ACS Publications. Most Trusted. Most Cited. Most Read
Templated Colloidal Self-Assembly for Lattice Plasmon Engineering
My Activity

    Article

    Templated Colloidal Self-Assembly for Lattice Plasmon Engineering
    Click to copy article linkArticle link copied!

    Other Access Options

    Accounts of Materials Research

    Cite this: Acc. Mater. Res. 2021, 2, 9, 816–827
    Click to copy citationCitation copied!
    https://doi.org/10.1021/accountsmr.1c00106
    Published August 12, 2021
    Copyright © 2021 Accounts of Materials Research. Co-published by ShanghaiTech University and American Chemical Society. All rights reserved.

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image
    Conspectus

    Over the past 30 years, the engineering of plasmonic resonances at the nanoscale has progressed dramatically, with important contributions in a variety of different fields, including chemistry, physics, biology, engineering, and medicine. However, heavy optical losses related to the use of noble metals for the fabrication of plasmonic structures hindered their application in various settings. Recently, an answer to these long-lasting issues emerged in the use of lattice plasmon resonances (LPRs, also called surface lattice resonances), bringing new excitement in the field of plasmonics. Specifically, the organization of plasmonic nanoparticles into ordered arrays enables far-field coupling of the scattered light exploiting the diffraction modes of the array, generating plasmonic resonances with bandwidths as narrow as a few nanometers, corresponding to an increase of over 10-fold in the quality factors compared to localized plasmon resonances. As such, LPRs offer new opportunities to harness light–matter interactions at the nanoscale, while generating renewed interest in the self-assembly of colloidal metal nanoparticles, as a scalable approach to the preparation of such plasmonic arrays. Templated self-assembly emerged as one of the most versatile approaches, being compatible with soft-lithographic techniques such as nanoimprint lithography and amenable to a variety of materials, colloids, and solvents. Templated self-assembly additionally allows the preparation of arrays where the repeating units are composed of multiple self-assembled nanoparticles (i.e., plasmonic clusters). In this system, near-field coupling can be finely tuned, thereby showing promising results in biosensing, catalysis, or plasmonic heating. In this Account, we review the preparation of ordered arrays of clusters of plasmonic nanoparticles. We present various aspects involved in the templated self-assembly of colloidal nanoparticles, with the aim of achieving at the same time close-packed structures within each cavity of the template, and uniform deposition over a large area. We then analyze the optical properties of the prepared substrates. The preparation of hierarchical structures and the possibility of tuning both the internal structure of the cluster and their organization into arrays with different lattice parameters enable control over both near-field and far-field plasmonic coupling. This unique feature of such substrates makes it possible to exploit the interplay between these two types of coupling, for the preparation of versatile functional substrates, expanding the possibilities for the integration of plasmonic arrays into functional devices for various applications. A well-established example is their use for surface-enhanced Raman scattering. On the other hand, optimization of far-field coupling provides access to plasmonic cavities for lasing or refractive index sensing. Despite two decades of fervid scientific research, the preparation and engineering of plasmonic arrays remains a relevant topic, and many directions remain largely unexplored. We conclude with a collection of perspectives and challenges that we find particularly stimulating toward future developments of the field.

    Copyright © 2021 Accounts of Materials Research. Co-published by ShanghaiTech University and American Chemical Society. All rights reserved.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 63 publications.

    1. Jacopo Cardellini, Ilaria De Santis, Giuseppe Emanuele Lio, Marco Brucale, Francesco Valle, Virginia Catani, Ilenia Mastrolia, Marta Calabria, Massimo Dominici, Andrea Zendrini, Annalisa Radeghieri, Lucia Paolini, Paolo Bergese, Lucrezia Caselli, Debora Berti, Costanza Montis. Nanoplasmonic Isosbestics Uncover Mesoscale Assembly of Gold Nanoparticles on Soft Templates. Journal of the American Chemical Society 2025, 147 (23) , 20008-20022. https://doi.org/10.1021/jacs.5c05189
    2. Rongfeng Zou, Hans Ågren. Molecular Insight into Amyloid Fibril-Templated Aggregation of Biomarkers. ACS Chemical Neuroscience 2025, 16 (11) , 2076-2084. https://doi.org/10.1021/acschemneuro.5c00103
    3. Mingyuan Dong, Fangfang Ding, Yanan Jin, Chi Li, Xiang Lin, Shuang Lin. Facile Synthesis of Ultrasmooth Au Nanospheres into Macroscopic 3D Supercrystals for Machine-Learning-Driven Analysis of Thiram in Soil. Analytical Chemistry 2025, 97 (19) , 10452-10462. https://doi.org/10.1021/acs.analchem.5c01350
    4. Younghwan Yang, Youngsun Jeon, Zhaogang Dong, Joel K. W. Yang, Mahsa Haddadi Moghaddam, Dai-Sik Kim, Dong Kyo Oh, Jihae Lee, Mario Hentschel, Harald Giessen, Dohyun Kang, Gyeongtae Kim, Takuo Tanaka, Yang Zhao, Johannes Bürger, Stefan A. Maier, Haoran Ren, Wooik Jung, Mansoo Choi, Gwangmin Bae, Haomin Chen, Seokwoo Jeon, Jaekyung Kim, Eunji Lee, Hyunjung Kang, Yujin Park, Dang Du Nguyen, Inki Kim, Pablo Cencillo-Abad, Debashis Chanda, Xinxin Jing, Na Liu, Irina V. Martynenko, Tim Liedl, Yuna Kwak, Jwa-Min Nam, Sang-Min Park, Teri W. Odom, Hye-Eun Lee, Ryeong Myeong Kim, Ki Tae Nam, Hyunah Kwon, Hyeon-Ho Jeong, Peer Fischer, Jiwon Yoon, Shin-Hyun Kim, Sangmin Shim, Dasol Lee, Luis A. Pérez, Xiaoyu Qi, Agustin Mihi, Hohyun Keum, Moonsub Shim, Seok Kim, Hanhwi Jang, Yeon Sik Jung, Christian Rossner, Tobias A.F. König, Andreas Fery, Zhiwei Li, Koray Aydin, Chad A. Mirkin, Junhwa Seong, Nara Jeon, Zhiyun Xu, Tian Gu, Juejun Hu, Hyounghan Kwon, Hojoong Jung, Hossein Alijani, Igor Aharonovich, Joohoon Kim, Junsuk Rho. Nanofabrication for Nanophotonics. ACS Nano 2025, 19 (13) , 12491-12605. https://doi.org/10.1021/acsnano.4c10964
    5. Etsuki Kobiyama, Darius Urbonas, Benjamin Aymoz, Maryna I. Bodnarchuk, Gabriele Rainò, Antonis Olziersky, Daniele Caimi, Marilyne Sousa, Rainer F. Mahrt, Maksym V. Kovalenko, Thilo Stöferle. Perovskite Nanocrystal Self-Assemblies in 3D Hollow Templates. ACS Nano 2025, 19 (7) , 6748-6757. https://doi.org/10.1021/acsnano.4c07819
    6. Carlos L. Bassani, Greg van Anders, Uri Banin, Dmitry Baranov, Qian Chen, Marjolein Dijkstra, Michael S. Dimitriyev, Efi Efrati, Jordi Faraudo, Oleg Gang, Nicola Gaston, Ramin Golestanian, G. Ivan Guerrero-Garcia, Michael Gruenwald, Amir Haji-Akbari, Maria Ibáñez, Matthias Karg, Tobias Kraus, Byeongdu Lee, Reid C. Van Lehn, Robert J. Macfarlane, Bortolo M. Mognetti, Arash Nikoubashman, Saeed Osat, Oleg V. Prezhdo, Grant M. Rotskoff, Leonor Saiz, An-Chang Shi, Sara Skrabalak, Ivan I. Smalyukh, Mario Tagliazucchi, Dmitri V. Talapin, Alexei V. Tkachenko, Sergei Tretiak, David Vaknin, Asaph Widmer-Cooper, Gerard C. L. Wong, Xingchen Ye, Shan Zhou, Eran Rabani, Michael Engel, Alex Travesset. Nanocrystal Assemblies: Current Advances and Open Problems. ACS Nano 2024, 18 (23) , 14791-14840. https://doi.org/10.1021/acsnano.3c10201
    7. Gail A. Vinnacombe-Willson, Clara García-Astrain, Lara Troncoso-Afonso, Marita Wagner, Judith Langer, Patricia González-Callejo, Desirè Di Silvio, Luis M. Liz-Marzán. Growing Gold Nanostars on 3D Hydrogel Surfaces. Chemistry of Materials 2024, 36 (10) , 5192-5203. https://doi.org/10.1021/acs.chemmater.4c00564
    8. Wajdi Chaâbani, Jieli Lyu, Jules Marcone, Claire Goldmann, Eleonora J. M. ten Veen, Clément Dumesnil, Thomas Bizien, Frank Smallenburg, Marianne Impéror-Clerc, Doru Constantin, Cyrille Hamon. Prismatic Confinement Induces Tunable Orientation in Plasmonic Supercrystals. ACS Nano 2024, 18 (13) , 9566-9575. https://doi.org/10.1021/acsnano.3c12799
    9. Maeva Lafitte, Ranjeet Dwivedi, Rajam Elancheliyan, François Lagugné-Labarthet, Lionel Buisson, Isabelle Ly, Philippe Barois, Alexandre Baron, Olivier Mondain-Monval, Virginie Ponsinet. Colloidal Self-Assembly of Silver Nanoparticle Clusters for Optical Metasurfaces. Langmuir 2024, 40 (5) , 2601-2615. https://doi.org/10.1021/acs.langmuir.3c02900
    10. Meiyun Ye, Lei Song, Yichen Ye, Zhaoxiang Deng. Assembly and Healing: Capacitive and Conductive Plasmonic Interfacing via a Unified and Clean Wet Chemistry Route. Journal of the American Chemical Society 2023, 145 (47) , 25653-25663. https://doi.org/10.1021/jacs.3c07879
    11. Xiaolu Zhuo, David Vila-Liarte, Shengyan Wang, Dorleta Jimenez de Aberasturi, Luis M. Liz-Marzán. Coated Chiral Plasmonic Nanorods with Enhanced Structural Stability. Chemistry of Materials 2023, 35 (14) , 5689-5698. https://doi.org/10.1021/acs.chemmater.3c01267
    12. Gail A. Vinnacombe-Willson, Ylli Conti, Andrei Stefancu, Paul S. Weiss, Emiliano Cortés, Leonardo Scarabelli. Direct Bottom-Up In Situ Growth: A Paradigm Shift for Studies in Wet-Chemical Synthesis of Gold Nanoparticles. Chemical Reviews 2023, 123 (13) , 8488-8529. https://doi.org/10.1021/acs.chemrev.2c00914
    13. Gail A. Vinnacombe-Willson, Joy K. Lee, Naihao Chiang, Leonardo Scarabelli, Shouzheng Yue, Ruth Foley, Isaura Frost, Paul S. Weiss, Steven J. Jonas. Exploring the Bottom-Up Growth of Anisotropic Gold Nanoparticles from Substrate-Bound Seeds in Microfluidic Reactors. ACS Applied Nano Materials 2023, 6 (8) , 6454-6460. https://doi.org/10.1021/acsanm.3c00440
    14. Shuai Hou, Ling Bai, Derong Lu, Hongwei Duan. Interfacial Colloidal Self-Assembly for Functional Materials. Accounts of Chemical Research 2023, 56 (7) , 740-751. https://doi.org/10.1021/acs.accounts.2c00705
    15. Lauren Zundel, Kellen Malone, Luis Cerdán, Rosario Martínez-Herrero, Alejandro Manjavacas. Lattice Resonances for Thermoplasmonics. ACS Photonics 2023, 10 (1) , 274-282. https://doi.org/10.1021/acsphotonics.2c01610
    16. Zhen Luo, Shafigh Mehraeen. Free Energy Contributions to the Template-Assisted Self-Assembly of Nanoparticles Using Steered Molecular Dynamics Simulations: Implications for Molecular-Specific Imaging and Sensing. ACS Applied Nano Materials 2023, 6 (1) , 283-295. https://doi.org/10.1021/acsanm.2c04381
    17. Jiwoong Son, Gyeong-Hwan Kim, Yeonhee Lee, Chungyeon Lee, Seungsang Cha, Jwa-Min Nam. Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols. Journal of the American Chemical Society 2022, 144 (49) , 22337-22351. https://doi.org/10.1021/jacs.2c05950
    18. Zhimin Chai, Anthony Childress, Ahmed A. Busnaina. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS Nano 2022, 16 (11) , 17641-17686. https://doi.org/10.1021/acsnano.2c07910
    19. Emiliano Cortés, Fedja J. Wendisch, Luca Sortino, Andrea Mancini, Simone Ezendam, Seryio Saris, Leonardo de S. Menezes, Andreas Tittl, Haoran Ren, Stefan A. Maier. Optical Metasurfaces for Energy Conversion. Chemical Reviews 2022, 122 (19) , 15082-15176. https://doi.org/10.1021/acs.chemrev.2c00078
    20. Lauren Zundel, Juan R. Deop-Ruano, Rosario Martinez-Herrero, Alejandro Manjavacas. Lattice Resonances Excited by Finite-Width Light Beams. ACS Omega 2022, 7 (35) , 31431-31441. https://doi.org/10.1021/acsomega.2c03847
    21. Adrianna N. Masterson, Rajesh Sardar. Selective Detection and Ultrasensitive Quantification of SARS-CoV-2 IgG Antibodies in Clinical Plasma Samples Using Epitope-Modified Nanoplasmonic Biosensing Platforms. ACS Applied Materials & Interfaces 2022, 14 (23) , 26517-26527. https://doi.org/10.1021/acsami.2c06599
    22. Eric H. Hill, Claire Goldmann, Cyrille Hamon, Marcel Herber. Laser-Driven Bubble Printing of Plasmonic Nanoparticle Assemblies onto Nonplasmonic Substrates. The Journal of Physical Chemistry C 2022, 126 (17) , 7622-7629. https://doi.org/10.1021/acs.jpcc.2c02414
    23. Shunsheng Ye, Huaining Zha, Yifan Xia, Wenhao Dong, Fan Yang, Chenglin Yi, Jing Tao, Xiaoxue Shen, Dong Yang, Zhihong Nie. Centimeter-Scale Superlattices of Three-Dimensionally Orientated Plasmonic Dimers with Highly Tunable Collective Properties. ACS Nano 2022, 16 (3) , 4609-4618. https://doi.org/10.1021/acsnano.1c11219
    24. Xiaoyu Qi, Luis Alberto Pérez, Jose Mendoza-Carreño, Miquel Garriga, Maria Isabel Alonso, Agustín Mihi. Chiral plasmonic superlattices from template-assisted assembly of achiral nanoparticles. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-56999-0
    25. Jeongwon Kim, Qiang Zhao, Inyoung Choi, Myeong Jin Oh, Sunwoo Kwon, Sungho Park. Ensemble hot-spots in 3D supercrystals of plasmonic octahedral nanoparticles in tip-to-tip configured superlattices. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-58029-5
    26. Fan Yang, Wei Cao, Guangchao Zheng, Li Qiu, Zhihong Nie, Yue Li. Plasmonic metasurfaces: Light-matter interactions, fabrication, applications and future outlooks. Progress in Materials Science 2025, 154 , 101508. https://doi.org/10.1016/j.pmatsci.2025.101508
    27. Bogdan V. Parakhonskiy, Junnan Song, Andre G. Skirtach. Machine Learning in nanoarchitectonics. Advances in Colloid and Interface Science 2025, 343 , 103546. https://doi.org/10.1016/j.cis.2025.103546
    28. Ylli Conti, Xing He, Yen‐Chen Chen, Naihao Chiang, Leonardo Scarabelli. Enhanced Two‐Photon Excited Emission of Quantum Emitters by Colloidal Plasmonic Metasurfaces. Advanced Photonics Research 2025, https://doi.org/10.1002/adpr.202500075
    29. Huaining Zha, Wenjie Zhang, Peng Chen, Jing Tao, Li Qiu, Fan Yang, Shunsheng Ye, Yutao Sang, Zhihong Nie. Sustainable Fabrication and Transfer of High‐Precision Nanoparticle Arrays Using Recyclable Chemical Pattern Templates. Advanced Science 2025, 12 (5) https://doi.org/10.1002/advs.202407393
    30. Yiming Yang, Lichao Sun, Qingfeng Zhang. Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry 2025, 44 (1) , 100467. https://doi.org/10.1016/j.cjsc.2024.100467
    31. Ayoub Laghrissi, Mindaugas Juodėnas, Tomas Tamulevičius, Casper Kunstmann, Horst-Günter Rubahn, Jacek Fiutowski. Magnetic-assisted sequential templated self-assembly of hybrid colloid nanoparticle systems. Nanoscale 2024, 16 (48) , 22167-22177. https://doi.org/10.1039/D4NR03665D
    32. An Cao, Yi Gong, Dilong Liu, Fan Yang, Yulong Fan, Yinghui Guo, Xingyou Tian, Yue Li. Rapid fabrication of gold microsphere arrays with stable deep-pressing anisotropic conductivity for advanced packaging. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-53407-x
    33. Rui Ma, Xiaodan Zhang, Duncan Sutherland, Vladimir Bochenkov, Shikai Deng. Nanofabrication of nanostructure lattices: from high-quality large patterns to precise hybrid units. International Journal of Extreme Manufacturing 2024, 6 (6) , 062004. https://doi.org/10.1088/2631-7990/ad6838
    34. Gaurav Pal Singh, Bodo Fuhrmann, Frank Syrowatka, Joerg Schilling, Neha Sardana. Plasmonic coupling effect of annealed gold nanoarrays. Physica Scripta 2024, 99 (11) , 115518. https://doi.org/10.1088/1402-4896/ad7913
    35. Maha Ibrar, Sheng‐Yuan Huang, Zachery McCurtain, Shujon Naha, David J. Crandall, Stephen C. Jacobson, Sara E. Skrabalak. Modular Anti‐Counterfeit Tags Formed by Template‐Assisted Self‐Assembly of Plasmonic Nanocrystals and Authenticated by Machine Learning. Advanced Functional Materials 2024, 34 (41) https://doi.org/10.1002/adfm.202400842
    36. Swagato Sarkar, Olha Aftenieva, Tobias A.F. König. Advances in scalable plasmonic nanostructures: towards phase-engineered interference lithography for complex 2D lattices. Colloid and Polymer Science 2024, 15 https://doi.org/10.1007/s00396-024-05276-5
    37. MohammadNavid Haddadnezhad, Insub Jung, Myeong Jin Oh, Sungho Park. Ready‐to‐Use Free‐Standing Super‐Powder Made with Complex Nanoparticles for SERS. Advanced Materials 2024, 36 (26) https://doi.org/10.1002/adma.202400068
    38. Betül Küçüköz, Oleg V. Kotov, Adriana Canales, Alexander Yu. Polyakov, Abhay V. Agrawal, Tomasz J. Antosiewicz, Timur O. Shegai. Quantum trapping and rotational self-alignment in triangular Casimir microcavities. Science Advances 2024, 10 (17) https://doi.org/10.1126/sciadv.adn1825
    39. Ylli Conti, Naihao Chiang, Leonardo Scarabelli. Colloidal Plasmonic Metasurfaces for the Enhancement of Non‐Linear Optical Processes and Molecular Spectroscopies. ChemNanoMat 2024, 10 (4) https://doi.org/10.1002/cnma.202300566
    40. Zhiming Chen, An Cao, Dilong Liu, Zhaoting Zhu, Fan Yang, Yulong Fan, Rui Liu, Zhulin Huang, Yue Li. Self‐Confined Dewetting Mechanism in Wafer‐Scale Patterning of Gold Nanoparticle Arrays with Strong Surface Lattice Resonance for Plasmonic Sensing. Advanced Science 2024, 11 (12) https://doi.org/10.1002/advs.202306239
    41. Guohua Liu. Thermoplasmonic Materials. 2024, 41-76. https://doi.org/10.1007/978-981-97-8332-8_3
    42. Oscar F. Silvestre, Anish Rao, Luis M. Liz-Marzán. Self-assembled colloidal gold nanoparticles as substrates for plasmon enhanced fluorescence. European Journal of Materials 2023, 3 (1) https://doi.org/10.1080/26889277.2023.2202676
    43. Jakob Reichstein, Stephan Müssig, Susanne Wintzheimer, Karl Mandel. Communicating Supraparticles to Enable Perceptual, Information‐Providing Matter. Advanced Materials 2023, 35 (49) https://doi.org/10.1002/adma.202306728
    44. Ylli Conti, Nicolas Passarelli, Jose Mendoza-Carreño, Leonardo Scarabelli, Agustin Mihi. Colloidal Silver Nanoparticle Plasmonic Arrays for Versatile Lasing Architectures via Template‐Assisted Self‐Assembly. Advanced Optical Materials 2023, 11 (23) https://doi.org/10.1002/adom.202300983
    45. Bereket Dalga Dana, Ji Boyu, Jingquan Lin, Longnan Li, Alemayehu Nana Koya, Wei Li. Hybrid Plasmonic Modes for Enhanced Refractive Index Sensing. Advanced Sensor Research 2023, 2 (12) https://doi.org/10.1002/adsr.202300066
    46. Yuhe Shen, Chaoxuan Wang, Zekai Liu, Xuelin Zhang, Rongxin Su, Yuefei Wang, Wei Qi. Multicomponent structural color membrane based on soft lithography array for high-sensitive Raman detection. Journal of Colloid and Interface Science 2023, 652 , 518-528. https://doi.org/10.1016/j.jcis.2023.08.066
    47. Yi‐Yu Cai, Yun Chang Choi, Cherie R. Kagan. Chemical and Physical Properties of Photonic Noble‐Metal Nanomaterials. Advanced Materials 2023, 35 (34) https://doi.org/10.1002/adma.202108104
    48. Yi‐Yu Cai, Asma Fallah, Shengsong Yang, Yun Chang Choi, Jun Xu, Aaron Stein, James M. Kikkawa, Christopher B. Murray, Nader Engheta, Cherie R. Kagan. Open and Close‐Packed, Shape‐Engineered Polygonal Nanoparticle Metamolecules with Tailorable Fano Resonances. Advanced Materials 2023, 35 (33) https://doi.org/10.1002/adma.202301323
    49. Xinyu Wen, Shikai Deng. Plasmonic Nanostructure Lattices for High‐Performance Sensing. Advanced Optical Materials 2023, 11 (16) https://doi.org/10.1002/adom.202300401
    50. Seyed M. Sadeghi, Dustin T. Roberts. Impact of coherent coupling of plasmonic dipole modes in far-field scattering of templated metallic nanoislands. Physical Review A 2023, 108 (2) https://doi.org/10.1103/PhysRevA.108.023512
    51. Marek Bekir, Marcel Sperling, Daniela Vasquez Muñoz, Cevin Braksch, Alexander Böker, Nino Lomadze, Mihail N. Popescu, Svetlana Santer. Versatile Microfluidics Separation of Colloids by Combining External Flow with Light‐Induced Chemical Activity. Advanced Materials 2023, 35 (25) https://doi.org/10.1002/adma.202300358
    52. Ayoub Laghrissi, Prince Gupta, Horst-Günter Rubahn, Jacek Fiutowski. Rapid template-assisted self-assembly: a practical route to the fast assembly of colloidal particles. Journal of Nanoparticle Research 2023, 25 (6) https://doi.org/10.1007/s11051-023-05755-w
    53. Leonardo Scarabelli. Towards Electrochemiluminescence Microscopy Exploration of Plasmonic‐Mediated Phenomena at the Single‐Nanoparticle Level. Angewandte Chemie 2023, 135 (13) https://doi.org/10.1002/ange.202217614
    54. Leonardo Scarabelli. Towards Electrochemiluminescence Microscopy Exploration of Plasmonic‐Mediated Phenomena at the Single‐Nanoparticle Level. Angewandte Chemie International Edition 2023, 62 (13) https://doi.org/10.1002/anie.202217614
    55. Jose Mendoza‐Carreño, Pau Molet, Clara Otero‐Martínez, Maria Isabel Alonso, Lakshminarayana Polavarapu, Agustín Mihi. Nanoimprinted 2D‐Chiral Perovskite Nanocrystal Metasurfaces for Circularly Polarized Photoluminescence. Advanced Materials 2023, 128 , 2210477. https://doi.org/10.1002/adma.202210477
    56. Anastasiia O. Krushynska, Daniel Torrent, Alejandro M. Aragón, Raffaele Ardito, Osama R. Bilal, Bernard Bonello, Federico Bosia, Yi Chen, Johan Christensen, Andrea Colombi, Steven A. Cummer, Bahram Djafari-Rouhani, Fernando Fraternali, Pavel I. Galich, Pedro David Garcia, Jean-Philippe Groby, Sebastien Guenneau, Michael R. Haberman, Mahmoud I. Hussein, Shahram Janbaz, Noé Jiménez, Abdelkrim Khelif, Vincent Laude, Mohammad J. Mirzaali, Pawel Packo, Antonio Palermo, Yan Pennec, Rubén Picó, María Rosendo López, Stephan Rudykh, Marc Serra-Garcia, Clivia M. Sotomayor Torres, Timothy A. Starkey, Vincent Tournat, Oliver B. Wright. Emerging topics in nanophononics and elastic, acoustic, and mechanical metamaterials: an overview. Nanophotonics 2023, 12 (4) , 659-686. https://doi.org/10.1515/nanoph-2022-0671
    57. Lifeng Wang, Zhiwei Li. Smart Nanostructured Materials for SARS-CoV-2 and Variants Prevention, Biosensing and Vaccination. Biosensors 2022, 12 (12) , 1129. https://doi.org/10.3390/bios12121129
    58. Oriol Colomer-Ferrer, Serni Toda Cosi, Ylli Conti, David E. Medina-Quiroz, Leonardo Scarabelli, Agustin Mihi. Pre- and post-assembly modifications of colloidal plasmonic arrays: the effect of size distribution, composition and annealing. Journal of Materials Chemistry C 2022, 10 (37) , 13913-13921. https://doi.org/10.1039/D2TC01148D
    59. Gail A. Vinnacombe‐Willson, Ylli Conti, Steven J. Jonas, Paul S. Weiss, Agustín Mihi, Leonardo Scarabelli. Surface Lattice Plasmon Resonances by Direct In Situ Substrate Growth of Gold Nanoparticles in Ordered Arrays. Advanced Materials 2022, 34 (37) https://doi.org/10.1002/adma.202205330
    60. Grégory Barbillon. Au Nanoparticles Coated ZnO Film for Chemical Sensing by PIERS Coupled to SERS. Photonics 2022, 9 (8) , 562. https://doi.org/10.3390/photonics9080562
    61. Kosuke Sugawa, Yutaro Hayakawa, Yukiko Aida, Yuto Kajino, Kaoru Tamada. Two-dimensional assembled PVP-modified silver nanoprisms guided by butanol for surface-enhanced Raman scattering-based invisible printing platforms. Nanoscale 2022, 14 (26) , 9278-9285. https://doi.org/10.1039/D2NR01725C
    62. Jessi E.S. van der Hoeven, Harith Gurunarayanan, Maarten Bransen, D.A. Matthijs de Winter, Petra E. de Jongh, Alfons van Blaaderen. Silica‐Coated Gold Nanorod Supraparticles: A Tunable Platform for Surface Enhanced Raman Spectroscopy. Advanced Functional Materials 2022, 32 (27) https://doi.org/10.1002/adfm.202200148
    63. Dorota Grzelak, Martyna Tupikowska, David Vila‐Liarte, Dominik Beutel, Maciej Bagiński, Sylwia Parzyszek, Monika Góra, Carsten Rockstuhl, Luis M. Liz‐Marzán, Wiktor Lewandowski. Liquid Crystal Templated Chiral Plasmonic Films with Dynamic Tunability and Moldability. Advanced Functional Materials 2022, 32 (16) https://doi.org/10.1002/adfm.202111280

    Accounts of Materials Research

    Cite this: Acc. Mater. Res. 2021, 2, 9, 816–827
    Click to copy citationCitation copied!
    https://doi.org/10.1021/accountsmr.1c00106
    Published August 12, 2021
    Copyright © 2021 Accounts of Materials Research. Co-published by ShanghaiTech University and American Chemical Society. All rights reserved.

    Article Views

    4374

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.