Ehlinger, Thomas Moore, Eric B. Duoss, Victor A. Beck, Adam Z. Weber, Sarah E. Baker. Analyzing Production Rate and Carbon Utilization Trade-offs in CO2RR Electrolyzers. ACS Energy Letters 2022, 7 (8) , 2685-2693. https://doi.org/10.1021/acsenergylett.2c01106
    4. Ming Ma, Zhe Zheng, Wen Yan, Chao Hu, Brian Seger. Rigorous Evaluation of Liquid Products in High-Rate CO2/CO Electrolysis. ACS Energy Letters 2022, 7 (8) , 2595-2601. https://doi.org/10.1021/acsenergylett.2c01288
    5. Justin C. Bui, Eric W. Lees, Lalit M. Pant, Iryna V. Zenyuk, Alexis T. Bell, Adam Z. Weber. Continuum Modeling of Porous Electrodes for Electrochemical Synthesis. Chemical Reviews 2022, 122 (12) , 11022-11084. https://doi.org/10.1021/acs.chemrev.1c00901
    6. Ying Chuan Tan, Wei Kang Quek, Beomil Kim, Sigit Sugiarto, Jihun Oh, Dan Kai. Pitfalls and Protocols: Evaluating Catalysts for CO2 Reduction in Electrolyzers Based on Gas Diffusion Electrodes. ACS Energy Letters 2022, 7 (6) , 2012-2023. https://doi.org/10.1021/acsenergylett.2c00763
    7. Saikat Dutta, Rahul Patil, Sayantan Chongdar, Asim Bhaumik. Dehydrogenase-Functionalized Interfaced Materials in Electroenzymatic and Photoelectroenzymatic CO2 Reduction. ACS Sustainable Chemistry & Engineering 2022, 10 (19) , 6141-6156. https://doi.org/10.1021/acssuschemeng.2c00201
    8. Hanqing Pan, Christopher J. Barile. Electrochemical CO2 Reduction on Polycrystalline Copper by Modulating Proton Transfer with Fluoropolymer Composites. ACS Applied Energy Materials 2022, 5 (4) , 4712-4721. https://doi.org/10.1021/acsaem.2c00136
    9. Gastón O. Larrazábal, Valery Okatenko, Ib Chorkendorff, Raffaella Buonsanti, Brian Seger. Investigation of Ethylene and Propylene Production from CO2 Reduction over Copper Nanocubes in an MEA-Type Electrolyzer. ACS Applied Materials & Interfaces 2022, 14 (6) , 7779-7787. https://doi.org/10.1021/acsami.1c18856
    10. Peter Mardle, Simon Cassegrain, Faezeh Habibzadeh, Zhiqing Shi, Steven Holdcroft. Carbonate Ion Crossover in Zero-Gap, KOH Anolyte CO2 Electrolysis. The Journal of Physical Chemistry C 2021, 125 (46) , 25446-25454. https://doi.org/10.1021/acs.jpcc.1c08430
    11. Yang Gang, Erik Sarnello, John Pellessier, Siyuan Fang, Manuel Suarez, Fuping Pan, Zichen Du, Peng Zhang, Lingzhe Fang, Yuzi Liu, Tao Li, Hong-Cai Zhou, Yun Hang Hu, Ying Li. One-Step Chemical Vapor Deposition Synthesis of Hierarchical Ni and N Co-Doped Carbon Nanosheet/Nanotube Hybrids for Efficient Electrochemical CO2 Reduction at Commercially Viable Current Densities. ACS Catalysis 2021, 11 (16) , 10333-10344. https://doi.org/10.1021/acscatal.1c01864
    12. Fan He, Sirui Tong, Zhouyang Luo, Haoran Ding, Ziye Cheng, Chenxi Li, Zhifu Qi. Accelerating net-zero carbon emissions by electrochemical reduction of carbon dioxide. Journal of Energy Chemistry 2023, 79 , 398-409. https://doi.org/10.1016/j.jechem.2023.01.020
    13. Brian Seger, Marc Robert, Feng Jiao. Best practices for electrochemical reduction of carbon dioxide. Nature Sustainability 2023, 6 (3) , 236-238. https://doi.org/10.1038/s41893-022-01034-z
    14. Asger B. Moss, Sahil Garg, Marta Mirolo, Carlos A. Giron Rodriguez, Roosa Ilvonen, Ib Chorkendorff, Jakub Drnec, Brian Seger. In operando investigations of oscillatory water and carbonate effects in MEA-based CO2 electrolysis devices. Joule 2023, 7 (2) , 350-365. https://doi.org/10.1016/j.joule.2023.01.013
    15. Qiucheng Xu, Aoni Xu, Sahil Garg, Asger B. Moss, Ib Chorkendorff, Thomas Bligaard, Brian Seger. Enriching Surface‐Accessible CO 2 in the Zero‐Gap Anion‐Exchange‐Membrane‐Based CO 2 Electrolyzer. Angewandte Chemie 2023, 135 (3) https://doi.org/10.1002/ange.202214383
    16. Qiucheng Xu, Aoni Xu, Sahil Garg, Asger B. Moss, Ib Chorkendorff, Thomas Bligaard, Brian Seger. Enriching Surface‐Accessible CO 2 in the Zero‐Gap Anion‐Exchange‐Membrane‐Based CO 2 Electrolyzer. Angewandte Chemie International Edition 2023, 62 (3) https://doi.org/10.1002/anie.202214383
    17. Sahil Garg, Qiucheng Xu, Asger B. Moss, Marta Mirolo, Wanyu Deng, Ib Chorkendorff, Jakub Drnec, Brian Seger. How alkali cations affect salt precipitation and CO 2 electrolysis performance in membrane electrode assembly electrolyzers. Energy & Environmental Science 2023, 12 https://doi.org/10.1039/D2EE03725D
    18. Aditya Prajapati, Rohan Sartape, Miguel T. Galante, Jiahan Xie, Samuel L. Leung, Ivan Bessa, Marcio H. S. Andrade, Robert T. Somich, Márcio V. Rebouças, Gus T. Hutras, Nathália Diniz, Meenesh R. Singh. Fully-integrated electrochemical system that captures CO 2 from flue gas to produce value-added chemicals at ambient conditions. Energy & Environmental Science 2022, 15 (12) , 5105-5117. https://doi.org/10.1039/D2EE03396H
    19. Yipeng Zang, Pengfei Wei, Hefei Li, Dunfeng Gao, Guoxiong Wang. Catalyst Design for Electrolytic CO2 Reduction Toward Low-Carbon Fuels and Chemicals. Electrochemical Energy Reviews 2022, 5 (S1) https://doi.org/10.1007/s41918-022-00140-y
    20. Ifan E L Stephens, Karen Chan, Alexander Bagger, Shannon W Boettcher, Julien Bonin, Etienne Boutin, Aya K Buckley, Raffaella Buonsanti, Etosha R Cave, Xiaoxia Chang, See Wee Chee, Alisson H M da Silva, Phil de Luna, Oliver Einsle, Balázs Endrődi, Maria Escudero-Escribano, Jorge V Ferreira de Araujo, Marta C Figueiredo, Christopher Hahn, Kentaro U Hansen, Sophia Haussener, Sara Hunegnaw, Ziyang Huo, Yun Jeong Hwang, Csaba Janáky, Buddhinie S Jayathilake, Feng Jiao, Zarko P Jovanov, Parisa Karimi, Marc T M Koper, Kendra P Kuhl, Woong Hee Lee, Zhiqin Liang, Xuan Liu, Sichao Ma, Ming Ma, Hyung-Suk Oh, Marc Robert, Beatriz Roldan Cuenya, Jan Rossmeisl, Claudie Roy, Mary P Ryan, Edward H Sargent, Paula Sebastián-Pascual, Brian Seger, Ludmilla Steier, Peter Strasser, Ana Sofia Varela, Rafaël E Vos, Xue Wang, Bingjun Xu, Hossein Yadegari, Yuxiang Zhou. 2022 roadmap on low temperature electrochemical CO 2 reduction. Journal of Physics: Energy 2022, 4 (4) , 042003. https://doi.org/10.1088/2515-7655/ac7823
    21. Jéssica Alves Nogueira, Igor Franca Pereira, Paulo Henrique Ribeiro Amaral, Caetano Rodrigues Miranda, Júlio Romano Meneghini, Thiago Lopes. Development of electrochemical reactors for CO 2 electroreduction—the viability of an electrochemical CO 2 plant in Brazil. Progress in Energy 2022, 4 (4) , 043003. https://doi.org/10.1088/2516-1083/ac8865
    22. Huangying Wang, Junying Yan, Wanjie Song, Chenxiao Jiang, Yaoming Wang, Tongwen Xu. Ion exchange membrane related processes towards carbon capture, utilization and storage: Current trends and perspectives. Separation and Purification Technology 2022, 296 , 121390. https://doi.org/10.1016/j.seppur.2022.121390
    23. Aditya Prajapati, Nishithan C. Kani, Joseph A. Gauthier, Rohan Sartape, Jiahan Xie, Ivan Bessa, Miguel T. Galante, Samuel L. Leung, Marcio H.S. Andrade, Robert T. Somich, Márcio V. Rebouças, Gus T. Hutras, Nathália Diniz, Meenesh R. Singh. CO2-free high-purity ethylene from electroreduction of CO2 with 4% solar-to-ethylene and 10% solar-to-carbon efficiencies. Cell Reports Physical Science 2022, 3 (9) , 101053. https://doi.org/10.1016/j.xcrp.2022.101053
    24. M.A. Khan, Shariful Kibria Nabil, Tareq Al-Attas, Nael G. Yasri, Soumyabrata Roy, M.M. Rahman, Stephen Larter, Pulickel M. Ajayan, Jinguang Hu, Md Golam Kibria. Zero-crossover electrochemical CO2 reduction to ethylene with co-production of valuable chemicals. Chem Catalysis 2022, 2 (8) , 2077-2095. https://doi.org/10.1016/j.checat.2022.06.018
    25. Lucas Hoof, Niklas Thissen, Kevinjeorjios Pellumbi, Kai junge Puring, Daniel Siegmund, Anna K. Mechler, Ulf-Peter Apfel. Hidden parameters for electrochemical carbon dioxide reduction in zero-gap electrolyzers. Cell Reports Physical Science 2022, 3 (4) , 100825. https://doi.org/10.1016/j.xcrp.2022.100825
    26. Shengshen Gu, Aleksei N. Marianov, Yijiao Jiang. Covalent grafting of cobalt aminoporphyrin-based electrocatalyst onto carbon nanotubes for excellent activity in CO2 reduction. Applied Catalysis B: Environmental 2022, 300 , 120750. https://doi.org/10.1016/j.apcatb.2021.120750
    27. Lucas Hoof, Niklas Thissen, Kevinjeorjios Pellumbi, Kai junge Puring, Daniel Siegmund, Anna Mechler, Ulf-Peter Apfel. Press it, Heat it, Twist it: A Series of Hidden Parameters for the Electrochemical CO 2 Reduction in Zero-Gap Electrolyzers. SSRN Electronic Journal 2021, 575 https://doi.org/10.2139/ssrn.3991077

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect