Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Molecular Recognition of GalNAc in Mucin-Type O-Glycosylation
My Activity
  • Open Access
Article

Molecular Recognition of GalNAc in Mucin-Type O-Glycosylation
Click to copy article linkArticle link copied!

  • Ignacio Sanz-Martinez
    Ignacio Sanz-Martinez
    Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
    Department of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
  • Sandra Pereira
    Sandra Pereira
    Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
    Department of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
  • Pedro Merino*
    Pedro Merino
    Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
    Department of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
    *E-mail: [email protected]
    More by Pedro Merino
  • Francisco Corzana*
    Francisco Corzana
    Department of Chemistry, Centro de Investigación en Síntesis Química, University of La Rioja, Madre de Dios 53, 26006 Logroño, Spain
    *E-mail: [email protected]
  • Ramon Hurtado-Guerrero*
    Ramon Hurtado-Guerrero
    Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
    Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen DK-2200, Denmark
    Fundación ARAID, 50018 Zaragoza, Spain
    *E-mail: [email protected]
Open PDF

Accounts of Chemical Research

Cite this: Acc. Chem. Res. 2023, 56, 5, 548–560
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.accounts.2c00723
Published February 23, 2023

Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!
Conspectus

N-Acetylgalactosamine (GalNAc)-type O-glycosylation is an essential posttranslational modification (PTM) that plays fundamental roles in biology. Malfunction of this PTM is exemplified by the presence of truncated O-glycans in cancer. For instance, the glycoprotein MUC1 is overexpressed in many tumor tissues and tends to carry simple oligosaccharides that allow for the presentation of different tumor-associated antigens, such as the Tn or sTn antigens (GalNAc-α-1-O-Thr/Ser and Neu5Acα2-6GalNAcα1-O-Ser/Thr, respectively). In other cases, such as tumoral calcinosis associated with O-glycosylation of the fibroblast growth factor 23, O-glycans are absent or less abundant. Significant progress has been made in determining the three-dimensional structures of biomolecules that recognize GalNAc, such as antibodies, lectins, mucinases, GalNAc-transferases, and other glycosyltransferases. Analysis of the complexes between these entities and GalNAc-containing glycopeptides, in most cases derived from crystallographic or NMR analysis, provides an understanding of the key structural elements that control molecular recognition of these glycopeptides. Here, we describe and compare the binding sites of these proteins in detail, focusing on how the GalNAc moieties interact selectively with them. We also summarize the differences and similarities in GalNAc recognition. In general, the recognition of GalNAc-containing glycopeptides is determined by hydrogen bonds between hydroxyl groups and the N-acetyl group of GalNAc with proteins, as well as CH-π contacts in which the hydrophobic α-face of the sugar and the methyl group of NHAc can be involved. The latter interaction usually provides the basis for selectivity. It is worth noting that binding of these glycopeptides depends primarily on recognition of the sugar moiety, with some exceptions such as a few anti-MUC1 antibodies that primarily recognize the peptide backbone and use the sugar to facilitate shape complementarity or to establish a limited number of interactions with the protein. Focusing specifically on the GalNAc moiety, we can observe that there is some degeneracy of interactions within the same protein families, likely due to substrate flexibility. However, when all studied proteins are considered together, despite the commonalities within each protein family, no pattern can be discerned between the different families, apart from the presence of common residues such as Tyr, His, or Asp, which are responsible for hydrogen bonds. The lack of a pattern can be anticipated, given the diverse functions of mucinases, glycosyltransferases, antibodies, and lectins. Finally, it is important to point out that the conformational differences observed in solution in glycopeptides bearing GalNAc-α-1-O-Ser or GalNAc-α-1-O-Thr also can be found in the bound state. This unique characteristic is exploited, for instance, by the enzyme C1GalT1 to broadly glycosylate both acceptor substrates. The findings summarized in this review may contribute to the rational structure-guided development of therapeutic vaccines, novel diagnostic tools for early cancer detection, and new cancer treatments for cancer with tailored anti-Tn or anti-STn antibodies or new drugs to inhibit GalNAc-T isoenzymes.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2023 The Authors. Published by American Chemical Society

Key References

Click to copy section linkSection link copied!

  • de Las Rivas, M.; Paul Daniel, E. J.; Narimatsu, Y.; Compañón, I.; Kato, K.; Hermosilla, P.; Thureau, A.; Ceballos-Laita, L.; Coelho, H.; Bernadó, P.; Marcelo, F.; Hansen, L.; Maeda, R.; Lostao, A.; Corzana, F.; Clausen, H.; Gerken, T. A.; Hurtado-Guerrero, R. Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3. Nat. Chem. Biol.2020, 16, 351–360. (1) GalNAc-T3 specifically glycosylates the fibroblast growth factor 23 (FGF23), regulating its physiological function. Here we present compelling evidence that FGF23 is a poor substrate of GalNAc-T3, implying that this inefficient glycosylation of FGF23 is the key limiting step in regulating intact biological active FGF23 and phosphate homeostasis.

  • González-Ramírez, A. M.; Grosso, A. S.; Yang, Z.; Compañón, I.; Coelho, H.; Narimatsu, Y.; Clausen, H.; Marcelo, F.; Corzana, F.; Hurtado-Guerrero, R. Structural basis for the synthesis of the core 1 structure by C1GalT1. Nat. Commun.2022, 13, 2398. (2) The glycosyltransferase C1GalT1 directs a key step in protein O-glycosylation that is important for the expression of the cancer-associated Tn and T antigens. Here, we provide molecular insights into the function of C1GalT1 by solving the crystal structure of the Drosophila enzyme–substrate complex.

  • Taleb, V.; Liao, Q.; Narimatsu, Y.; García-García, A.; Compañón, I.; Borges, R. J.; González-Ramírez, A. M.; Corzana, F.; Clausen, H.; Rovira, C.; Hurtado-Guerrero, R. Structural and mechanistic insights into the cleavage of clustered O-glycan patches-containing glycoproteins by mucinases of the human gut. Nat. Commun.2022, 13, 4324. (3) AM0627 is a bis-O-glycan mucinase that might work in the last steps of degradation of the mucus, thus providing a source of carbon and nitrogen for Akkermansia muciniphila. Here, we provide molecular insights into AM0627 function from X-ray crystallography and computer simulations.

  • Bermejo, I. A.; Usabiaga, I.; Compañón, I.; Castro-López, J.; Insausti, A.; Fernández, J. A.; Avenoza, A.; Busto, J. H.; Jiménez-Barbero, J.; Asensio, J. L.; Peregrina, J. M.; Jiménez-Osés, G.; Hurtado-Guerrero, R.; Cocinero, E. J.; Corzana, F. Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition. J. Am. Chem. Soc.2018, 140, 9952–9960. (4) Here we provide experimental evidence for the conformational differences between the two Tn antigens (GalNAc-α-1-O-Thr/Ser) and confirm the importance of water molecules in the 3D structures explored by each antigen.

Introduction

Click to copy section linkSection link copied!

N-Acetylgalactosamine (GalNAc) constitutes one of the 10 essential monosaccharides that, when activated as a sugar nucleotide (UDP-GalNAc), is used to build part of the human glycome. (5) The addition of GalNAc onto Ser/Thr residues (and possibly Tyr) of proteins defines one of the most important, abundant, and complex regulated types of protein O-glycosylation pathways present in eukaryotes, the so-called GalNAc- or mucin-type O-glycosylation. (5−7) This pathway is chiefly found in the densely clustered, heavily glycosylated domains of mucins and mucin-domain-containing glycoproteins (Figure 1). However, it is also clear that many other proteins contain isolated sites of GalNAc-O-glycosylation, where more than ∼5000 human proteins trafficking the secretory pathway have been identified to date containing one or more mucin-type O-glycans. (8)

Figure 1

Figure 1. Scheme of the mucin-type O-glycosylation pathway. All of the GTs involved in initiation and core extension are mentioned together with the stereochemistry and glycosidic linkages. The proteins under review in this Account are highlighted in red.

The O-glycosylation pathway is initiated by a large family of GalNAc-transferases (GalNAc-Ts). These enzymes orchestrate with high fidelity the initial patterns of O-glycosylation on diverse proteins, including the high-density regions in mucins, where 30–50% of the amino acids may be glycosylated. (9) After the synthesis of the Tn antigen by the GalNAc-Ts, core extension takes place by different glycosyltransferases (GTs). Of particular relevance are C1GalT1, which needs the assistance of the Cosmc chaperone to be functional, and B3GNT6 because they synthesize core 1 and core 3, which act as substrates for core 2 and core 4 production, respectively. (10) Elongation/branching steps elaborate further the different core structures that are terminated by a capping step (Figure 1).
Mucinases, a type of O-glycoprotease that depends on neighboring O-glycans for activity, play a fundamental role in degrading mucins as an important step for infectivity (11,12) or as a nutrient source. (3) Therefore, mucin-type O-glycans can function by acting as a shield and nutrient source for pathogenic microorganisms and commensals/symbionts, respectively, (13) and have additional roles in protecting proteins from proteolytic cleavage (1,14,15) and mediating binding of protein receptors toward their protein ligands. Due to these functions, mucin-type O-glycans may conceivably interact with almost all physiological processes. (16) However, the importance of this pathway is not reflected by the single knockouts of GalNAc-T genes in mice, which lead to mild or absent phenotypes likely due to the redundant activities between these isoenzymes. (17) On the contrary, the knockouts of either C1GalT1 or Cosmc are essential at the embryonic level, emphasizing the relevance of this pathway in physiology. (18,19)
At a disease level and particularly in cancer, the controversial relocation of GalNAc-Ts from their usual location in the Golgi apparatus to the endoplasmic reticulum (20,21) and the well-accepted hypermethylation of the Cosmc promoter leading to its silencing (22) together with overexpression of ST6GalNAc-I (Figure 1), (23) have been suggested to be behind of the presence of truncated and aberrant O-glycans. (22) These are tumor-associated carbohydrate antigens (TACAs) found in clinical specimens of different types of cancers, with the most relevant ones being the Tn, T (or core 1, Galβ1-3GalNAc-α-1-O-Thr/Ser), and STn antigens. Due to the importance of these TACAs in cancer, numerous antibodies have been developed for cancer treatment and as diagnostic tools. (24) Lectins such as the human macrophage galactose lectin (MGL) also bind to these TACAs and particularly to Tn antigen, which makes this protein useful for therapeutic applications. (25)
In this Account, we focus on enzymes, antibodies, and lectins (Figure 1) that recognize the GalNAc moiety in glycopeptides. To this end, we will show examples from our laboratories of 3D structures of these proteins in complex with glycopeptides determined by X-ray crystallography or NMR experiments. We will also discuss the commonalities between these different systems in recognition of this important monosaccharide.

Key Elements in GalNAc-Ts for Substrate Recognition

GalNAc-T isoenzymes display an N-terminal GT-A fold catalytic domain followed by a C-terminal lectin domain connected by a flexible linker. For optimal binding to UDP-GalNAc, a metal, particularly manganese, is required. This is facilitated by a DxH motif and an additional His residue that coordinates the metal (Figure 2A). (26−28) Additionally, the catalytic domain contains a flexible loop that adopts two conformations, resulting in either an inactive (open flexible loop) or active form (closed flexible loop) (Figure 2B). (27) Prior to our work in this field, it was already established how GalNAc-T2 interacts with naked peptides, (27) but the catalytic mechanism and the molecular basis of how these isoenzymes recognize glycopeptides were unknown.

Figure 2

Figure 2. Five structural features define GalNAc-Ts functions. (A) Overall structure of GalNAc-T4. The catalytic and lectin domains are colored in gray, and the interdomain flexible linker is in red. The catalytic domain flexible loop, UDP, the glycopeptides, and the GalNAc moieties are depicted in yellow, brown, green, and orange, respectively. The inset shows the coordination geometry of Mn2+. (B) (Upper panel) Surface representation of the inactive form of GalNAc-T2 and the active form of GalNAc-T2. (Lower panel) Catalytic cycle of GalNAc-T2. (C) (Left panel) View of the complete sugar-nucleotide, peptide, and lectin-domain binding sites of GalNAc-T4. (Right panel) Close-up view of the GalNAc-binding sites of the lectin and catalytic domains. The residues of the lectin domain engaged in recognition of the GalNAc moieties are indicated in magenta. (D) (Upper panel) Surface representation of different GalNAc-Ts showing the location of the lectin domain GalNAc-binding sites in the overall structures. Note that GalNAc-T1 has two potential functional GalNAc-binding sites. (Lower panel) Scheme illustrating the different types of O-glycosylation and preferences found for GalNAc-T2 and T4.

We managed to trap different structures that enabled us to determine the catalytic cycle of GalNAc-T2. (29) This, together with our group’s characterization of an inactive GalNAc-T2 (F104S) mutant, which is responsible for low levels of high-density lipoprotein cholesterol in humans, (30) prompted us to propose a UDP-GalNAc-dependent induced-fit mechanism within an overall BiBi kinetic mechanism (see Figure 2B for details of the mechanism). (31) Metadynamics calculations of trapped complexes indicated that GalNAc-T2 follows the typical front-face SNi-type reaction, where the β-phosphate acts as the catalytic base. (29) Note that the interactions of GalNAc-T2 with the UDP-GalNAc moiety are discussed in ref (29). Additionally, we hypothesized that the preference of these isoenzymes for glycosylating Thr over Ser residues was due to the Thr methyl group interacting with nearby hydrophobic/aromatic residues. (29) This was supported by kinetic experiments using different GalNAc-T isoenzymes. (32)
To figure out how these isoenzymes interact with the GalNAc moiety to direct either long-range or neighboring O-glycosylation, we trapped several crystal structures of GalNAc-Ts complexed to different glycopeptides. (1,33−35) Five features that were indispensable for the recognition of the glycopeptides were revealed. (i) The first feature is the peptide-binding site that is required to recognize the peptide sequences. For example, whereas for the GalNAc-T4-UDP-Mn2+-diglycopeptide 6 complex, most of the direct interactions with the peptide were hydrogen bonds (H-bonds) and to a lesser extent hydrophobic interactions (Figure 2C); (33) for the GalNAc-T2-UDP-Mn2+-MUC5AC-13 complex, most of the direct interactions were hydrophobic with few direct H-bond interactions. (34) Three highly conserved aromatic residues (Phe284, Phe364, and Trp286 in GalNAc-T4) were key residues in the recognition of common peptide motifs such as Pro-X-Pro (X is a small hydrophobic residue) found in acceptor substrates. These examples together with our structures of GalNAc-T3 with glycopeptides illustrated the differences and similarities between these isoenzymes at the peptide-binding site level, which are likely behind the redundancy found for some of the isoenzymes and even the specificity for GalNAc-T3 and GalNAc-T11 toward FGF23 (1) and LA repeats of low-density lipoprotein receptor (LDLR)-related proteins, respectively. (36) (ii) The flexible loop not only is involved in the catalytic cycle but also contributes to the recognition of the peptide sequences, as seen, for example, for the interactions between Arg372GalNAc-T4 with the diglycopeptide 6 (Figure 2C). Of special interest was our study of how the less stable flexible loop closed conformation and the interaction of the acceptor site of a FGF23 glycopeptide with UDP β-phosphate together with the unusual conformation of Trp385 explained why GalNAc-T3 was a poor enzyme on glycosylating FGF23. Note that Trp385, which is conserved between all isoenzymes except in those of the Y family in which the Trp residue is replaced by a Tyr residue, (37) is highly important in catalysis and also adopts different conformations through the catalytic cycle. (29) (iii) Isoenzymes such as GalNAc-T4, T7, T10, and T12 were predicted to contain an additional GalNAc-binding site in the catalytic domain to account for their neighboring O-glycosylation capacity. (38) This was demonstrated by our structure of GalNAc-T4 complexed to the diglycopeptide 6 (Figure 2C). In particular, the GalNAc moiety was mainly recognized by H-bond interactions and to a minor extent by hydrophobic contacts. (33) We explained why GalNAc-T4 is capable of glycosylating acceptor sites located at +1 with respect to a prior contiguous glycosite (Figure 2D). The molecular basis of the neighboring glycosylation of GalNAc-T12 was further provided, explaining why this isoenzyme prefers to glycosylate acceptor sites located at −1 from a prior glycosite. (39) For other isoenzymes such as GalNAc-T7 and T10, the molecular basis of how they glycosylate proximal sites from a prior glycosite is not known and merits further investigation. (iv) Our structures also provided the molecular basis of how a distant glycosite from potential acceptor sites can direct long-range O-glycosylation. It is well-accepted that these isoenzymes contain three potential GalNAc-binding sites in the lectin domain. All our structures revealed a single functional GalNAc-binding site, located on opposing sides of the lectin domain when the overall structures were superimposed (Figure 2C and D). The latter clearly explained why isoenzymes such as GalNAc-T2 had different long-range glycosylation preferences to those of GalNAc-T3 or T4 (see Figure 2D). Although it was demonstrated that the peptide sequences around the O-glycosite influenced O-glycosylation in a lectin-dependent manner, (40) in all of our structures the GalNAc moiety was mainly the only feature recognized by hydrogen bonds and CH-π interactions by mostly conserved residues of the lectin domain (Figure 2C). (v) Finally, to solve why the lectin GalNAc-binding site was located in different sides of the lectin domain depending on the isoenzyme, we conducted molecular dynamics (MD) simulations of GalNAc-T2 chimeras and kinetics experiments that revealed that the flexible linker was responsible for the location of the GalNAc-binding site in the lectin domain. This exemplified for the first time that the flexible linker was responsible for the location of the GalNAc-binding site in the lectin domain, which clearly is behind the different long-range glycosylation preferences. (35) A previous study from our group further demonstrated that the flexible linker is also responsible for the dynamics of these isoenzymes, explaining why they can adopt compact and extended forms in solution. (34)
Nevertheless, more experiments are needed to determine, for example, how GalNAc-T11 glycosylates LA repeats or GalNAc-T7/T10 to achieve multiple O-glycosylations mainly in mucins. Other functions such as the hierarchical functions of these isoenzymes on complex substrates such as MUC1 has been revealed recently by using a combination of NMR and computational experiments. (41)

Molecular Recognition of GalNAc O-Glycans by C1GalT1

We have recently reported the X-ray structure of Drosophila melanogaster C1GalT1 (DmC1GalT1), which does not appear to require a chaperone for expression, in complex with the MUC1-related glycopeptide APDT*RP (* denotes GalNAc). (2) This enzyme is responsible for adding a galactose at carbon 3 of GalNAc through a β-O-glycosidic linkage to form core 1. The GalNAc moiety of the glycopeptide forms several H-bonds with the enzyme, while the peptide sequence is recognized by hydrogen bonds and CH-π interactions (Figure 3A). Thus, in contrast to the lectin domain of GalNAc-Ts described earlier, in this enzyme the sugar does not establish CH-π interactions with the aromatic residues.

Figure 3

Figure 3. Molecular recognition of glycopeptides by C1GalT1. (A) Close-up view of the active site for the DmC1GalT1-UDP-APDT*RP complex (PDB entry 7Q4I). The carbon atoms of the residues interacting with the glycopeptide are shown in magenta. The UDP carbon atoms are shown in gray. (B) Main conformation found in solution for the Tn antigen with Thr GalNAc-α-1-O-Thr (left panel) and for the Tn antigen with Ser GalNAc-α-1-O-Thr (right panel). The CH-π interaction between the methyl group of Thr4 and Trp300 is shown by the black dashed line.

The crystal structure shows that the glycosidic bond of α-GalNAc-Thr has a staggered conformation (torsion angle ψ ≈ 180°, Figure 3B) that does not occur in aqueous solution for the Tn-Thr-containing glycopeptides but is exhibited by the Ser variant. (4,42) MD simulations performed for DmC1GalT1 in complex with UDP and APDT*RP glycopeptide also predicted the staggered conformation for the GalNAc-α-1-O-Ser moiety and demonstrated that the eclipsed conformation fixed in α-GalNAc-Thr displayed a loss of interactions between the peptide and the enzyme compared to those found in the X-ray structure. On this basis, we hypothesize that C1GalT1 recognizes a high-energy conformation of the GalNAc-α-1-O-Thr linkage that somehow compensated for the additional CH-π interaction observed for the methyl group of Tn-Thr (see black dashed line in Figure 3A between this group and Trp300). As a result, the enzyme exhibits a comparable affinity for both Tn-Ser and Tn-Thr.

Molecular Recognition of GalNAc O-Glycans by Mucinases

The enzymatic action of mucinases depends on prior recognition of an O-glycopeptide by the enzyme, and GalNAc is a crucial moiety for this purpose. Only five mucinases (AM0627, BT4244, IMPA, ZmpB, and ZmpC) have been fully characterized to date. The different structural characteristics and recognition preferences reveal a notable capacity to adapt to the diverse patterns of the glycopeptides, suggesting an appreciable tolerance for the structure of the O-glycopeptide. On the other hand, mucinases share several similarities with conservation of various residues in the active site, but they vary for others that are responsible for the recognition preferences and specificity of the enzyme.
Common features to all mucinases regarding recognition of GalNAc comprise H-bonds of the N-acetyl group with a Trp and with the backbone of an Asn (or Gln for IMPa) as well as one or two H-bonds between the hydroxyl groups and an Arg. All mucinases have an additional aromatic residue (Phe, Trp, or Tyr) presenting different interactions with GalNAc that could be responsible, in part, for the selectivity to different O-glycopeptides (Figure 4). A residue of Tyr leads to a H-bond with a hydroxyl group of GalNAc in AM0627 and BT4244, (13,43) while in ZmpB and ZmpC a residue of phenylalanine forms a CH-π interaction with the sialic acid. These differences represent the ability of mucinases to accept different O-glycopeptides as mentioned earlier, but with restricted substrate specificities when necessary. (44)

Figure 4

Figure 4. Comparison between the different active sites of mucinases. (A) Superimposition of the active sites of IMPa (green) and BT4244 (cyan) showing main interactions with the sugar units of the O-glycopeptides (orange for IMPa and magenta for BT4244). (B) Superimposition of the active sites of ZmpB (green) and ZmpC (cyan) showing main interactions with the corresponding O-glycopeptides (orange for ZmpB and magenta for ZmpC). (C) Superimposition of the active sites of complexes formed between BT4244 (cyan) and AM0627 (green) with a Tn O-glycan (magenta) and bis-T-glycopeptide (orange), respectively. PDB entries for the structures of AM0627, IMPa, BT4244, ZmpB, and ZmpC are 7SCI, 5KDX, 5KD8, 5KDU, and 6XT1, respectively.

Whereas ZmpB, ZmpC, and IMPa only recognize monoglycosylated peptides, mucinases like AM0627 and BT4244 are capable of recognizing bis-O-glycans through Tyr470 (AM0627) and likely Tyr723 (BT4244) by forming H-bond interactions with O6 of GalNAc and CH-π interactions with GalNAc. The importance of this interaction has been experimentally confirmed to be essential for their activity. (3)

Molecular Recognition of GalNAc by Antibodies

Anti-MUC1 and anti-Tn antibodies have long been used clinically in cancer diagnosis and therapy. (24,45) Initial efforts were focused on IgG1 antibodies that block MUC1 on the surface of cancer cells. However, anti-MUC1 antibodies have also been conjugated to radioisotopes to use in both imaging and cancer therapy, as well as to small-molecule toxins, resulting in antibody–drug conjugates (ADCs) approved for the treatment of various cancers, including trastuzumab emtansine, brentuximab vedotin, and gemtuzumab ozogamicin. The hypothesis that cancer-specific antibodies can be fused with anti-CD3 antibodies to reverse T-cell-mediated killing in cancer patients has also led to the approval of catumaxomab and blinatumomab. On the other hand, several anti-MUC1 antibodies have been tested for CAR-T cells, such as HFMG-2, SM3, and more recently 5E5. (46) These anti-MUC1 antibodies mainly recognize the peptide fragment, but glycosylation of the peptide epitope generally enhances binding (see below). In some cases, the carbohydrate either promotes proper presentation of the peptide or makes additional contact with the protein. In other cases, the antibody may accurately recognize the GalNAc (or sugar) component, representing the primary epitope binding. (47)
The first high-resolution X-ray structure that shed some light on the role of the GalNAc residue in recognition processes between antibodies and a Tn-glycopeptide was reported for a complex with the 273 antibody and shows that each hydroxyl group of GalNAc forms at least one hydrogen bond with the antibody (Figure 5A). (48) The NH and methyl groups of the acetamide interact via a hydrogen bond and a CH-π interaction with the antibody. The peptide fragment is involved in several hydrogen bonds, and the two Pro residues of the sequence are engaged in CH-π contacts. Of note, the glycosidic linkage of the GalNAc-α-1-O-Thr residue displays the eclipsed conformation found for the Tn-Thr antigen in solution. (4)

Figure 5

Figure 5. Molecular recognition of Tn-glycopeptides by antibodies. (A) Close-up view of the binding site of the 273 mAb bound to the ERGT*KPPLEEL glycopeptide, showing the interactions of the protein with the GalNAc unit (PDB entry 3IET). (B) Close-up view of the binding site of the AR20.5 antibody and the glycopeptide APDT*RP (PDB entry 5T78). (C) Close-up view of the binding site of the SM3 antibody and glycopeptide APDT*RP (PDB entry 5A2K). (D) Close-up view of the binding site of the SN-101 antibody and a MUC1-like glycopeptide (PDB entry 6KX1). Only the interactions between the protein and the GalNAc unit are shown. (E) Close-up view of the binding site of the antibody 5E5 and glycopeptide APGST*AP (PDB entry 6TNP). (F) Close-up view of the binding site of the antibody G10C and αGalNAc-PNP (PDB entry 7UT3). Note that in all panels the residues of the antibody engaged in recognition of the glycopeptides and/or the GalNAc moieties are indicated in magenta.

The X-ray structure of a MUC1-like peptide and the corresponding Tn-glycopeptide bound to the AR20.5 antibody (Figure 5B) underwent a successful phase I clinical trial, showing that the GalNAc moiety has no specific contacts with the antibody. (49) The higher affinity for the glycopeptide compared to the parent peptide indicates that the GalNAc moiety improves the shape compatibility of the peptide with the antibody. Again, the conformation of the glycosidic linkage between GalNAc and Thr recognized by the antibody adopts the eclipsed conformation. Our group provided the first crystal structure of the Tn-glycosylated MUC1 epitope (APDT*RP) with antibody SM3 (Figure 5C). (50) The crystallographic analysis of the structure with the Tn-Thr glycopeptide showed that the GalNAc motif does not significantly affect the conformation of the peptide backbone in the SM3-bound state. The glycosidic linkage of the glycopeptide adopts the expected exoanomeric/syn conformation with an eclipsed arrangement. (4) This geometry allows the formation of an intermolecular hydrogen bond between the hydroxymethyl group of GalNAc and the antibody, and the N-acetyl group of this sugar stacks with the aromatic ring of Trp33H, providing the impetus for the observed selectivity of SM3 for GalNAc-containing antigens. In sharp contrast, the GalNAc moiety in the bound state of the Tn-Ser and Tn-Cys glycopeptides with the SM3 antibody (50) does not establish stabilizing contacts with the protein, and the glycosidic linkage displays a high-energy conformation that is not populated in solution. These results may explain the higher affinity of the SM3 antibody for the glycopeptide with Tn-Thr. (50)
The epitope mapping of a MUC1 library containing peptides and Tn-glycopeptides with several glycosylation sites and two families of cancer-related antibodies has been recently characterized. (51) The first family includes two anti-MUC1 antibodies, VU-3C6 and VU-11E2, that recognize tumor-associated MUC1 in breast cancer. The second group comprises two anti-Tn antibodies, 8D4 and 14D6. In all cases, the H2 proton and the N-acetyl moiety of GalNAc are in contact with the antibody. Interestingly, NMR data suggest that 14D6 and 8D4 antibodies prefer binding to the Tn-Ser over the Tn-Thr. The extra flexibility of the GalNAc-Ser pair may allow the glycopeptide to display the required conformation in the bound state without a significant entropy penalty.
The crystallographic analysis of the antibody SN-101 bound to a Tn-glycopeptide related to MUC1 (Figure 5D) (52) shows that the antibody interacts with the sugar through only two H-bonds. The Tn-Thr antigen displays the glycosidic linkage’s characteristic eclipsed conformation. Related to this, our group has described the X-ray structure of antibody 5E5 with a Tn-glycopeptide derived from APGSTAP, which recognizes the entire GalNAc unit as a primary epitope (Figure 5E). (53) The X-ray structure reveals that all hydroxyl groups of GalNAc, except OH6, are engaged in hydrogen bonds with the antibody. The carbonyl group of the sugar is involved in two hydrogen bonds, and the methyl group is engaged in a CH-π interaction with His50H. The lack of interactions with the hydroxymethyl group explains why this antibody can recognize STn-containing glycopeptides. (54) In addition, the serine residue is exposed to the solvent, which allows the antibody to interact with the diglycosylated peptide. The glycosidic linkage of the glycopeptide in complex with the antibody adopts the typical eclipsed conformation. (4,55) The peptide moiety forms only one hydrogen bond with the protein in the C-terminal region, allowing some degree of promiscuity. Indeed, our studies and others indicate that the antibody might interact with glycopeptides that comprise the −T*–X–P– motif, which is present in the MUC1 tandem-repeat sequence but also in many other proteins.
Antibody G10C, which recognizes GalNAc bound to the side chain of Tyr in natural peptides and proteins with high affinity and selectivity, has been recently developed (Figure 5F). (46) The X-ray structure of G10C-Fab in complex with a GalNAc-Tyr mimic shows that hydroxyl groups and the endocyclic oxygen form hydrogen bonds with the antibody. The hydrogen bonds involving the N-acetyl group explain the selectivity toward this sugar.

Molecular Recognition of GalNAc by Lectins

In the context of cancer, various lectins that bind to Tn-glycopeptides have been successfully employed as biomarkers (56) and cancer progression and anticancer agents. (57) The binding mode in the human macrophage galactose lectin (hMGL) bound to a GalNAc residue, and the Tn-Ser antigen (Figure 6A) (58) is nearly identical for both substrates, with the vicinal groups OH3 and OH4 coordinated with the protein and a structural calcium ion, confirming that this is a Ca2+-dependent (C-type) lectin. The carbonyl group of the acetamide is hydrogen-bonded with the side chain of His286, and its methyl group and the hydrophobic face of the sugar are involved in CH-π interactions. Regarding lectins as biomarkers, there are some other interesting X-ray structures. For example, complexes with the Tn-Ser antigen have been described for Helix pomatia agglutinin (HPA), (59) SNA-II, (60) winged bean lectin (Psophocarpus tetragonolobus), (61) and Vatairea macrocarpa (VML). (62) In these cases, all hydroxyl groups as well as the oxygen of the N-acetyl of the sugar are involved in hydrogen bonds with the residues of the lectin. Except for HPA, CH-π interactions occur with aromatic residues (Phe or Trp) on the α-face of the sugar. Remarkably, the underlying Ser does not interact with the lectin, except at SNA-II. In all of these complexes, the Tn-Ser antigen exhibits a staggered conformation. Recently, the complex between Bauhinia forficata lectin and Tn-containing glycopeptides was reported. (63) The binding of the GalNAc residue and the lectin is shown in Figure 6B. It is noteworthy that the carboxylate group of Glu126 forms hydrogen bonds with both the N-acetyl of GalNAc and the NH of glycosylated threonine, promoting recognition of this MUC1-derived fragment.

Figure 6

Figure 6. Molecular recognition of Tn-glycopeptides by lectins. (A) Close-up view of the binding site of the lectin hMGL bound to Tn-Ser (PDB entry 6W12). (B) Close-up view of the binding site of the Bauhinia forficata lectin bound to a Tn-containing glycopeptide derived from MUC1 (PDB entry 5T5O). (C) Close-up view of the binding site of SBA lectin bound to PDT*R glycopeptide (PDB entry 4D69). Note that in all panels the residues of lectin engaged in the recognition of the glycopeptides and/or the GalNAc moieties are indicated in magenta.

We have reported that the peptide sequence flanking the Tn antigen can modulate Tn recognition by two plant lectins (soybean agglutinin (SBA) and Vicia villosa B-4 agglutinin (VVA)) that show higher affinity for the Tn antigen when incorporated into the most immunogenic peptide region of mucin MUC1 (sequence PDTR). (64) The charged residues Arg and Asp in this sequence provide relevant interactions with the lectin surface likely favoring the presentation of the sugar moiety to the lectin. We could determine by X-ray of SBA lectin bound to the glycopeptide PDT*R (Figure 6C). (64) Interestingly, while two different binding modes were observed for the peptide, the GalNAc unit exhibits the same interaction pattern in both modes. GalNAc-lectins can also discriminate between glycopeptides containing the Tn-Thr or the Tn-Ser, which can be explained by the different conformational behavior and dynamics of these two Tn units. (65)
hMGL and several plant lectins bind with high affinity to GalNAc-Tyr. (66) Saturation transfer difference (STD) NMR experiments between this lectin and a small glycopeptide containing this moiety show that this lectin is in close contact with H1, H4, and the acetamide group of the GalNAc residue, with weaker STD signals observed for the remaining protons. These results indicate close interactions between hMGL and the entire GalNAc residue of the glycopeptide.

Differences and Commonalities between Proteins in Recognizing O-GalNAc Glycans

Click to copy section linkSection link copied!

Molecular recognition of GalNAc-containing glycopeptides strongly depends on the recognition of the sugar moiety, with the exception of some anti-MUC1 antibodies. However, focusing exclusively on the GalNAc unit, a certain level of degeneracy is observed within the same families of the proteins. The flexibility of the substrate might facilitate the variability in the interactions, allowing changes in crucial residues. An example of this situation is observed in ZmpB, (67,68) which has a pocket presenting a considerable basic surface complementary with the acidic carboxylate of a sialic acid unit present in the glycopeptide. The presence of two additional subsites for the sialic acid stabilizes the primary interactions with GalNAc at the active site. A similar situation takes place with mucinase IMPa, which has an open region that is susceptible to forming π-interactions with a Trp, where AM0627 and BT4244 have a Tyr and an Asp residue that interact with 6-OH of GalNAc, blocking recognition of substrates with substituents at that position.
In GalNAc-Ts, the lectin domain presents equivalent residues, leading to similar interactions. (6,34) While most H-bonds and CH-π interactions are conserved for several GalNAc-Ts (see Figure 2C), some nonconserved interactions were observed, such as those found in GalNAc-T3. (1)
Some antibodies, such as SM3, present hydrogen bonds between a residue of Tyr and the hydroxymethyl group of GalNAc, and its methyl group interacts weakly through a CH-π contact with a Tyr residue (see, e.g., PDB entries 5A2K, (48)5OWP, (69) and 6FRJ (70)). For antibody 237-mAB, a stacking interaction between the methyl group of the N-acetyl moiety and a Trp residue was also found. (50)
When all of these proteins are considered together, despite the commonalities that are found inside each family of proteins (Figure 7), there is not an observable pattern between the different families, other than some common residues like Tyr, His, or Asp, which are responsible for hydrogen-bond interactions. This is not surprising because of the different functions exerted by mucinases, glycosyltransferases, antibodies, and lectins. In antibodies the role of GalNAc is not so crucial as in other cases, and recognition is limited to a minimum, although there are some exceptions, such as those found for the 5E5 antibody. In contrast, the affinity of lectins by their ligands is determined by their recognition to the GalNAc moiety by a series of hydrogen bonds, as well as CH-π interactions.

Figure 7

Figure 7. Main common recognition modes for the different families of proteins.

Conclusions and Future Perspectives

Click to copy section linkSection link copied!

This Account demonstrates the important role that the GalNAc moiety plays in the molecular recognition of relevant glycopeptides, such as those that are hallmarks of cancer, by their corresponding biological targets, such as lectins and antibodies. Moreover, GalNAc is an active bystander involved in the synthesis and degradation of O-glycans by GTs and mucinases, respectively, by assisting these enzymes in localizing the glycopeptide in the correct position. At the interaction level, GalNAc is recognized by several hydrogen bonds involving its hydroxyl groups, especially OH3 and OH4, located in the same plane, as well as CH-π interactions, engaging the hydrophobic alpha side of the sugar or the −CH2– of the hydroxymethyl group. In general, selectivity toward this carbohydrate is achieved through hydrogen bonds with the N-acetyl group of GalNAc, which in some cases is complemented by CH-π interactions via the methyl group. The structural information on GalNAc recognition described in this work may be useful in developing drug-design strategies for GTs or mucinases to treat diseases in which they are involved. In addition, the information obtained with antibody and lectin complexes may be a promising tool for developing more effective cancer vaccines as well as tools for cancer diagnosis.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Pedro Merino - Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, SpainDepartment of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, SpainOrcidhttps://orcid.org/0000-0002-2202-3460 Email: [email protected]
    • Francisco Corzana - Department of Chemistry, Centro de Investigación en Síntesis Química, University of La Rioja, Madre de Dios 53, 26006 Logroño, SpainOrcidhttps://orcid.org/0000-0001-5597-8127 Email: [email protected]
    • Ramon Hurtado-Guerrero - Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, SpainCopenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen DK-2200, DenmarkFundación ARAID, 50018 Zaragoza, SpainOrcidhttps://orcid.org/0000-0002-3122-9401 Email: [email protected]
  • Authors
    • Ignacio Sanz-Martinez - Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, SpainDepartment of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
    • Sandra Pereira - Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, SpainDepartment of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
  • Author Contributions

    The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

  • Notes
    The authors declare no competing financial interest.

Biographies

Click to copy section linkSection link copied!

Ignacio Sanz-Martinez received his Bachelor’s and Master’s degrees from the University of Zaragoza (Spain). He joined Prof. Merino’s group in 2019 for his Ph.D. degree in Biological Chemistry. He is exploring the mechanisms of NAc-galactosyltransferases by QM/MM methods.

Sandra Pereira received her Bachelor’s and Master’s degrees from the University of Alcala de Henares (Spain). She joined Prof. Merino’s group in 2017 for her Ph.D. degree in Biological Chemistry, which was focused on the structures of ligands for GalNAc-Ts.

Pedro Merino studied Chemistry at University of Zaragoza (Spain). He obtained his Ph.D. in 1989. After postdoctoral work at University of Ferrara (Italy) with Prof. A. Dondoni, he started his independent career in 1992 at the University of Zaragoza, where he is a Full Professor since 2006. His research interests focus on Chemical Biology with particular focus on glycobiology and elucidation of enzymatic and non-enzymatic reaction mechanisms, using diverse computational methods (DFT, QM/MM, MD, metadynamics).

Francisco Corzana studied Chemistry at the University of La Rioja (Spain) where he obtained his Ph.D. in 2001. As a postdoctoral fellow, he worked with Prof. Jiménez-Barbero and Dr. Asensio in Biological Research Center (CSIC), Madrid. In 2005 he started his research career at the University of La Rioja, where he is currently an Associate Professor. His research interests include synthetic approaches and conformational analysis of O-glycopeptides with applications in cancer therapy and diagnosis.

Ramón Hurtado-Guerrero studied Pharmacy at the University of Granada (Spain). He obtained his Ph.D. in 2001, and subsequently undertook postdoctoral work at the University of Leeds with Professor Mike McPherson, UCL (U.K.) with Professor Vallance, and at the University of Dundee with Professor van Aalten. In 2009, he embarked on his academic career at the University of Zaragoza as a senior ARAID researcher. His research interests include structural glycobiology to elucidate the role of glycans in protein recognition and catalysis.

Acknowledgments

Click to copy section linkSection link copied!

The authors thank the Agencia Estatal de Investigación (AEI) (Projects PID2019-104090RB-100, BFU2016-75633-P and PID2019-105451GB-I00, PID2021-127622OB-I00) for financial support and FPI predoctoral contracts to S.P. and I.S.-M. P.M. and R.H.-G. thank Gobierno de Aragon for financial support (Grupos de Referencia, E34_R17). R.H.-G. also thanks ARAID and the Gobierno de Aragón (Project LMP58_18) with FEDER (2014–2020) funds for “Building Europe from Aragón” and the COST Action CA18103 INNOGLY: Innovation with Glycans new frontiers from synthesis to new biological targets. F.C. thanks the EU (Marie-Sklodowska Curie ITN, DIRNANO, Grant agreement no. 956544), the Mizutani Foundation for Glycoscience (Grant 220115), and Asociación Española Contra el Cáncer (AECC)─La Rioja.

References

Click to copy section linkSection link copied!

This article references 70 other publications.

  1. 1
    de las Rivas, M.; Paul Daniel, E. J.; Narimatsu, Y.; Compañón, I.; Kato, K.; Hermosilla, P.; Thureau, A.; Ceballos-Laita, L.; Coelho, H.; Bernadó, P.; Marcelo, F.; Hansen, L.; Maeda, R.; Lostao, A.; Corzana, F.; Clausen, H.; Gerken, T. A.; Hurtado-Guerrero, R. Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3. Nat. Chem. Biol. 2020, 16, 351360,  DOI: 10.1038/s41589-019-0444-x
  2. 2
    González-Ramírez, A. M.; Grosso, A. S.; Yang, Z.; Compañón, I.; Coelho, H.; Narimatsu, Y.; Clausen, H.; Marcelo, F.; Corzana, F.; Hurtado-Guerrero, R. Structural basis for the synthesis of the core 1 structure by C1GalT1. Nat. Commun. 2022, 13, 2398,  DOI: 10.1038/s41467-022-29833-0
  3. 3
    Taleb, V.; Liao, Q.; Narimatsu, Y.; García-García, A.; Compañón, I.; Borges, R. J.; González-Ramírez, A. M.; Corzana, F.; Clausen, H.; Rovira, C.; Hurtado-Guerrero, R. Structural and mechanistic insights into the cleavage of clustered O-glycan patches-containing glycoproteins by mucinases of the human gut. Nat. Commun. 2022, 13, 4324,  DOI: 10.1038/s41467-022-32021-9
  4. 4
    Bermejo, I. A.; Usabiaga, I.; Compañón, I.; Castro-López, J.; Insausti, A.; Fernández, J. A.; Avenoza, A.; Busto, J. H.; Jiménez-Barbero, J.; Asensio, J. L.; Peregrina, J. M.; Jiménez-Osés, G.; Hurtado-Guerrero, R.; Cocinero, E. J.; Corzana, F. Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition. J. Am. Chem. Soc. 2018, 140, 99529960,  DOI: 10.1021/jacs.8b04801
  5. 5
    Schjoldager, K. T.; Narimatsu, Y.; Joshi, H. J.; Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell. Biol. 2020, 21, 729749,  DOI: 10.1038/s41580-020-00294-x
  6. 6
    de Las Rivas, M.; Lira-Navarrete, E.; Gerken, T. A.; Hurtado-Guerrero, R. Polypeptide GalNAc-Ts: from redundancy to specificity. Curr. Opin. Struct. Biol. 2019, 56, 8796,  DOI: 10.1016/j.sbi.2018.12.007
  7. 7
    Hurtado-Guerrero, R. Recent structural and mechanistic insights into protein O-GalNAc glycosylation. Biochem. Soc. Trans. 2016, 44, 6167,  DOI: 10.1042/BST20150178
  8. 8
    Schjoldager, K. T.; Joshi, H. J.; Kong, Y.; Goth, C. K.; King, S. L.; Wandall, H. H.; Bennett, E. P.; Vakhrushev, S. Y.; Clausen, H. Deconstruction of O-glycosylation--GalNAc-T isoforms direct distinct subsets of the O-glycoproteome. EMBO Rep 2015, 16, 17131722,  DOI: 10.15252/embr.201540796
  9. 9
    Bennett, E. P.; Mandel, U.; Clausen, H.; Gerken, T. A.; Fritz, T. A.; Tabak, L. A. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 2012, 22, 736756,  DOI: 10.1093/glycob/cwr182
  10. 10
    Brockhausen, I.; Schachter, H.; Stanley, P. O-GalNAc Glycans. In Essentials of Glycobiology, 2nd ed.; Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., Etzler, M. E., Eds.; Cold Spring Harbor Laboratory Press: 2008.
  11. 11
    Ho, T. D.; Davis, B. M.; Ritchie, J. M.; Waldor, M. K. Type 2 secretion promotes enterohemorrhagic Escherichia coli adherence and intestinal colonization. Infect. Immun. 2008, 76, 18581865,  DOI: 10.1128/IAI.01688-07
  12. 12
    Nason, R.; Bull, C.; Konstantinidi, A.; Sun, L.; Ye, Z.; Halim, A.; Du, W.; Sorensen, D. M.; Durbesson, F.; Furukawa, S.; Mandel, U.; Joshi, H. J.; Dworkin, L. A.; Hansen, L.; David, L.; Iverson, T. M.; Bensing, B. A.; Sullam, P. M.; Varki, A.; Vries, E.; de Haan, C. A. M.; Vincentelli, R.; Henrissat, B.; Vakhrushev, S. Y.; Clausen, H.; Narimatsu, Y. Nat. Commun. 2021, 12, 4070,  DOI: 10.1038/s41467-021-24366-4
  13. 13
    Shon, D. J.; Kuo, A.; Ferracane, M. J.; Malaker, S. A. Classification, structural biology, and applications of mucin domain-targeting proteases. Biochem.J. 2021, 478, 15851603,  DOI: 10.1042/BCJ20200607
  14. 14
    Schjoldager, K. T.-B. G.; Clausen, H. Site-specific protein O-glycosylation modulates proprotein processing - deciphering specific functions of the large polypeptide GalNAc-transferase gene family. Biochim. Biophys. Acta. 2012, 1820, 20792094,  DOI: 10.1016/j.bbagen.2012.09.014
  15. 15
    Goth, C. K.; Vakhrushev, S. Y.; Joshi, H. J.; Clausen, H.; Schjoldager, K. T. Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends Biochem. Sci. 2018, 43, 269284,  DOI: 10.1016/j.tibs.2018.02.005
  16. 16
    Wandall, H. H.; Nielsen, M. A. I.; King-Smith, S.; de Haan, N.; Bagdonaite, I. Global functions of O-glycosylation: promises and challenges in O-glycobiology. FEBS J. 2021, 288, 71837212,  DOI: 10.1111/febs.16148
  17. 17
    Brockhausen, I.; Wandall, H. H.; Hagen, K. G. T.; Stanley, P. O-GalNAc Glycans. In Essentials of Glycobiology, 4th ed.; Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., Seeberger, P. H., Eds.; Cold Spring Harbor Laboratory Press: 2022; pp 117128.
  18. 18
    Xia, L.; Ju, T.; Westmuckett, A.; An, G.; Ivanciu, L.; McDaniel, J. M.; Lupu, F.; Cummings, R. D.; McEver, R. P. Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J. Cell Biol. 2004, 164, 451459,  DOI: 10.1083/jcb.200311112
  19. 19
    Wang, Y.; Ju, T.; Ding, X.; Xia, B.; Wang, W.; Xia, L.; He, M.; Cummings, R. D. Cosmc is an essential chaperone for correct protein O-glycosylation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 92289233,  DOI: 10.1073/pnas.0914004107
  20. 20
    Gill, D. J.; Tham, K. M.; Chia, J.; Wang, S. C.; Steentoft, C.; Clausen, H.; Bard-Chapeau, E. A.; Bard, F. A. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, E31523161,  DOI: 10.1073/pnas.1305269110
  21. 21
    Herbomel, G. G.; Rojas, R. E.; Tran, D. T.; Ajinkya, M.; Beck, L.; Tabak, L. A. The GalNAc-T Activation Pathway (GALA) is not a general mechanism for regulating mucin-type O-glycosylation. PLoS One 2017, 12, e0179241  DOI: 10.1371/journal.pone.0179241
  22. 22
    Radhakrishnan, P.; Dabelsteen, S.; Madsen, F. B.; Francavilla, C.; Kopp, K. L.; Steentoft, C.; Vakhrushev, S. Y.; Olsen, J. V.; Hansen, L.; Bennett, E. P.; Woetmann, A.; Yin, G.; Chen, L.; Song, H.; Bak, M.; Hlady, R. A.; Peters, S. L.; Opavsky, R.; Thode, C.; Qvortrup, K.; Schjoldager, K. T.; Clausen, H.; Hollingsworth, M. A.; Wandall, H. H. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, E40664075,  DOI: 10.1073/pnas.1406619111
  23. 23
    Marcos, N. T.; Pinho, S.; Grandela, C.; Cruz, A.; Samyn-Petit, B.; Harduin-Lepers, A.; Almeida, R.; Silva, F.; Morais, V.; Costa, J.; Kihlberg, J.; Clausen, H.; Reis, C. A. Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-Tn antigen. Cancer Res. 2004, 64, 70507057,  DOI: 10.1158/0008-5472.CAN-04-1921
  24. 24
    Martínez-Sáez, N.; Peregrina, J. M.; Corzana, F. Principles of mucin structure: implications for the rational design of cancer vaccines derived from MUC1-glycopeptides. Chem. Soc. Rev. 2017, 46, 71547175,  DOI: 10.1039/C6CS00858E
  25. 25
    Bulteau, F.; Thépaut, M.; Henry, M.; Hurbin, A.; Vanwonterghem, L.; Vivès, C.; Le Roy, A.; Ebel, C.; Renaudet, O.; Fieschi, F.; Coll, J.-L. Targeting Tn-Antigen-Positive Human Tumors with a Re combinant Human Macrophage Galactose C-Type Lectin. Mol. Pharmaceutics 2022, 19, 235245,  DOI: 10.1021/acs.molpharmaceut.1c00744
  26. 26
    Fritz, T. A.; Hurley, J. H.; Trinh, L. B.; Shiloach, J.; Tabak, L. A. The beginnings of mucin biosynthesis: the crystal structure of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-T1. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 1530715312,  DOI: 10.1073/pnas.0405657101
  27. 27
    Fritz, T. A.; Raman, J.; Tabak, L. A. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. J. Biol. Chem. 2006, 281, 86138619,  DOI: 10.1074/jbc.M513590200
  28. 28
    Kubota, T.; Shiba, T.; Sugioka, S.; Furukawa, S.; Sawaki, H.; Kato, R.; Wakatsuki, S.; Narimatsu, H. Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). J. Mol. Biol. 2006, 359, 708727,  DOI: 10.1016/j.jmb.2006.03.061
  29. 29
    Lira-Navarrete, E.; Iglesias-Fernandez, J.; Zandberg, W. F.; Companon, I.; Kong, Y.; Corzana, F.; Pinto, B. M.; Clausen, H.; Peregrina, J. M.; Vocadlo, D. J.; Rovira, C.; Hurtado-Guerrero, R. Substrate-Guided Front-Face Reaction Revealed by Combined Structural Snapshots and Metadynamics for the Polypeptide N-Acetylgalactosaminyltransferase 2. Angew. Chem., Int. Ed. 2014, 53, 82068210,  DOI: 10.1002/anie.201402781
  30. 30
    Khetarpal, S. A.; Schjoldager, K. T.; Christoffersen, C.; Raghavan, A.; Edmondson, A. C.; Reutter, H. M.; Ahmed, B.; Ouazzani, R.; Peloso, G. M.; Vitali, C.; Zhao, W.; Somasundara, A. V.; Millar, J. S.; Park, Y.; Fernando, G.; Livanov, V.; Choi, S.; Noé, E.; Patel, P.; Ho, S. P.; Kirchgessner, T. G.; Wandall, H. H.; Hansen, L.; Bennett, E. P.; Vakhrushev, S. Y.; Saleheen, D.; Kathiresan, S.; Brown, C. D.; Abou Jamra, R.; LeGuern, E.; Clausen, H.; Rader, D. J. Loss of Function of GALNT2 Lowers High-Density Lipoproteins in Humans, Nonhuman Primates, and Rodents. Cell Metab 2016, 24, 234245,  DOI: 10.1016/j.cmet.2016.07.012
  31. 31
    de las Rivas, M.; Coelho, H.; Diniz, A.; Lira-Navarrete, E.; Companon, I.; Jimenez-Barbero, J.; Schjoldager, K. T.; Bennett, E. P.; Vakhrushev, S. Y.; Clausen, H.; Corzana, F.; Marcelo, F.; Hurtado-Guerrero, R. Structural Analysis of a GalNAc-T2Mutant Reveals an Induced-Fit Catalytic Mechanism for GalNAc-Ts. Chem.─Eur. J. 2018, 24, 83828392,  DOI: 10.1002/chem.201800701
  32. 32
    Daniel, E. J. P.; Las Rivas, M.; Lira-Navarrete, E.; Garcia-Garcia, A.; Hurtado-Guerrero, R.; Clausen, H.; Gerken, T. A. Ser and Thr acceptor preferences of the GalNAc-Ts vary among isoenzymes to modulate mucin-type O-glycosylation. Glycobiology 2020, 30, 910922,  DOI: 10.1093/glycob/cwaa036
  33. 33
    de las Rivas, M.; Paul Daniel, E. J.; Coelho, H.; Lira-Navarrete, E.; Raich, L.; Companon, I.; Diniz, A.; Lagartera, L.; Jimenez-Barbero, J.; Clausen, H.; Rovira, C.; Marcelo, F.; Corzana, F.; Gerken, T. A.; Hurtado-Guerrero, R. Structural and mechanistic insights into the catalytic-domain-mediated short-range glycosylation preferences of GalNAc-T4. ACS Cent. Sci. 2018, 4, 12741290,  DOI: 10.1021/acscentsci.8b00488
  34. 34
    Lira-Navarrete, E.; de las Rivas, M.; Companon, I.; Pallares, M. C.; Kong, Y.; Iglesias-Fernandez, J.; Bernardes, G. J. L.; Peregrina, J. M.; Rovira, C.; Bernado, P.; Bruscolini, P.; Clausen, H.; Lostao, A.; Corzana, F.; Hurtado-Guerrero, R. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nat. Commun. 2015, 6, 6937,  DOI: 10.1038/ncomms7937
  35. 35
    de Las Rivas, M.; Lira-Navarrete, E.; Daniel, E. J. P.; Companon, I.; Coelho, H.; Diniz, A.; Jimenez-Barbero, J.; Peregrina, J. M.; Clausen, H.; Corzana, F.; Marcelo, F.; Jimenez-Oses, G.; Gerken, T. A.; Hurtado-Guerrero, R. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. Nat. Commun. 2017, 8, 1959,  DOI: 10.1038/s41467-017-02006-0
  36. 36
    Wang, S.; Mao, Y.; Narimatsu, Y.; Ye, Z.; Tian, W.; Goth, C. K.; Lira-Navarrete, E.; Pedersen, N. B.; Benito-Vicente, A.; Martin, C.; Uribe, K. B.; Hurtado-Guerrero, R.; Christoffersen, C.; Seidah, N. G.; Nielsen, R.; Christensen, E. I.; Hansen, L.; Bennett, E. P.; Vakhrushev, S. Y.; Schjoldager, K. T.; Clausen, H. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. J. Biol. Chem. 2018, 293, 74087422,  DOI: 10.1074/jbc.M117.817981
  37. 37
    Raman, J.; Guan, Y.; Perrine, C. L.; Gerken, T. A.; Tabak, L. A. UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases: completion of the family tree. Glycobiology 2012, 22, 768777,  DOI: 10.1093/glycob/cwr183
  38. 38
    Revoredo, L.; Wang, S.; Bennett, E. P.; Clausen, H.; Moremen, K. W.; Jarvis, D. L.; Ten Hagen, K. G.; Tabak, L. A.; Gerken, T. A. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology 2016, 26, 360376,  DOI: 10.1093/glycob/cwv108
  39. 39
    Fernandez, A. J.; Daniel, E. J. P.; Mahajan, S. P.; Gray, J. J.; Gerken, T. A.; Tabak, L. A.; Samara, N. L. The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 2040420410,  DOI: 10.1073/pnas.1902211116
  40. 40
    Pedersen, J. W.; Bennett, E. P.; Schjoldager, K. T.; Meldal, M.; Holmer, A. P.; Blixt, O.; Clo, E.; Levery, S. B.; Clausen, H.; Wandall, H. H. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. J. Biol. Chem. 2011, 286, 3268432696,  DOI: 10.1074/jbc.M111.273722
  41. 41
    Coelho, H.; Rivas, M. d. l.; Grosso, A. S.; Diniz, A.; Soares, C. O.; Francisco, R. A.; Dias, J. S.; Companon, I.; Sun, L.; Narimatsu, Y.; Vakhrushev, S. Y.; Clausen, H.; Cabrita, E. J.; Jimenez-Barbero, J.; Corzana, F.; Hurtado-Guerrero, R.; Marcelo, F. Atomic and Specificity Details of Mucin 1 O-Glycosylation Process by Multiple Polypeptide GalNAc-Transferase Isoforms Unveiled by NMR and Molecular Modeling. JACS Au 2022, 2, 631645,  DOI: 10.1021/jacsau.1c00529
  42. 42
    Corzana, F.; Busto, J. H.; Jiménez-Osés, G.; Asensio, J. L.; Jiménez-Barbero, J.; Peregrina, J. M.; Avenoza, A. New Insights into α-GalNAc–Ser Motif: Influence of Hydrogen Bonding versus Solvent Interactions on the Preferred Conformation. J. Am. Chem. Soc. 2006, 128, 1464014648,  DOI: 10.1021/ja064539u
  43. 43
    Shon, D. J.; Fernandez, D.; Riley, N. M.; Ferracane, M. J.; Bertozzi, C. R. Structure-guided mutagenesis of a mucin-selective metalloprotease from Akkermansia muciniphila alters substrate preferences. J. Biol. Chem. 2022, 298, 101917,  DOI: 10.1016/j.jbc.2022.101917
  44. 44
    Konstantinidi, A.; Nason, R.; Caval, T.; Sun, L.; Soerensen, D. M.; Furukawa, S.; Ye, Z.; Vincentelli, R.; Narimatsu, Y.; Vakhrushev, S. Y.; Clausen, H. Exploring the glycosylation of mucins by use of O-glycodomain reporters recombinantly expressed in glycoengineered HEK293 cells. J. Biol. Chem. 2022, 298, 101784,  DOI: 10.1016/j.jbc.2022.101784
  45. 45
    Zhou, D.; Xu, L.; Huang, W.; Tonn, T. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy. Molecules 2018, 23, 1326,  DOI: 10.3390/molecules23061326
  46. 46
    Posey, A. D.; Schwab, R. D.; Boesteanu, A. C.; Steentoft, C.; Mandel, U.; Engels, B.; Stone, J. D.; Madsen, T. D.; Schreiber, K.; Haines, K. M.; Cogdill, A. P.; Chen, T. J.; Song, D.; Scholler, J.; Kranz, D. M.; Feldman, M. D.; Young, R.; Keith, B.; Schreiber, H.; Clausen, H.; Johnson, L. A.; June, C. H. Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity 2016, 44, 14441454,  DOI: 10.1016/j.immuni.2016.05.014
  47. 47
    Karsten, U. Binding patterns of DTR-specific antibodies reveal a glycosylation-conditioned tumor-specific epitope of the epithelial mucin (MUC1). Glycobiology 2004, 14, 681692,  DOI: 10.1093/glycob/cwh090
  48. 48
    Brooks, C. L.; Schietinger, A.; Borisova, S. N.; Kufer, P.; Okon, M.; Hirama, T.; Mackenzie, C. R.; Wang, L. X.; Schreiber, H.; Evans, S. V. Antibody recognition of a unique tumor-specific glycopeptide antigen. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 1005610061,  DOI: 10.1073/pnas.0915176107
  49. 49
    Movahedin, M.; Brooks, T. M.; Supekar, N. T.; Gokanapudi, N.; Boons, G.-J.; Brooks, C. L. Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology 2016, 27, 677687,  DOI: 10.1093/glycob/cww131
  50. 50
    Martínez-Sáez, N.; Castro-Lopez, J.; Valero-Gonzalez, J.; Madariaga, D.; Companon, I.; Somovilla, V. J.; Salvado, M.; Asensio, J. L.; Jimenez-Barbero, J.; Avenoza, A.; Busto, J. H.; Bernardes, G. J. L.; Peregrina, J. M.; Hurtado-Guerrero, R.; Corzana, F. Deciphering the non-equivalence of serine and threonine O-glycosylation points: Implications for molecular recognition of the Tn antigen by an anti-MUC1 antibody. Angew. Chem., Int. Ed. 2015, 54, 98309834,  DOI: 10.1002/anie.201502813
  51. 51
    Coelho, H.; Matsushita, T.; Artigas, G.; Hinou, H.; Cañada, F. J.; Lo-Man, R.; Leclerc, C.; Cabrita, E. J.; Jiménez-Barbero, J.; Nishimura, S.-I.; Garcia-Martín, F.; Marcelo, F. The Quest for Anticancer Vaccines: Deciphering the Fine-Epitope Specificity of Cancer-Related Monoclonal Antibodies by Combining Microarray Screening and Saturation Transfer Difference NMR. J. Am. Chem. Soc. 2015, 137, 1243812441,  DOI: 10.1021/jacs.5b06787
  52. 52
    Wakui, H.; Tanaka, Y.; Ose, T.; Matsumoto, I.; Kato, K.; Min, Y.; Tachibana, T.; Sato, M.; Naruchi, K.; Martin, F. G.; Hinou, H.; Nishimura, S.-I. A straightforward approach to antibodies recognising cancer specific glycopeptidic neoepitopes. Chem. Sci. 2020, 11, 49995006,  DOI: 10.1039/D0SC00317D
  53. 53
    Macias-Leon, J.; Bermejo, I. A.; Asin, A.; Garcia-Garcia, A.; Companon, I.; Jimenez-Moreno, E.; Coelho, H.; Mangini, V.; Albuquerque, I. S.; Marcelo, F.; Asensio, J. L.; Bernardes, G. J. L.; Joshi, H. J.; Fiammengo, R.; Blixt, O.; Hurtado-Guerrero, R.; Corzana, F. Structural characterization of an unprecedented lectin-like antitumoral anti-MUC1 antibody. Chem. Commun. 2020, 56, 1513715140,  DOI: 10.1039/D0CC06349E
  54. 54
    Yoshimura, Y.; Denda-Nagai, K.; Takahashi, Y.; Nagashima, I.; Shimizu, H.; Kishimoto, T.; Noji, M.; Shichino, S.; Chiba, Y.; Irimura, T. Products of Chemoenzymatic Synthesis Representing MUC1 Tandem Repeat Unit with T-, ST- or STn-antigen Revealed Distinct Specificities of Anti-MUC1 Antibodies. Sci. Rep. 2019, 9, 16641,  DOI: 10.1038/s41598-019-53052-1
  55. 55
    Corzana, F.; Busto, J. H.; Jiménez-Osés, G.; García De Luis, M.; Asensio, J. L.; Jiménez-Barbero, J.; Peregrina, J. M.; Avenoza, A. Serine versus Threonine Glycosylation: The Methyl Group Causes a Drastic Alteration on the Carbohydrate Orientation and on the Surrounding Water Shell. J. Am. Chem. Soc. 2007, 129, 94589467,  DOI: 10.1021/ja072181b
  56. 56
    (a) Clark, D.; Mao, L. Cancer biomarker discovery: lectin-based strategies targeting glycoproteins. Dis. Markers 2012, 33, 110,  DOI: 10.1155/2012/308738
    (b) Lastovickova, M.; Strouhalova, D.; Bobalova, J. Use of Lectin-based Affinity Techniques in Breast Cancer Glycoproteomics: A Review. J. Proteome Res. 2020, 19, 18851899,  DOI: 10.1021/acs.jproteome.9b00818
  57. 57
    de Oliveira Figueirôa, E.; Albuquerque da Cunha, C. R.; Albuquerque, P. B. S.; de Paula, R. A.; Aranda-Souza, M. A.; Alves, M. S.; Zagmignan, A.; Carneiro-da-Cunha, M. G.; Nascimento da Silva, L. C.; dos Santos Correia, M. T. Lectin-carbohydrate interactions: Implications for the development of new anticancer agents. Curr. Med. Chem. 2017, 24, 36673680,  DOI: 10.2174/0929867324666170523110400
  58. 58
    Gabba, A.; Bogucka, A.; Luz, J. G.; Diniz, A.; Coelho, H.; Corzana, F.; Cañada, F. J.; Marcelo, F.; Murphy, P. V.; Birrane, G. Crystal Structure of the Carbohydrate Recognition Domain of the Human Macrophage Galactose C-Type Lectin Bound to GalNAc and the Tumor-Associated Tn Antigen. Biochemistry 2021, 60, 13271336,  DOI: 10.1021/acs.biochem.1c00009
  59. 59
    Lescar, J.; Sanchez, J.-F.; Audfray, A.; Coll, J.-L.; Breton, C.; Mitchell, E. P.; Imberty, A. Structural basis for recognition of breast and colon cancer epitopes Tn antigen and Forssman disaccharide by Helix pomatia lectin. Glycobiology 2007, 17, 10771083,  DOI: 10.1093/glycob/cwm077
  60. 60
    Maveyraud, L.; Niwa, H.; Guillet, V.; Svergun, D. I.; Konarev, P. V.; Palmer, R. A.; Peumans, W. J.; Rougé, P.; Van Damme, E. J.; Reynolds, C. D.; Mourey, L. Structural basis for sugar recognition, including the Tn carcinoma antigen, by the lectin SNA-II from Sambucus nigra. Proteins 2009, 75, 89103,  DOI: 10.1002/prot.22222
  61. 61
    Kulkarni, K. A.; Sinha, S.; Katiyar, S.; Surolia, A.; Vijayan, M.; Suguna, K. Structural basis for the specificity of basic winged bean lectin for the Tn-antigen: A crystallographic, thermodynamic and modelling study. FEBS Lett. 2005, 579, 67756780,  DOI: 10.1016/j.febslet.2005.11.011
  62. 62
    Sousa, B. L.; Silva Filho, J. C.; Kumar, P.; Pereira, R. I.; Łyskowski, A.; Rocha, B. A.; Delatorre, P.; Bezerra, G. A.; Nagano, C. S.; Gruber, K.; Cavada, B. S. High-resolution structure of a new Tn antigen-binding lectin from Vatairea macrocarpa and a comparative analysis of Tn-binding legume lectins. Int. J. Biochem. Cell Biol. 2015, 59, 103110,  DOI: 10.1016/j.biocel.2014.12.002
  63. 63
    Lubkowski, J.; Durbin, S. V.; Silva, M. C. C.; Farnsworth, D.; Gildersleeve, J. C.; Oliva, M. L. V.; Wlodawer, A. Structural analysis and unique molecular recognition properties of a Bauhinia forficata lectin that inhibits cancer cell growth. FEBS J. 2017, 284, 429450,  DOI: 10.1111/febs.13989
  64. 64
    Madariaga, D.; Martínez-Sáez, N.; Somovilla, V. J.; Coelho, H.; Valero-González, J.; Castro-López, J.; Asensio, J. L.; Jiménez-Barbero, J.; Busto, J. H.; Avenoza, A.; Marcelo, F.; Hurtado-Guerrero, R.; Corzana, F.; Peregrina, J. M. Detection of tumor-associated glycopeptides by lectins: the peptide context modulates carbohydrate recognition. ACS Chem. Biol. 2015, 10, 747756,  DOI: 10.1021/cb500855x
  65. 65
    Madariaga, D.; Martínez-Sáez, N.; Somovilla, V. J.; García-García, L.; Berbis, M. Á.; Valero-Gónzalez, J.; Martín-Santamaría, S.; Hurtado-Guerrero, R.; Asensio, J. L.; Jiménez-Barbero, J.; Avenoza, A.; Busto, J. H.; Corzana, F.; Peregrina, J. M. Serine versus Threonine Glycosylation with α-O-GalNAc: Unexpected Selectivity in Their Molecular Recognition with Lectins. Chem. Eur. J. 2014, 20, 1261612627,  DOI: 10.1002/chem.201403700
  66. 66
    Gibadullin, R.; Farnsworth, D. W.; Barchi, J. J.; Gildersleeve, J. C. GalNAc-Tyrosine Is a Ligand of Plant Lectins, Antibodies, and Human and Murine Macrophage Galactose-Type Lectins. ACS Chem. Biol. 2017, 12, 21722182,  DOI: 10.1021/acschembio.7b00471
  67. 67
    Pluvinage, B.; Ficko-Blean, E.; Noach, I.; Stuart, C.; Thompson, N.; McClure, H.; Buenbrazo, N.; Wakarchuk, W.; Boraston, A. B. Architecturally complex O-glycopeptidases are customized for mucin recognition and hydrolysis. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2019220118  DOI: 10.1073/pnas.2019220118
  68. 68
    Noach, I.; Ficko-Blean, E.; Pluvinage, B.; Stuart, C.; Jenkins, M. L.; Brochu, D.; Buenbrazo, N.; Wakarchuk, W.; Burke, J. E.; Gilbert, M.; Boraston, A. B. Recognition of protein-linked glycans as a determinant of peptidase activity. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E679  DOI: 10.1073/pnas.1615141114
  69. 69
    Somovilla, V. J.; Bermejo, I. A.; Albuquerque, I. S.; Martinez-Saez, N.; Castro-Lopez, J.; Garcia-Martin, F.; Companon, I.; Hinou, H.; Nishimura, S.-I.; Jimenez-Barbero, J.; Asensio, J. L.; Avenoza, A.; Busto, J. H.; Hurtado-Guerrero, R.; Peregrina, J. M.; Bernardes, G. J. L.; Corzana, F. The use of fluoroproline in MUC1 antigen enables efficient detection of antibodies in patients with prostate cancer. J. Am. Chem. Soc. 2017, 139, 1825518261,  DOI: 10.1021/jacs.7b09447
  70. 70
    Companon, I.; Guerreiro, A.; Mangini, V.; Castro-Lopez, J.; Escudero-Casao, M.; Avenoza, A.; Busto, J. H.; Castillon, S.; Jimenez-Barbero, J.; Asensio, J. L.; Jimenez-Oses, G.; Boutureira, O.; Peregrina, J. M.; Hurtado-Guerrero, R.; Fiammengo, R.; Bernardes, G. J. L.; Corzana, F. Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage. J. Am. Chem. Soc. 2019, 141, 40634072,  DOI: 10.1021/jacs.8b13503

Cited By

Click to copy section linkSection link copied!

This article is cited by 1 publications.

  1. Yiran Li, Haiqi Wang, Yunlong Chen, Lin Ding, Huangxian Ju. In Situ Glycan Analysis and Editing in Living Systems. JACS Au 2024, 4 (2) , 384-401. https://doi.org/10.1021/jacsau.3c00717
Open PDF

Accounts of Chemical Research

Cite this: Acc. Chem. Res. 2023, 56, 5, 548–560
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.accounts.2c00723
Published February 23, 2023

Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

6212

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Scheme of the mucin-type O-glycosylation pathway. All of the GTs involved in initiation and core extension are mentioned together with the stereochemistry and glycosidic linkages. The proteins under review in this Account are highlighted in red.

    Figure 2

    Figure 2. Five structural features define GalNAc-Ts functions. (A) Overall structure of GalNAc-T4. The catalytic and lectin domains are colored in gray, and the interdomain flexible linker is in red. The catalytic domain flexible loop, UDP, the glycopeptides, and the GalNAc moieties are depicted in yellow, brown, green, and orange, respectively. The inset shows the coordination geometry of Mn2+. (B) (Upper panel) Surface representation of the inactive form of GalNAc-T2 and the active form of GalNAc-T2. (Lower panel) Catalytic cycle of GalNAc-T2. (C) (Left panel) View of the complete sugar-nucleotide, peptide, and lectin-domain binding sites of GalNAc-T4. (Right panel) Close-up view of the GalNAc-binding sites of the lectin and catalytic domains. The residues of the lectin domain engaged in recognition of the GalNAc moieties are indicated in magenta. (D) (Upper panel) Surface representation of different GalNAc-Ts showing the location of the lectin domain GalNAc-binding sites in the overall structures. Note that GalNAc-T1 has two potential functional GalNAc-binding sites. (Lower panel) Scheme illustrating the different types of O-glycosylation and preferences found for GalNAc-T2 and T4.

    Figure 3

    Figure 3. Molecular recognition of glycopeptides by C1GalT1. (A) Close-up view of the active site for the DmC1GalT1-UDP-APDT*RP complex (PDB entry 7Q4I). The carbon atoms of the residues interacting with the glycopeptide are shown in magenta. The UDP carbon atoms are shown in gray. (B) Main conformation found in solution for the Tn antigen with Thr GalNAc-α-1-O-Thr (left panel) and for the Tn antigen with Ser GalNAc-α-1-O-Thr (right panel). The CH-π interaction between the methyl group of Thr4 and Trp300 is shown by the black dashed line.

    Figure 4

    Figure 4. Comparison between the different active sites of mucinases. (A) Superimposition of the active sites of IMPa (green) and BT4244 (cyan) showing main interactions with the sugar units of the O-glycopeptides (orange for IMPa and magenta for BT4244). (B) Superimposition of the active sites of ZmpB (green) and ZmpC (cyan) showing main interactions with the corresponding O-glycopeptides (orange for ZmpB and magenta for ZmpC). (C) Superimposition of the active sites of complexes formed between BT4244 (cyan) and AM0627 (green) with a Tn O-glycan (magenta) and bis-T-glycopeptide (orange), respectively. PDB entries for the structures of AM0627, IMPa, BT4244, ZmpB, and ZmpC are 7SCI, 5KDX, 5KD8, 5KDU, and 6XT1, respectively.

    Figure 5

    Figure 5. Molecular recognition of Tn-glycopeptides by antibodies. (A) Close-up view of the binding site of the 273 mAb bound to the ERGT*KPPLEEL glycopeptide, showing the interactions of the protein with the GalNAc unit (PDB entry 3IET). (B) Close-up view of the binding site of the AR20.5 antibody and the glycopeptide APDT*RP (PDB entry 5T78). (C) Close-up view of the binding site of the SM3 antibody and glycopeptide APDT*RP (PDB entry 5A2K). (D) Close-up view of the binding site of the SN-101 antibody and a MUC1-like glycopeptide (PDB entry 6KX1). Only the interactions between the protein and the GalNAc unit are shown. (E) Close-up view of the binding site of the antibody 5E5 and glycopeptide APGST*AP (PDB entry 6TNP). (F) Close-up view of the binding site of the antibody G10C and αGalNAc-PNP (PDB entry 7UT3). Note that in all panels the residues of the antibody engaged in recognition of the glycopeptides and/or the GalNAc moieties are indicated in magenta.

    Figure 6

    Figure 6. Molecular recognition of Tn-glycopeptides by lectins. (A) Close-up view of the binding site of the lectin hMGL bound to Tn-Ser (PDB entry 6W12). (B) Close-up view of the binding site of the Bauhinia forficata lectin bound to a Tn-containing glycopeptide derived from MUC1 (PDB entry 5T5O). (C) Close-up view of the binding site of SBA lectin bound to PDT*R glycopeptide (PDB entry 4D69). Note that in all panels the residues of lectin engaged in the recognition of the glycopeptides and/or the GalNAc moieties are indicated in magenta.

    Figure 7

    Figure 7. Main common recognition modes for the different families of proteins.

  • References


    This article references 70 other publications.

    1. 1
      de las Rivas, M.; Paul Daniel, E. J.; Narimatsu, Y.; Compañón, I.; Kato, K.; Hermosilla, P.; Thureau, A.; Ceballos-Laita, L.; Coelho, H.; Bernadó, P.; Marcelo, F.; Hansen, L.; Maeda, R.; Lostao, A.; Corzana, F.; Clausen, H.; Gerken, T. A.; Hurtado-Guerrero, R. Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3. Nat. Chem. Biol. 2020, 16, 351360,  DOI: 10.1038/s41589-019-0444-x
    2. 2
      González-Ramírez, A. M.; Grosso, A. S.; Yang, Z.; Compañón, I.; Coelho, H.; Narimatsu, Y.; Clausen, H.; Marcelo, F.; Corzana, F.; Hurtado-Guerrero, R. Structural basis for the synthesis of the core 1 structure by C1GalT1. Nat. Commun. 2022, 13, 2398,  DOI: 10.1038/s41467-022-29833-0
    3. 3
      Taleb, V.; Liao, Q.; Narimatsu, Y.; García-García, A.; Compañón, I.; Borges, R. J.; González-Ramírez, A. M.; Corzana, F.; Clausen, H.; Rovira, C.; Hurtado-Guerrero, R. Structural and mechanistic insights into the cleavage of clustered O-glycan patches-containing glycoproteins by mucinases of the human gut. Nat. Commun. 2022, 13, 4324,  DOI: 10.1038/s41467-022-32021-9
    4. 4
      Bermejo, I. A.; Usabiaga, I.; Compañón, I.; Castro-López, J.; Insausti, A.; Fernández, J. A.; Avenoza, A.; Busto, J. H.; Jiménez-Barbero, J.; Asensio, J. L.; Peregrina, J. M.; Jiménez-Osés, G.; Hurtado-Guerrero, R.; Cocinero, E. J.; Corzana, F. Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition. J. Am. Chem. Soc. 2018, 140, 99529960,  DOI: 10.1021/jacs.8b04801
    5. 5
      Schjoldager, K. T.; Narimatsu, Y.; Joshi, H. J.; Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell. Biol. 2020, 21, 729749,  DOI: 10.1038/s41580-020-00294-x
    6. 6
      de Las Rivas, M.; Lira-Navarrete, E.; Gerken, T. A.; Hurtado-Guerrero, R. Polypeptide GalNAc-Ts: from redundancy to specificity. Curr. Opin. Struct. Biol. 2019, 56, 8796,  DOI: 10.1016/j.sbi.2018.12.007
    7. 7
      Hurtado-Guerrero, R. Recent structural and mechanistic insights into protein O-GalNAc glycosylation. Biochem. Soc. Trans. 2016, 44, 6167,  DOI: 10.1042/BST20150178
    8. 8
      Schjoldager, K. T.; Joshi, H. J.; Kong, Y.; Goth, C. K.; King, S. L.; Wandall, H. H.; Bennett, E. P.; Vakhrushev, S. Y.; Clausen, H. Deconstruction of O-glycosylation--GalNAc-T isoforms direct distinct subsets of the O-glycoproteome. EMBO Rep 2015, 16, 17131722,  DOI: 10.15252/embr.201540796
    9. 9
      Bennett, E. P.; Mandel, U.; Clausen, H.; Gerken, T. A.; Fritz, T. A.; Tabak, L. A. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 2012, 22, 736756,  DOI: 10.1093/glycob/cwr182
    10. 10
      Brockhausen, I.; Schachter, H.; Stanley, P. O-GalNAc Glycans. In Essentials of Glycobiology, 2nd ed.; Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., Etzler, M. E., Eds.; Cold Spring Harbor Laboratory Press: 2008.
    11. 11
      Ho, T. D.; Davis, B. M.; Ritchie, J. M.; Waldor, M. K. Type 2 secretion promotes enterohemorrhagic Escherichia coli adherence and intestinal colonization. Infect. Immun. 2008, 76, 18581865,  DOI: 10.1128/IAI.01688-07
    12. 12
      Nason, R.; Bull, C.; Konstantinidi, A.; Sun, L.; Ye, Z.; Halim, A.; Du, W.; Sorensen, D. M.; Durbesson, F.; Furukawa, S.; Mandel, U.; Joshi, H. J.; Dworkin, L. A.; Hansen, L.; David, L.; Iverson, T. M.; Bensing, B. A.; Sullam, P. M.; Varki, A.; Vries, E.; de Haan, C. A. M.; Vincentelli, R.; Henrissat, B.; Vakhrushev, S. Y.; Clausen, H.; Narimatsu, Y. Nat. Commun. 2021, 12, 4070,  DOI: 10.1038/s41467-021-24366-4
    13. 13
      Shon, D. J.; Kuo, A.; Ferracane, M. J.; Malaker, S. A. Classification, structural biology, and applications of mucin domain-targeting proteases. Biochem.J. 2021, 478, 15851603,  DOI: 10.1042/BCJ20200607
    14. 14
      Schjoldager, K. T.-B. G.; Clausen, H. Site-specific protein O-glycosylation modulates proprotein processing - deciphering specific functions of the large polypeptide GalNAc-transferase gene family. Biochim. Biophys. Acta. 2012, 1820, 20792094,  DOI: 10.1016/j.bbagen.2012.09.014
    15. 15
      Goth, C. K.; Vakhrushev, S. Y.; Joshi, H. J.; Clausen, H.; Schjoldager, K. T. Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends Biochem. Sci. 2018, 43, 269284,  DOI: 10.1016/j.tibs.2018.02.005
    16. 16
      Wandall, H. H.; Nielsen, M. A. I.; King-Smith, S.; de Haan, N.; Bagdonaite, I. Global functions of O-glycosylation: promises and challenges in O-glycobiology. FEBS J. 2021, 288, 71837212,  DOI: 10.1111/febs.16148
    17. 17
      Brockhausen, I.; Wandall, H. H.; Hagen, K. G. T.; Stanley, P. O-GalNAc Glycans. In Essentials of Glycobiology, 4th ed.; Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., Seeberger, P. H., Eds.; Cold Spring Harbor Laboratory Press: 2022; pp 117128.
    18. 18
      Xia, L.; Ju, T.; Westmuckett, A.; An, G.; Ivanciu, L.; McDaniel, J. M.; Lupu, F.; Cummings, R. D.; McEver, R. P. Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J. Cell Biol. 2004, 164, 451459,  DOI: 10.1083/jcb.200311112
    19. 19
      Wang, Y.; Ju, T.; Ding, X.; Xia, B.; Wang, W.; Xia, L.; He, M.; Cummings, R. D. Cosmc is an essential chaperone for correct protein O-glycosylation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 92289233,  DOI: 10.1073/pnas.0914004107
    20. 20
      Gill, D. J.; Tham, K. M.; Chia, J.; Wang, S. C.; Steentoft, C.; Clausen, H.; Bard-Chapeau, E. A.; Bard, F. A. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, E31523161,  DOI: 10.1073/pnas.1305269110
    21. 21
      Herbomel, G. G.; Rojas, R. E.; Tran, D. T.; Ajinkya, M.; Beck, L.; Tabak, L. A. The GalNAc-T Activation Pathway (GALA) is not a general mechanism for regulating mucin-type O-glycosylation. PLoS One 2017, 12, e0179241  DOI: 10.1371/journal.pone.0179241
    22. 22
      Radhakrishnan, P.; Dabelsteen, S.; Madsen, F. B.; Francavilla, C.; Kopp, K. L.; Steentoft, C.; Vakhrushev, S. Y.; Olsen, J. V.; Hansen, L.; Bennett, E. P.; Woetmann, A.; Yin, G.; Chen, L.; Song, H.; Bak, M.; Hlady, R. A.; Peters, S. L.; Opavsky, R.; Thode, C.; Qvortrup, K.; Schjoldager, K. T.; Clausen, H.; Hollingsworth, M. A.; Wandall, H. H. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, E40664075,  DOI: 10.1073/pnas.1406619111
    23. 23
      Marcos, N. T.; Pinho, S.; Grandela, C.; Cruz, A.; Samyn-Petit, B.; Harduin-Lepers, A.; Almeida, R.; Silva, F.; Morais, V.; Costa, J.; Kihlberg, J.; Clausen, H.; Reis, C. A. Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-Tn antigen. Cancer Res. 2004, 64, 70507057,  DOI: 10.1158/0008-5472.CAN-04-1921
    24. 24
      Martínez-Sáez, N.; Peregrina, J. M.; Corzana, F. Principles of mucin structure: implications for the rational design of cancer vaccines derived from MUC1-glycopeptides. Chem. Soc. Rev. 2017, 46, 71547175,  DOI: 10.1039/C6CS00858E
    25. 25
      Bulteau, F.; Thépaut, M.; Henry, M.; Hurbin, A.; Vanwonterghem, L.; Vivès, C.; Le Roy, A.; Ebel, C.; Renaudet, O.; Fieschi, F.; Coll, J.-L. Targeting Tn-Antigen-Positive Human Tumors with a Re combinant Human Macrophage Galactose C-Type Lectin. Mol. Pharmaceutics 2022, 19, 235245,  DOI: 10.1021/acs.molpharmaceut.1c00744
    26. 26
      Fritz, T. A.; Hurley, J. H.; Trinh, L. B.; Shiloach, J.; Tabak, L. A. The beginnings of mucin biosynthesis: the crystal structure of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-T1. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 1530715312,  DOI: 10.1073/pnas.0405657101
    27. 27
      Fritz, T. A.; Raman, J.; Tabak, L. A. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. J. Biol. Chem. 2006, 281, 86138619,  DOI: 10.1074/jbc.M513590200
    28. 28
      Kubota, T.; Shiba, T.; Sugioka, S.; Furukawa, S.; Sawaki, H.; Kato, R.; Wakatsuki, S.; Narimatsu, H. Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). J. Mol. Biol. 2006, 359, 708727,  DOI: 10.1016/j.jmb.2006.03.061
    29. 29
      Lira-Navarrete, E.; Iglesias-Fernandez, J.; Zandberg, W. F.; Companon, I.; Kong, Y.; Corzana, F.; Pinto, B. M.; Clausen, H.; Peregrina, J. M.; Vocadlo, D. J.; Rovira, C.; Hurtado-Guerrero, R. Substrate-Guided Front-Face Reaction Revealed by Combined Structural Snapshots and Metadynamics for the Polypeptide N-Acetylgalactosaminyltransferase 2. Angew. Chem., Int. Ed. 2014, 53, 82068210,  DOI: 10.1002/anie.201402781
    30. 30
      Khetarpal, S. A.; Schjoldager, K. T.; Christoffersen, C.; Raghavan, A.; Edmondson, A. C.; Reutter, H. M.; Ahmed, B.; Ouazzani, R.; Peloso, G. M.; Vitali, C.; Zhao, W.; Somasundara, A. V.; Millar, J. S.; Park, Y.; Fernando, G.; Livanov, V.; Choi, S.; Noé, E.; Patel, P.; Ho, S. P.; Kirchgessner, T. G.; Wandall, H. H.; Hansen, L.; Bennett, E. P.; Vakhrushev, S. Y.; Saleheen, D.; Kathiresan, S.; Brown, C. D.; Abou Jamra, R.; LeGuern, E.; Clausen, H.; Rader, D. J. Loss of Function of GALNT2 Lowers High-Density Lipoproteins in Humans, Nonhuman Primates, and Rodents. Cell Metab 2016, 24, 234245,  DOI: 10.1016/j.cmet.2016.07.012
    31. 31
      de las Rivas, M.; Coelho, H.; Diniz, A.; Lira-Navarrete, E.; Companon, I.; Jimenez-Barbero, J.; Schjoldager, K. T.; Bennett, E. P.; Vakhrushev, S. Y.; Clausen, H.; Corzana, F.; Marcelo, F.; Hurtado-Guerrero, R. Structural Analysis of a GalNAc-T2Mutant Reveals an Induced-Fit Catalytic Mechanism for GalNAc-Ts. Chem.─Eur. J. 2018, 24, 83828392,  DOI: 10.1002/chem.201800701
    32. 32
      Daniel, E. J. P.; Las Rivas, M.; Lira-Navarrete, E.; Garcia-Garcia, A.; Hurtado-Guerrero, R.; Clausen, H.; Gerken, T. A. Ser and Thr acceptor preferences of the GalNAc-Ts vary among isoenzymes to modulate mucin-type O-glycosylation. Glycobiology 2020, 30, 910922,  DOI: 10.1093/glycob/cwaa036
    33. 33
      de las Rivas, M.; Paul Daniel, E. J.; Coelho, H.; Lira-Navarrete, E.; Raich, L.; Companon, I.; Diniz, A.; Lagartera, L.; Jimenez-Barbero, J.; Clausen, H.; Rovira, C.; Marcelo, F.; Corzana, F.; Gerken, T. A.; Hurtado-Guerrero, R. Structural and mechanistic insights into the catalytic-domain-mediated short-range glycosylation preferences of GalNAc-T4. ACS Cent. Sci. 2018, 4, 12741290,  DOI: 10.1021/acscentsci.8b00488
    34. 34
      Lira-Navarrete, E.; de las Rivas, M.; Companon, I.; Pallares, M. C.; Kong, Y.; Iglesias-Fernandez, J.; Bernardes, G. J. L.; Peregrina, J. M.; Rovira, C.; Bernado, P.; Bruscolini, P.; Clausen, H.; Lostao, A.; Corzana, F.; Hurtado-Guerrero, R. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nat. Commun. 2015, 6, 6937,  DOI: 10.1038/ncomms7937
    35. 35
      de Las Rivas, M.; Lira-Navarrete, E.; Daniel, E. J. P.; Companon, I.; Coelho, H.; Diniz, A.; Jimenez-Barbero, J.; Peregrina, J. M.; Clausen, H.; Corzana, F.; Marcelo, F.; Jimenez-Oses, G.; Gerken, T. A.; Hurtado-Guerrero, R. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. Nat. Commun. 2017, 8, 1959,  DOI: 10.1038/s41467-017-02006-0
    36. 36
      Wang, S.; Mao, Y.; Narimatsu, Y.; Ye, Z.; Tian, W.; Goth, C. K.; Lira-Navarrete, E.; Pedersen, N. B.; Benito-Vicente, A.; Martin, C.; Uribe, K. B.; Hurtado-Guerrero, R.; Christoffersen, C.; Seidah, N. G.; Nielsen, R.; Christensen, E. I.; Hansen, L.; Bennett, E. P.; Vakhrushev, S. Y.; Schjoldager, K. T.; Clausen, H. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. J. Biol. Chem. 2018, 293, 74087422,  DOI: 10.1074/jbc.M117.817981
    37. 37
      Raman, J.; Guan, Y.; Perrine, C. L.; Gerken, T. A.; Tabak, L. A. UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases: completion of the family tree. Glycobiology 2012, 22, 768777,  DOI: 10.1093/glycob/cwr183
    38. 38
      Revoredo, L.; Wang, S.; Bennett, E. P.; Clausen, H.; Moremen, K. W.; Jarvis, D. L.; Ten Hagen, K. G.; Tabak, L. A.; Gerken, T. A. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology 2016, 26, 360376,  DOI: 10.1093/glycob/cwv108
    39. 39
      Fernandez, A. J.; Daniel, E. J. P.; Mahajan, S. P.; Gray, J. J.; Gerken, T. A.; Tabak, L. A.; Samara, N. L. The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 2040420410,  DOI: 10.1073/pnas.1902211116
    40. 40
      Pedersen, J. W.; Bennett, E. P.; Schjoldager, K. T.; Meldal, M.; Holmer, A. P.; Blixt, O.; Clo, E.; Levery, S. B.; Clausen, H.; Wandall, H. H. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. J. Biol. Chem. 2011, 286, 3268432696,  DOI: 10.1074/jbc.M111.273722
    41. 41
      Coelho, H.; Rivas, M. d. l.; Grosso, A. S.; Diniz, A.; Soares, C. O.; Francisco, R. A.; Dias, J. S.; Companon, I.; Sun, L.; Narimatsu, Y.; Vakhrushev, S. Y.; Clausen, H.; Cabrita, E. J.; Jimenez-Barbero, J.; Corzana, F.; Hurtado-Guerrero, R.; Marcelo, F. Atomic and Specificity Details of Mucin 1 O-Glycosylation Process by Multiple Polypeptide GalNAc-Transferase Isoforms Unveiled by NMR and Molecular Modeling. JACS Au 2022, 2, 631645,  DOI: 10.1021/jacsau.1c00529
    42. 42
      Corzana, F.; Busto, J. H.; Jiménez-Osés, G.; Asensio, J. L.; Jiménez-Barbero, J.; Peregrina, J. M.; Avenoza, A. New Insights into α-GalNAc–Ser Motif: Influence of Hydrogen Bonding versus Solvent Interactions on the Preferred Conformation. J. Am. Chem. Soc. 2006, 128, 1464014648,  DOI: 10.1021/ja064539u
    43. 43
      Shon, D. J.; Fernandez, D.; Riley, N. M.; Ferracane, M. J.; Bertozzi, C. R. Structure-guided mutagenesis of a mucin-selective metalloprotease from Akkermansia muciniphila alters substrate preferences. J. Biol. Chem. 2022, 298, 101917,  DOI: 10.1016/j.jbc.2022.101917
    44. 44
      Konstantinidi, A.; Nason, R.; Caval, T.; Sun, L.; Soerensen, D. M.; Furukawa, S.; Ye, Z.; Vincentelli, R.; Narimatsu, Y.; Vakhrushev, S. Y.; Clausen, H. Exploring the glycosylation of mucins by use of O-glycodomain reporters recombinantly expressed in glycoengineered HEK293 cells. J. Biol. Chem. 2022, 298, 101784,  DOI: 10.1016/j.jbc.2022.101784
    45. 45
      Zhou, D.; Xu, L.; Huang, W.; Tonn, T. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy. Molecules 2018, 23, 1326,  DOI: 10.3390/molecules23061326
    46. 46
      Posey, A. D.; Schwab, R. D.; Boesteanu, A. C.; Steentoft, C.; Mandel, U.; Engels, B.; Stone, J. D.; Madsen, T. D.; Schreiber, K.; Haines, K. M.; Cogdill, A. P.; Chen, T. J.; Song, D.; Scholler, J.; Kranz, D. M.; Feldman, M. D.; Young, R.; Keith, B.; Schreiber, H.; Clausen, H.; Johnson, L. A.; June, C. H. Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity 2016, 44, 14441454,  DOI: 10.1016/j.immuni.2016.05.014
    47. 47
      Karsten, U. Binding patterns of DTR-specific antibodies reveal a glycosylation-conditioned tumor-specific epitope of the epithelial mucin (MUC1). Glycobiology 2004, 14, 681692,  DOI: 10.1093/glycob/cwh090
    48. 48
      Brooks, C. L.; Schietinger, A.; Borisova, S. N.; Kufer, P.; Okon, M.; Hirama, T.; Mackenzie, C. R.; Wang, L. X.; Schreiber, H.; Evans, S. V. Antibody recognition of a unique tumor-specific glycopeptide antigen. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 1005610061,  DOI: 10.1073/pnas.0915176107
    49. 49
      Movahedin, M.; Brooks, T. M.; Supekar, N. T.; Gokanapudi, N.; Boons, G.-J.; Brooks, C. L. Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology 2016, 27, 677687,  DOI: 10.1093/glycob/cww131
    50. 50
      Martínez-Sáez, N.; Castro-Lopez, J.; Valero-Gonzalez, J.; Madariaga, D.; Companon, I.; Somovilla, V. J.; Salvado, M.; Asensio, J. L.; Jimenez-Barbero, J.; Avenoza, A.; Busto, J. H.; Bernardes, G. J. L.; Peregrina, J. M.; Hurtado-Guerrero, R.; Corzana, F. Deciphering the non-equivalence of serine and threonine O-glycosylation points: Implications for molecular recognition of the Tn antigen by an anti-MUC1 antibody. Angew. Chem., Int. Ed. 2015, 54, 98309834,  DOI: 10.1002/anie.201502813
    51. 51
      Coelho, H.; Matsushita, T.; Artigas, G.; Hinou, H.; Cañada, F. J.; Lo-Man, R.; Leclerc, C.; Cabrita, E. J.; Jiménez-Barbero, J.; Nishimura, S.-I.; Garcia-Martín, F.; Marcelo, F. The Quest for Anticancer Vaccines: Deciphering the Fine-Epitope Specificity of Cancer-Related Monoclonal Antibodies by Combining Microarray Screening and Saturation Transfer Difference NMR. J. Am. Chem. Soc. 2015, 137, 1243812441,  DOI: 10.1021/jacs.5b06787
    52. 52
      Wakui, H.; Tanaka, Y.; Ose, T.; Matsumoto, I.; Kato, K.; Min, Y.; Tachibana, T.; Sato, M.; Naruchi, K.; Martin, F. G.; Hinou, H.; Nishimura, S.-I. A straightforward approach to antibodies recognising cancer specific glycopeptidic neoepitopes. Chem. Sci. 2020, 11, 49995006,  DOI: 10.1039/D0SC00317D
    53. 53
      Macias-Leon, J.; Bermejo, I. A.; Asin, A.; Garcia-Garcia, A.; Companon, I.; Jimenez-Moreno, E.; Coelho, H.; Mangini, V.; Albuquerque, I. S.; Marcelo, F.; Asensio, J. L.; Bernardes, G. J. L.; Joshi, H. J.; Fiammengo, R.; Blixt, O.; Hurtado-Guerrero, R.; Corzana, F. Structural characterization of an unprecedented lectin-like antitumoral anti-MUC1 antibody. Chem. Commun. 2020, 56, 1513715140,  DOI: 10.1039/D0CC06349E
    54. 54
      Yoshimura, Y.; Denda-Nagai, K.; Takahashi, Y.; Nagashima, I.; Shimizu, H.; Kishimoto, T.; Noji, M.; Shichino, S.; Chiba, Y.; Irimura, T. Products of Chemoenzymatic Synthesis Representing MUC1 Tandem Repeat Unit with T-, ST- or STn-antigen Revealed Distinct Specificities of Anti-MUC1 Antibodies. Sci. Rep. 2019, 9, 16641,  DOI: 10.1038/s41598-019-53052-1
    55. 55
      Corzana, F.; Busto, J. H.; Jiménez-Osés, G.; García De Luis, M.; Asensio, J. L.; Jiménez-Barbero, J.; Peregrina, J. M.; Avenoza, A. Serine versus Threonine Glycosylation: The Methyl Group Causes a Drastic Alteration on the Carbohydrate Orientation and on the Surrounding Water Shell. J. Am. Chem. Soc. 2007, 129, 94589467,  DOI: 10.1021/ja072181b
    56. 56
      (a) Clark, D.; Mao, L. Cancer biomarker discovery: lectin-based strategies targeting glycoproteins. Dis. Markers 2012, 33, 110,  DOI: 10.1155/2012/308738
      (b) Lastovickova, M.; Strouhalova, D.; Bobalova, J. Use of Lectin-based Affinity Techniques in Breast Cancer Glycoproteomics: A Review. J. Proteome Res. 2020, 19, 18851899,  DOI: 10.1021/acs.jproteome.9b00818
    57. 57
      de Oliveira Figueirôa, E.; Albuquerque da Cunha, C. R.; Albuquerque, P. B. S.; de Paula, R. A.; Aranda-Souza, M. A.; Alves, M. S.; Zagmignan, A.; Carneiro-da-Cunha, M. G.; Nascimento da Silva, L. C.; dos Santos Correia, M. T. Lectin-carbohydrate interactions: Implications for the development of new anticancer agents. Curr. Med. Chem. 2017, 24, 36673680,  DOI: 10.2174/0929867324666170523110400
    58. 58
      Gabba, A.; Bogucka, A.; Luz, J. G.; Diniz, A.; Coelho, H.; Corzana, F.; Cañada, F. J.; Marcelo, F.; Murphy, P. V.; Birrane, G. Crystal Structure of the Carbohydrate Recognition Domain of the Human Macrophage Galactose C-Type Lectin Bound to GalNAc and the Tumor-Associated Tn Antigen. Biochemistry 2021, 60, 13271336,  DOI: 10.1021/acs.biochem.1c00009
    59. 59
      Lescar, J.; Sanchez, J.-F.; Audfray, A.; Coll, J.-L.; Breton, C.; Mitchell, E. P.; Imberty, A. Structural basis for recognition of breast and colon cancer epitopes Tn antigen and Forssman disaccharide by Helix pomatia lectin. Glycobiology 2007, 17, 10771083,  DOI: 10.1093/glycob/cwm077
    60. 60
      Maveyraud, L.; Niwa, H.; Guillet, V.; Svergun, D. I.; Konarev, P. V.; Palmer, R. A.; Peumans, W. J.; Rougé, P.; Van Damme, E. J.; Reynolds, C. D.; Mourey, L. Structural basis for sugar recognition, including the Tn carcinoma antigen, by the lectin SNA-II from Sambucus nigra. Proteins 2009, 75, 89103,  DOI: 10.1002/prot.22222
    61. 61
      Kulkarni, K. A.; Sinha, S.; Katiyar, S.; Surolia, A.; Vijayan, M.; Suguna, K. Structural basis for the specificity of basic winged bean lectin for the Tn-antigen: A crystallographic, thermodynamic and modelling study. FEBS Lett. 2005, 579, 67756780,  DOI: 10.1016/j.febslet.2005.11.011
    62. 62
      Sousa, B. L.; Silva Filho, J. C.; Kumar, P.; Pereira, R. I.; Łyskowski, A.; Rocha, B. A.; Delatorre, P.; Bezerra, G. A.; Nagano, C. S.; Gruber, K.; Cavada, B. S. High-resolution structure of a new Tn antigen-binding lectin from Vatairea macrocarpa and a comparative analysis of Tn-binding legume lectins. Int. J. Biochem. Cell Biol. 2015, 59, 103110,  DOI: 10.1016/j.biocel.2014.12.002
    63. 63
      Lubkowski, J.; Durbin, S. V.; Silva, M. C. C.; Farnsworth, D.; Gildersleeve, J. C.; Oliva, M. L. V.; Wlodawer, A. Structural analysis and unique molecular recognition properties of a Bauhinia forficata lectin that inhibits cancer cell growth. FEBS J. 2017, 284, 429450,  DOI: 10.1111/febs.13989
    64. 64
      Madariaga, D.; Martínez-Sáez, N.; Somovilla, V. J.; Coelho, H.; Valero-González, J.; Castro-López, J.; Asensio, J. L.; Jiménez-Barbero, J.; Busto, J. H.; Avenoza, A.; Marcelo, F.; Hurtado-Guerrero, R.; Corzana, F.; Peregrina, J. M. Detection of tumor-associated glycopeptides by lectins: the peptide context modulates carbohydrate recognition. ACS Chem. Biol. 2015, 10, 747756,  DOI: 10.1021/cb500855x
    65. 65
      Madariaga, D.; Martínez-Sáez, N.; Somovilla, V. J.; García-García, L.; Berbis, M. Á.; Valero-Gónzalez, J.; Martín-Santamaría, S.; Hurtado-Guerrero, R.; Asensio, J. L.; Jiménez-Barbero, J.; Avenoza, A.; Busto, J. H.; Corzana, F.; Peregrina, J. M. Serine versus Threonine Glycosylation with α-O-GalNAc: Unexpected Selectivity in Their Molecular Recognition with Lectins. Chem. Eur. J. 2014, 20, 1261612627,  DOI: 10.1002/chem.201403700
    66. 66
      Gibadullin, R.; Farnsworth, D. W.; Barchi, J. J.; Gildersleeve, J. C. GalNAc-Tyrosine Is a Ligand of Plant Lectins, Antibodies, and Human and Murine Macrophage Galactose-Type Lectins. ACS Chem. Biol. 2017, 12, 21722182,  DOI: 10.1021/acschembio.7b00471
    67. 67
      Pluvinage, B.; Ficko-Blean, E.; Noach, I.; Stuart, C.; Thompson, N.; McClure, H.; Buenbrazo, N.; Wakarchuk, W.; Boraston, A. B. Architecturally complex O-glycopeptidases are customized for mucin recognition and hydrolysis. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2019220118  DOI: 10.1073/pnas.2019220118
    68. 68
      Noach, I.; Ficko-Blean, E.; Pluvinage, B.; Stuart, C.; Jenkins, M. L.; Brochu, D.; Buenbrazo, N.; Wakarchuk, W.; Burke, J. E.; Gilbert, M.; Boraston, A. B. Recognition of protein-linked glycans as a determinant of peptidase activity. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E679  DOI: 10.1073/pnas.1615141114
    69. 69
      Somovilla, V. J.; Bermejo, I. A.; Albuquerque, I. S.; Martinez-Saez, N.; Castro-Lopez, J.; Garcia-Martin, F.; Companon, I.; Hinou, H.; Nishimura, S.-I.; Jimenez-Barbero, J.; Asensio, J. L.; Avenoza, A.; Busto, J. H.; Hurtado-Guerrero, R.; Peregrina, J. M.; Bernardes, G. J. L.; Corzana, F. The use of fluoroproline in MUC1 antigen enables efficient detection of antibodies in patients with prostate cancer. J. Am. Chem. Soc. 2017, 139, 1825518261,  DOI: 10.1021/jacs.7b09447
    70. 70
      Companon, I.; Guerreiro, A.; Mangini, V.; Castro-Lopez, J.; Escudero-Casao, M.; Avenoza, A.; Busto, J. H.; Castillon, S.; Jimenez-Barbero, J.; Asensio, J. L.; Jimenez-Oses, G.; Boutureira, O.; Peregrina, J. M.; Hurtado-Guerrero, R.; Fiammengo, R.; Bernardes, G. J. L.; Corzana, F. Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage. J. Am. Chem. Soc. 2019, 141, 40634072,  DOI: 10.1021/jacs.8b13503