ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Polyhydrido Copper Clusters: Synthetic Advances, Structural Diversity, and Nanocluster-to-Nanoparticle Conversion

View Author Information
Department of Chemistry, National Dong Hwa University, Hualien, Taiwan 97401
School of Chemistry and Physics, University of KwaZulu Natal, Private Bag X54001, Westville Campus, Durban 4000, South Africa
§ Centre for Chemical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151 001, India
Cite this: Acc. Chem. Res. 2016, 49, 1, 86–95
Publication Date (Web):December 22, 2015
https://doi.org/10.1021/acs.accounts.5b00375
Copyright © 2015 American Chemical Society

    Article Views

    5281

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image
    Conspectus

    Metal hydride clusters have historically been studied to unravel their aesthetically pleasing molecular structures and interesting properties, especially toward hydrogen related applications. Central to this work is the hydride ligand, H¯, the smallest closed-shell spherical anion known. Two new developments in polyhydrido nanocluster chemistry include the determination of heretofore unknown hydride coordination modes and novel structural constructs, and conversion from the molecular entities to rhombus-shaped copper nanoparticles (CuNPs). These advances, together with hydrogen evolution and catalysis, have provided both experimentalists and theorists with a rich scientific directive to further explore. The isolation of hexameric [{(Ph3P)CuH}6] (Stryker reagent) could be regarded as the springboard for the recent emergence of polyhydrido copper cluster chemistry due to its utilization in a variety of organic chemical transformations. The stability of clusters of various nuclearity was improved through phosphine, pyridine, and carbene type ligands. Our focus lies with the isolation of novel copper (poly)hydride clusters using mostly the phosphor-1,1-dithiolato type ligands. We found such chalcogen-stabilized clusters to be exceptionally air and moisture stable over a wide range of nuclearities (Cu7 to Cu32). In this Account, we (i) report on state-of-the-art copper hydride cluster chemistry, especially with regards to the diverse and novel structural types generally, and newly discovered hydride coordination modes in particular, (ii) demonstrate the indispensable power of neutron diffraction for the unambiguous assignment and location of hydride ligand(s) within a cluster, and (iii) prove unique transformations that can occur not only between well characterized high nuclearity clusters, but also how such clusters can transform to uniquely shaped nanoparticles of several nanometers in diameter through copper hydride reduction.

    The increase in the number of low- to high-nuclearity hydride clusters allows for different means by which they can be classified. We chose a classification based on the coordination mode of hydride ligand within the cluster. This includes copper clusters associated with bridging (μ2-H) and capping (μ3-H) hydride modes, followed by an interstitial (μ4-H) hydride mode that was introduced for the first time into octa- and hepta-nuclear copper clusters stabilized by dichalcogen-type ligands. This breakthrough provided a means to explore higher nuclearity polyhydrido nanoclusters, which contain both capping (μ3-H) and interstitial (μ(4–6)-H) hydrides. The presence of bidentate ligands having mixed S/P dative sites led to air- and moisture-stable copper hydride nanoclusters. The formation of rhombus-shaped nanoparticles (CuNPs) from copper polyhydrides in the presence of excess borohydrides suggests the presence of metal hydrides as intermediates during the formation of nanoparticles.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 216 publications.

    1. Si Li, Na-Na Li, Xi-Yan Dong, Shuang-Quan Zang, Thomas C. W. Mak. Chemical Flexibility of Atomically Precise Metal Clusters. Chemical Reviews 2024, Article ASAP.
    2. Hao-Nan Qin, Meng-Wei He, Jie Wang, Hai-Yang Li, Zhao-Yang Wang, Shuang-Quan Zang, Thomas C. W. Mak. Thiacalix[4]arene Etching of an Anisotropic Cu70H22 Intermediate for Accessing Robust Modularly Assembled Copper Nanoclusters. Journal of the American Chemical Society 2024, 146 (5) , 3545-3552. https://doi.org/10.1021/jacs.3c13965
    3. Sourav Biswas, Yuichi Negishi. A Comprehensive Analysis of Luminescent Crystallized Cu Nanoclusters. The Journal of Physical Chemistry Letters 2024, 15 (4) , 947-958. https://doi.org/10.1021/acs.jpclett.3c03374
    4. Bingzheng Yan, Xuexin You, Xiongkai Tang, Jing Sun, Qinghua Xu, Lin Wang, Zong-Jie Guan, Fengyu Li, Hui Shen. Carboxylate-Protected “Isostructural” Cu20 Nanoclusters as a Model System: Carboxylate Effect on Controlling Catalysis. Chemistry of Materials 2024, 36 (2) , 1004-1012. https://doi.org/10.1021/acs.chemmater.3c03131
    5. Jing Sun, Xiongkai Tang, Zhuang-Hua Liu, Zhenlang Xie, Bingzheng Yan, Runfang Yin, Chaolumen Chaolumen, Jian Zhang, Weihui Fang, Jianyu Wei, Hui Shen. Labile Ligands Protected Cu50 Nanoclusters with Tailorable Optical Limiting Effect. ACS Materials Letters 2024, 6 (1) , 281-289. https://doi.org/10.1021/acsmaterialslett.3c01305
    6. Miao-Miao Zhang, Kai-Kai Gao, Xi-Yan Dong, Yubing Si, Teng Jia, Zhen Han, Shuang-Quan Zang, Thomas C. W. Mak. Chiral Hydride Cu18 Clusters Transform to Superatomic Cu15Ag4 Clusters: Circularly Polarized Luminescence Lighting. Journal of the American Chemical Society 2023, 145 (41) , 22310-22316. https://doi.org/10.1021/jacs.3c08241
    7. Xiaoxuan Xu, Ying Liu, Fang Sun, Yanyuan Jia, Qinghua Xu, Jiaqi Tang, Zhenlang Xie, Jing Sun, Simin Li, Qing Tang, Shuo Guo, Hui Shen, Nanfeng Zheng. Array-Based Clusters of Copper with Largely Exposed Metal Sites for Promoting Catalysis. Chemistry of Materials 2023, 35 (18) , 7588-7596. https://doi.org/10.1021/acs.chemmater.3c01277
    8. Jian-Hong Liao, Rhone P. Brocha Silalahi, Tzu-Hao Chiu, C. W. Liu. Locating Interstitial Hydrides in MH2@Cu14 (M = Cu, Ag) Clusters by Single-Crystal X-ray Diffraction. ACS Omega 2023, 8 (34) , 31541-31547. https://doi.org/10.1021/acsomega.3c04758
    9. Simin Li, Xiaodan Yan, Jiaqi Tang, Dongxu Cao, Xueli Sun, Guolong Tian, Xiongkai Tang, Huifang Guo, Qingyuan Wu, Jing Sun, Jinlu He, Hui Shen. Cu26 Nanoclusters with Quintuple Ligand Shells for CO2 Electrocatalytic Reduction. Chemistry of Materials 2023, 35 (15) , 6123-6132. https://doi.org/10.1021/acs.chemmater.3c01247
    10. Qinzhen Li, Yesen Tan, Baoyu Huang, Sha Yang, Jinsong Chai, Xiaoping Wang, Yong Pei, Manzhou Zhu. Mechanistic Study of the Hydride Migration-Induced Reversible Isomerization in Au22(SR)15H Isomers. Journal of the American Chemical Society 2023, 145 (29) , 15859-15868. https://doi.org/10.1021/jacs.3c02768
    11. Jing Sun, Xiaodan Yan, Lingzheng Wang, Zhenlang Xie, Guolong Tian, Lin Wang, Ayisha He, Simin Li, Qingxiang Guo, Chaolumen, Jinlu He, Hui Shen. Decorating an Anticuboctahedral Copper Kernel with Labile Surface Coatings for Controlling Optical and Catalytic Properties. Inorganic Chemistry 2023, 62 (23) , 9005-9013. https://doi.org/10.1021/acs.inorgchem.3c00710
    12. Wentong Jing, Hui Shen, Ruixuan Qin, Qingyuan Wu, Kunlong Liu, Nanfeng Zheng. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chemical Reviews 2023, 123 (9) , 5948-6002. https://doi.org/10.1021/acs.chemrev.2c00569
    13. Jia-Hong Huang, Li-Ying Liu, Zhao-Yang Wang, Shuang-Quan Zang, Thomas C. W. Mak. Modular Cocrystallization of Customized Carboranylthiolate-Protected Copper Nanoclusters via Host–Guest Interactions. ACS Nano 2022, 16 (11) , 18789-18794. https://doi.org/10.1021/acsnano.2c07521
    14. Huixian Miao, Xiancheng Pan, Miao Li, Wenjiang Zhaxi, Jing Wu, Zetao Huang, Luying Liu, Xiao Ma, Shenlong Jiang, Wei Huang, Qun Zhang, Dayu Wu. A Copper Iodide Cluster-Based Coordination Polymer as an Unconventional Zero-Thermal-Quenching Phosphor. Inorganic Chemistry 2022, 61 (46) , 18779-18788. https://doi.org/10.1021/acs.inorgchem.2c03322
    15. Dilip Kumar Jangid, Saptarshi G. Dastider, Rathindranath Biswas, Samreet Khirid, Sangeeta Meena, Pankaj Kumar, Subash C. Sahoo, Ved Prakash Verma, Ravindra D. Makde, Ashwani Kumar, Ravindra Jangir, Krishnakanta Mondal, Krishna Kanta Haldar, Rajendra S. Dhayal. Dithiophosphonate Anchored Heterometallic (Ag(I)/Fe(II)) Molecular Catalysts for Electrochemical Hydrogen Evolution Reaction. Inorganic Chemistry 2022, 61 (34) , 13342-13354. https://doi.org/10.1021/acs.inorgchem.2c01281
    16. Shang-Fu Yuan, Zong-Jie Guan, Quan-Ming Wang. Identification of the Active Species in Bimetallic Cluster Catalyzed Hydrogenation. Journal of the American Chemical Society 2022, 144 (25) , 11405-11412. https://doi.org/10.1021/jacs.2c04156
    17. Song Wang, Tongyu Liu, De-en Jiang. Locating Hydrides in Ligand-Protected Copper Nanoclusters by Deep Learning. ACS Applied Materials & Interfaces 2021, 13 (45) , 53468-53474. https://doi.org/10.1021/acsami.1c14618
    18. Sanghwa Lee, Megalamane S. Bootharaju, Guocheng Deng, Sami Malola, Hannu Häkkinen, Nanfeng Zheng, Taeghwan Hyeon. [Pt2Cu34(PET)22Cl4]2–: An Atomically Precise, 10-Electron PtCu Bimetal Nanocluster with a Direct Pt–Pt Bond. Journal of the American Chemical Society 2021, 143 (31) , 12100-12107. https://doi.org/10.1021/jacs.1c04002
    19. Chunwei Dong, Ren-Wu Huang, Cailing Chen, Jie Chen, Saidkhodzha Nematulloev, Xianrong Guo, Atanu Ghosh, Badriah Alamer, Mohamed Nejib Hedhili, Tayirjan T. Isimjan, Yu Han, Omar F. Mohammed, Osman M. Bakr. [Cu36H10(PET)24(PPh3)6Cl2] Reveals Surface Vacancy Defects in Ligand-Stabilized Metal Nanoclusters. Journal of the American Chemical Society 2021, 143 (29) , 11026-11035. https://doi.org/10.1021/jacs.1c03402
    20. Dae Ho Hong, Ricardo B. Ferreira, Vincent J. Catalano, Ricardo García-Serres, Jason Shearer, Leslie J. Murray. Access to Metal Centers and Fluxional Hydride Coordination Integral for CO2 Insertion into [Fe3(μ-H)3]3+ Clusters. Inorganic Chemistry 2021, 60 (10) , 7228-7239. https://doi.org/10.1021/acs.inorgchem.1c00244
    21. Yosuke Fukuda, Nobuto Yoshinari, Takumi Konno. Insertion of a Hydride Ion Into a Tetrasilver(I) Cluster Covered by S-Donating Rhodium(III) Metalloligands. Inorganic Chemistry 2021, 60 (1) , 468-475. https://doi.org/10.1021/acs.inorgchem.0c03267
    22. Ren-Wu Huang, Jun Yin, Chunwei Dong, Partha Maity, Mohamed Nejib Hedhili, Saidkhodzha Nematulloev, Badriah Alamer, Atanu Ghosh, Omar F. Mohammed, Osman M. Bakr. [Cu23(PhSe)16(Ph3P)8(H)6]·BF4: Atomic-Level Insights into Cuboidal Polyhydrido Copper Nanoclusters and Their Quasi-simple Cubic Self-Assembly. ACS Materials Letters 2021, 3 (1) , 90-99. https://doi.org/10.1021/acsmaterialslett.0c00513
    23. Courtney A. Downes, Nicole J. Libretto, Anne E. Harman-Ware, Renee M. Happs, Daniel A. Ruddy, Frederick G. Baddour, Jack R. Ferrell III, Susan E. Habas, Joshua A. Schaidle. Electrocatalytic CO2 Reduction over Cu3P Nanoparticles Generated via a Molecular Precursor Route. ACS Applied Energy Materials 2020, 3 (11) , 10435-10446. https://doi.org/10.1021/acsaem.0c01360
    24. Madhuri Jash, Esma Khatun, Papri Chakraborty, Chennu Sudhakar, Thalappil Pradeep. [Ag15H13(DPPH)5]2+ and [Ag27H22(DPPB)7]3+: Two New Hydride and Phosphine Co-Protected Clusters and Their Fragmentation Leading to Naked Clusters, Ag13+ and Ag25+. The Journal of Physical Chemistry C 2020, 124 (37) , 20569-20577. https://doi.org/10.1021/acs.jpcc.0c05867
    25. Dewmi A. Ekanayake, Arundhoti Chakraborty, Jeanette A. Krause, Hairong Guan. Steric Effects of HN(CH2CH2PR2)2 on the Nuclearity of Copper Hydrides. Inorganic Chemistry 2020, 59 (17) , 12817-12828. https://doi.org/10.1021/acs.inorgchem.0c01865
    26. Victor Fung, Guoxiang Hu, Zili Wu, De-en Jiang. Hydrogen in Nanocatalysis. The Journal of Physical Chemistry Letters 2020, 11 (17) , 7049-7057. https://doi.org/10.1021/acs.jpclett.0c01783
    27. Sanghwa Lee, Megalamane S. Bootharaju, Guocheng Deng, Sami Malola, Woonhyuk Baek, Hannu Häkkinen, Nanfeng Zheng, Taeghwan Hyeon. [Cu32(PET)24H8Cl2](PPh4)2: A Copper Hydride Nanocluster with a Bisquare Antiprismatic Core. Journal of the American Chemical Society 2020, 142 (32) , 13974-13981. https://doi.org/10.1021/jacs.0c06577
    28. Hao Li, Hongsheng Zhai, Chuanjun Zhou, Yongbo Song, Feng Ke, Wen Wu Xu, Manzhou Zhu. Atomically Precise Copper Cluster with Intensely Near-Infrared Luminescence and Its Mechanism. The Journal of Physical Chemistry Letters 2020, 11 (12) , 4891-4896. https://doi.org/10.1021/acs.jpclett.0c01358
    29. Ren-Wu Huang, Jun Yin, Chunwei Dong, Atanu Ghosh, Mohammad J. Alhilaly, Xinglong Dong, Mohamed Nejib Hedhili, Edy Abou-Hamad, Badriah Alamer, Saidkhodzha Nematulloev, Yu Han, Omar F. Mohammed, Osman M. Bakr. [Cu81(PhS)46(tBuNH2)10(H)32]3+ Reveals the Coexistence of Large Planar Cores and Hemispherical Shells in High-Nuclearity Copper Nanoclusters. Journal of the American Chemical Society 2020, 142 (19) , 8696-8705. https://doi.org/10.1021/jacs.0c00541
    30. Rhone P. Brocha Silalahi, Guan-Rong Huang, Jian-Hong Liao, Tzu-Hao Chiu, Kiran Kumarvarma Chakrahari, Xiaoping Wang, Julien Cartron, Samia Kahlal, Jean-Yves Saillard, C. W. Liu. Copper Clusters Containing Hydrides in Trigonal Pyramidal Geometry. Inorganic Chemistry 2020, 59 (4) , 2536-2547. https://doi.org/10.1021/acs.inorgchem.9b03501
    31. Yuanxin Du, Hongting Sheng, Didier Astruc, Manzhou Zhu. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews 2020, 120 (2) , 526-622. https://doi.org/10.1021/acs.chemrev.8b00726
    32. Xiting Yuan, Cunfa Sun, Xihua Li, Sami Malola, Boon K. Teo, Hannu Häkkinen, Lan-Sun Zheng, Nanfeng Zheng. Combinatorial Identification of Hydrides in a Ligated Ag40 Nanocluster with Noncompact Metal Core. Journal of the American Chemical Society 2019, 141 (30) , 11905-11911. https://doi.org/10.1021/jacs.9b03009
    33. Xiangsha Du, Rongchao Jin. Atomically Precise Metal Nanoclusters for Catalysis. ACS Nano 2019, 13 (7) , 7383-7387. https://doi.org/10.1021/acsnano.9b04533
    34. Takayuki Nakajima, Yoshia Kamiryo, Masayo Kishimoto, Kaho Imai, Kanako Nakamae, Yasuyuki Ura, Tomoaki Tanase. Synergistic Cu2 Catalysts for Formic Acid Dehydrogenation. Journal of the American Chemical Society 2019, 141 (22) , 8732-8736. https://doi.org/10.1021/jacs.9b03532
    35. Megalamane S. Bootharaju, Hogeun Chang, Guocheng Deng, Sami Malola, Woonhyuk Baek, Hannu Häkkinen, Nanfeng Zheng, Taeghwan Hyeon. Cd12Ag32(SePh)36: Non-Noble Metal Doped Silver Nanoclusters. Journal of the American Chemical Society 2019, 141 (21) , 8422-8425. https://doi.org/10.1021/jacs.9b03257
    36. Cunfa Sun, Nisha Mammen, Sami Kaappa, Peng Yuan, Guocheng Deng, Chaowei Zhao, Juanzhu Yan, Sami Malola, Karoliina Honkala, Hannu Häkkinen, Boon K. Teo, Nanfeng Zheng. Atomically Precise, Thiolated Copper–Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions. ACS Nano 2019, 13 (5) , 5975-5986. https://doi.org/10.1021/acsnano.9b02052
    37. Michael N. Pillay, Jian-Hong Liao, C. W. Liu, Werner E. van Zyl. Aqueous Route to Stable Luminescent Tetranuclear Copper(I) Dithiophosphonate Clusters. Inorganic Chemistry 2019, 58 (10) , 7099-7106. https://doi.org/10.1021/acs.inorgchem.9b00783
    38. Shinjiro Takano, Shingo Hasegawa, Megumi Suyama, Tatsuya Tsukuda. Hydride Doping of Chemically Modified Gold-Based Superatoms. Accounts of Chemical Research 2018, 51 (12) , 3074-3083. https://doi.org/10.1021/acs.accounts.8b00399
    39. Qing Tang, Guoxiang Hu, Victor Fung, De-en Jiang. Insights into Interfaces, Stability, Electronic Properties, and Catalytic Activities of Atomically Precise Metal Nanoclusters from First Principles. Accounts of Chemical Research 2018, 51 (11) , 2793-2802. https://doi.org/10.1021/acs.accounts.8b00380
    40. Beatrice Berti, Iacopo Ciabatti, Cristina Femoni, Maria Carmela Iapalucci, Stefano Zacchini. Cluster Core Isomerism Induced by Crystal Packing Effects in the [HCo15Pd9C3(CO)38]2– Molecular Nanocluster. ACS Omega 2018, 3 (10) , 13239-13250. https://doi.org/10.1021/acsomega.8b02109
    41. Sachil Sharma, Kiran Kumarvarma Chakrahari, Jean-Yves Saillard, C. W. Liu. Structurally Precise Dichalcogenolate-Protected Copper and Silver Superatomic Nanoclusters and Their Alloys. Accounts of Chemical Research 2018, 51 (10) , 2475-2483. https://doi.org/10.1021/acs.accounts.8b00349
    42. Takayuki Nakajima, Yoshia Kamiryo, Kanae Hachiken, Kanako Nakamae, Yasuyuki Ura, Tomoaki Tanase. Tri- and Tetranuclear Copper Hydride Complexes Supported by Tetradentate Phosphine Ligands. Inorganic Chemistry 2018, 57 (17) , 11005-11018. https://doi.org/10.1021/acs.inorgchem.8b01628
    43. Meng-Juan Zhang, Da-Wei Tan, Hong-Xi Li, David James Young, Hui-Fang Wang, Hai-Yan Li, and Jian-Ping Lang . Switchable Chemoselective Transfer Hydrogenations of Unsaturated Carbonyls Using Copper(I) N-Donor Thiolate Clusters. The Journal of Organic Chemistry 2018, 83 (3) , 1204-1215. https://doi.org/10.1021/acs.joc.7b02676
    44. Andrew W. Cook, Zachary R. Jones, Guang Wu, Susannah L. Scott, and Trevor W. Hayton . An Organometallic Cu20 Nanocluster: Synthesis, Characterization, Immobilization on Silica, and “Click” Chemistry. Journal of the American Chemical Society 2018, 140 (1) , 394-400. https://doi.org/10.1021/jacs.7b10960
    45. Corinna Borner, Lisa Anders, Kai Brandhorst, and Christian Kleeberg . Elusive Phosphine Copper(I) Boryl Complexes: Synthesis, Structures, and Reactivity. Organometallics 2017, 36 (24) , 4687-4690. https://doi.org/10.1021/acs.organomet.7b00775
    46. Camille Latouche, Jian-Hong Liao, Yi-Juan Li, Ruei-Yi Shiu, Vincenzo Barone, Samia Kahlal, C. W. Liu, and Jean-Yves Saillard . Encapsulating Iodine and Copper into Copper(I) Clusters Stabilized by Dichalcogenolate Ligands: Stability, Structure, and Optical Properties. Inorganic Chemistry 2017, 56 (22) , 14135-14146. https://doi.org/10.1021/acs.inorgchem.7b02269
    47. Yumeng Xi and John F. Hartwig . Mechanistic Studies of Copper-Catalyzed Asymmetric Hydroboration of Alkenes. Journal of the American Chemical Society 2017, 139 (36) , 12758-12772. https://doi.org/10.1021/jacs.7b07124
    48. Jiale Liu, Zhennan Wu, Ye Tian, Yanchun Li, Lin Ai, Tingting Li, Haoyang Zou, Yi Liu, Xindong Zhang, Hao Zhang, and Bai Yang . Engineering the Self-Assembly Induced Emission of Cu Nanoclusters by Au(I) Doping. ACS Applied Materials & Interfaces 2017, 9 (29) , 24899-24907. https://doi.org/10.1021/acsami.7b06371
    49. Qing Tang, Yongjin Lee, Dai-Ying Li, Woojun Choi, C. W. Liu, Dongil Lee, and De-en Jiang . Lattice-Hydride Mechanism in Electrocatalytic CO2 Reduction by Structurally Precise Copper-Hydride Nanoclusters. Journal of the American Chemical Society 2017, 139 (28) , 9728-9736. https://doi.org/10.1021/jacs.7b05591
    50. Guoxiang Hu, Qing Tang, Dongil Lee, Zili Wu, and De-en Jiang . Metallic Hydrogen in Atomically Precise Gold Nanoclusters. Chemistry of Materials 2017, 29 (11) , 4840-4847. https://doi.org/10.1021/acs.chemmater.7b00776
    51. Athanasios Zavras, Hossein Ghari, Alireza Ariafard, Allan J. Canty, and Richard A. J. O’Hair . Gas-Phase Ion–Molecule Reactions of Copper Hydride Anions [CuH2]− and [Cu2H3]−. Inorganic Chemistry 2017, 56 (5) , 2387-2399. https://doi.org/10.1021/acs.inorgchem.6b02145
    52. Tomohiro Iwai, Tomoya Harada, Hajime Shimada, Kiichi Asano, and Masaya Sawamura . A Polystyrene-Cross-Linking Bisphosphine: Controlled Metal Monochelation and Ligand-Enabled First-Row Transition Metal Catalysis. ACS Catalysis 2017, 7 (3) , 1681-1692. https://doi.org/10.1021/acscatal.6b02988
    53. Yi-Ting Chen, Ilya S. Krytchankou, Antti J. Karttunen, Elena V. Grachova, Sergey P. Tunik, Pi-Tai Chou, and Igor O. Koshevoy . Silver Alkynyl-Phosphine Clusters: An Electronic Effect of the Alkynes Defines Structural Diversity. Organometallics 2017, 36 (2) , 480-489. https://doi.org/10.1021/acs.organomet.6b00866
    54. Megalamane S. Bootharaju, Raju Dey, Lieven E. Gevers, Mohamed N. Hedhili, Jean-Marie Basset, and Osman M. Bakr . A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines. Journal of the American Chemical Society 2016, 138 (42) , 13770-13773. https://doi.org/10.1021/jacs.6b05482
    55. Jiaye Li, Jonathan M. White, Roger J. Mulder, Gavin E. Reid, Paul S. Donnelly, and Richard A. J. O’Hair . Synthesis, Structural Characterization, and Gas-Phase Unimolecular Reactivity of Bis(diphenylphosphino)amino Copper Hydride Nanoclusters [Cu3(X)(μ3-H)((PPh2)2NH)3](BF4), Where X = μ2-Cl and μ3-BH4. Inorganic Chemistry 2016, 55 (19) , 9858-9868. https://doi.org/10.1021/acs.inorgchem.6b01696
    56. Abraham J. Jordan, Gojko Lalic, and Joseph P. Sadighi . Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity. Chemical Reviews 2016, 116 (15) , 8318-8372. https://doi.org/10.1021/acs.chemrev.6b00366
    57. Pilli V. V. N. Kishore, Jian-Hong Liao, Hsing-Nan Hou, Yan-Ru Lin, and C. W. Liu . Ferrocene-Functionalized Cu(I)/Ag(I) Dithiocarbamate Clusters. Inorganic Chemistry 2016, 55 (7) , 3663-3673. https://doi.org/10.1021/acs.inorgchem.6b00201
    58. . Modification and Assembly of Copper Clusters. 2024, 65-91. https://doi.org/10.1002/9783527842094.ch3
    59. Yun-Dong Cao, Di Yin, Ming-Liang Wang, Hong Liu, Yi Feng, Lin-Lin Fan, Cai-Li Lv, Guang-Gang Gao. Oxygen insertion at the cage center: an unconventional tuning strategy for enhancing the photocatalytic performance of atomically precise copper cluster cocatalysts. Journal of Materials Chemistry A 2024, 12 (20) , 12043-12053. https://doi.org/10.1039/D3TA07218E
    60. Jing Sun, Xiongkai Tang, Xiaodan Yan, Wentong Jing, Zhenlang Xie, Haoqi Wang, Chaolumen, Jinlu He, Hui Shen. Atomically precise Cu41 clusters as model catalysts: Open metal sites matter. Next Materials 2024, 3 , 100091. https://doi.org/10.1016/j.nxmate.2023.100091
    61. Xin Ge, Shuhuan Zeng, Hongwen Deng, Boon K. Teo, Cunfa Sun. Atom-precise copper nanoclusters based on FCC, BCC, and HCP structures. Coordination Chemistry Reviews 2024, 503 , 215667. https://doi.org/10.1016/j.ccr.2024.215667
    62. Alexander V. Artem'ev, Ul'yana A. Kuzmina, Andrey Yu. Baranov, Alexander S. Novikov, Irina Yu. Bagryanskaya. Ag(I), Au(I) and Au(I)-Ag(I) clusters based on tris[(6-methylpyridin-2-yl)methyl]phosphine. Inorganic Chemistry Communications 2024, 161 , 112131. https://doi.org/10.1016/j.inoche.2024.112131
    63. Rhone P. Brocha Silalahi, Hao Liang, Yongsung Jo, Jian‐Hong Liao, Tzu‐Hao Chiu, Ying‐Yann Wu, Xiaoping Wang, Samia Kahlal, Qi Wang, Woojun Choi, Dongil Lee, Jean‐Yves Saillard, C. W. Liu. Hydride‐Containing Pt‐doped Cu‐rich Nanoclusters: Synthesis, Structure, and Electrocatalytic Hydrogen Evolution. Chemistry – A European Journal 2024, 30 (13) https://doi.org/10.1002/chem.202303755
    64. Anish Kumar Das, Sourav Biswas, Amit Pal, Surya Sekhar Manna, Avirup Sardar, Pradip Kumar Mondal, Basudev Sahoo, Biswarup Pathak, Sukhendu Mandal. A thiolated copper-hydride nanocluster with chloride bridging as a catalyst for carbonylative C–N coupling of aryl amines under mild conditions: a combined experimental and theoretical study. Nanoscale 2024, 16 (7) , 3583-3590. https://doi.org/10.1039/D3NR05912J
    65. Haiming Wu, Gaya N. Andrew, Rajini Anumula, Zhixun Luo. How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4(dppy)4Cl2 vs. Cu21(dppy)10 with altered photoluminescence. Chinese Chemical Letters 2024, 35 (1) , 108340. https://doi.org/10.1016/j.cclet.2023.108340
    66. Shuhuan Zeng, Xin Ge, Hongwen Deng, Shuwei Hao, Zhiye Zhang, Boon K. Teo, Cunfa Sun. Synthesis and Structure of Polyhydrido Copper Nanocluster [Cu14H10(PPh3)8(SPhMe2)3]+: Symmetry-Breaking by Thiolate Ligands to form Racemic Pairs of Chiral Clusters in Solid-State. Journal of Cluster Science 2024, 35 (1) , 109-113. https://doi.org/10.1007/s10876-023-02469-w
    67. Dongyu Wang, Peilin Wang, Zihui Liang, Zhenrun Li, Ning Liu, Qiang Ma. Novel Cu nanocluster superlattice/MBene-induced ECL enhancement strategy for miRNA-221 detection. Chemical Engineering Journal 2023, 478 , 147512. https://doi.org/10.1016/j.cej.2023.147512
    68. Meng Wang, Lin Wang, Haoyuan Wu, Jing Sun, Xiaoxuan Xu, Shuo Guo, Yanyuan Jia, Simin Li, Zong-Jie Guan, Hui Shen. PtAg 18 superatoms costabilized by phosphines and halides: synthesis, structure, and catalysis. Nanoscale 2023, 15 (44) , 17818-17824. https://doi.org/10.1039/D3NR02196C
    69. Zebabanu Khalifa, Amit B. Patel. Applications of copper and iron-catalyzed Csp 3 –Csp 3 cross-dehydrogenative coupling in organic synthesis. Synthetic Communications 2023, 53 (20) , 1665-1700. https://doi.org/10.1080/00397911.2023.2248528
    70. Yuping Liu, Jinli Yu, Yongfeng Lun, Yawen Wang, Yi Wang, Shuqin Song. Ligand Design in Atomically Precise Copper Nanoclusters and Their Application in Electrocatalytic Reactions. Advanced Functional Materials 2023, 33 (44) https://doi.org/10.1002/adfm.202304184
    71. Geng‐Geng Luo, Zhong‐Hua Pan, Bao‐Liang Han, Guang‐Lei Dong, Cheng‐Long Deng, Mohammad Azam, Yun‐Wen Tao, Jiao He, Cun‐Fa Sun, Di Sun. Total Structure, Electronic Structure and Catalytic Hydrogenation Activity of Metal‐Deficient Chiral Polyhydride Cu 57 Nanoclusters. Angewandte Chemie International Edition 2023, 62 (37) https://doi.org/10.1002/anie.202306849
    72. Geng‐Geng Luo, Zhong‐Hua Pan, Bao‐Liang Han, Guang‐Lei Dong, Cheng‐Long Deng, Mohammad Azam, Yun‐Wen Tao, Jiao He, Cun‐Fa Sun, Di Sun. Total Structure, Electronic Structure and Catalytic Hydrogenation Activity of Metal‐Deficient Chiral Polyhydride Cu 57 Nanoclusters. Angewandte Chemie 2023, 135 (37) https://doi.org/10.1002/ange.202306849
    73. Gwaza Eric Ayom, Sizwe J. Zamisa, Thishana Singh, Werner E. van Zyl. Polymorphism in pentaerythritol-derived ferrocenyl dithiophosphonates with intramolecular S-S coupling: a structural and computational study. Phosphorus, Sulfur, and Silicon and the Related Elements 2023, 198 (9) , 723-732. https://doi.org/10.1080/10426507.2023.2222871
    74. Hanseok Yi, Suhwan Song, Sang Myeong Han, Jieun Lee, Woojae Kim, Eunji Sim, Dongil Lee. Superatom‐in‐Superatom Nanoclusters: Synthesis, Structure, and Photoluminescence. Angewandte Chemie 2023, 135 (33) https://doi.org/10.1002/ange.202302591
    75. Hanseok Yi, Suhwan Song, Sang Myeong Han, Jieun Lee, Woojae Kim, Eunji Sim, Dongil Lee. Superatom‐in‐Superatom Nanoclusters: Synthesis, Structure, and Photoluminescence. Angewandte Chemie International Edition 2023, 62 (33) https://doi.org/10.1002/anie.202302591
    76. Yun‐Dong Cao, Di Yin, Si Li, Xi‐Yan Dong, Y. Feng, Hong Liu, Lin‐Lin Fan, Guang‐Gang Gao, Shuang‐Quan Zang. Substituent Effect to Fine‐Tune Energy Levels of Atom‐Precise [MoOS 3 ] 2− Modified Copper(I) Thiolate Clusters Boosting Recyclable Photocatalysis. Angewandte Chemie 2023, 135 (32) https://doi.org/10.1002/ange.202307678
    77. Yun‐Dong Cao, Di Yin, Si Li, Xi‐Yan Dong, Y. Feng, Hong Liu, Lin‐Lin Fan, Guang‐Gang Gao, Shuang‐Quan Zang. Substituent Effect to Fine‐Tune Energy Levels of Atom‐Precise [MoOS 3 ] 2− Modified Copper(I) Thiolate Clusters Boosting Recyclable Photocatalysis. Angewandte Chemie International Edition 2023, 62 (32) https://doi.org/10.1002/anie.202307678
    78. Huixian Miao, Pingping Wang, Luying Liu, Zetao Huang, Wenjiang Zhaxi, Wei Huang, Dayu Wu. Synthesis, structures and thermal dependence of photoluminescence of copper(I) halide metallacycle and 1-D chain complexes. Journal of Solid State Chemistry 2023, 324 , 124098. https://doi.org/10.1016/j.jssc.2023.124098
    79. Saidkhodzha Nematulloev, Arunachalam Sagadevan, Badriah Alamer, Aleksander Shkurenko, Renwu Huang, Jun Yin, Chunwei Dong, Peng Yuan, Khursand E. Yorov, Azimet A. Karluk, Wasim J. Mir, Bashir E. Hasanov, Mohamed Nejib Hedhili, Naveen M. Halappa, Mohamed Eddaoudi, Omar F. Mohammed, Magnus Rueping, Osman M. Bakr. Atomically Precise Defective Copper Nanocluster Catalysts for Highly Selective C−C Cross‐Coupling Reactions. Angewandte Chemie International Edition 2023, 62 (26) https://doi.org/10.1002/anie.202303572
    80. Saidkhodzha Nematulloev, Arunachalam Sagadevan, Badriah Alamer, Aleksander Shkurenko, Renwu Huang, Jun Yin, Chunwei Dong, Peng Yuan, Khursand E. Yorov, Azimet A. Karluk, Wasim J. Mir, Bashir E. Hasanov, Mohamed Nejib Hedhili, Naveen M. Halappa, Mohamed Eddaoudi, Omar F. Mohammed, Magnus Rueping, Osman M. Bakr. Atomically Precise Defective Copper Nanocluster Catalysts for Highly Selective C−C Cross‐Coupling Reactions. Angewandte Chemie 2023, 135 (26) https://doi.org/10.1002/ange.202303572
    81. Guanglei Dong, Zhonghua Pan, Baoliang Han, Yunwen Tao, Xin Chen, Geng‐Geng Luo, Panpan Sun, Cunfa Sun, Di Sun. Multi‐layer 3D Chirality and Double‐Helical Assembly in a Copper Nanocluster with a Triple‐Helical Cu 15 Core. Angewandte Chemie 2023, 135 (24) https://doi.org/10.1002/ange.202302595
    82. Guanglei Dong, Zhonghua Pan, Baoliang Han, Yunwen Tao, Xin Chen, Geng‐Geng Luo, Panpan Sun, Cunfa Sun, Di Sun. Multi‐layer 3D Chirality and Double‐Helical Assembly in a Copper Nanocluster with a Triple‐Helical Cu 15 Core. Angewandte Chemie International Edition 2023, 62 (24) https://doi.org/10.1002/anie.202302595
    83. Alexander V. Artem’ev, C. W. Liu. Recent progress in dichalcophosphate coinage metal clusters and superatoms. Chemical Communications 2023, 59 (47) , 7182-7195. https://doi.org/10.1039/D3CC01215H
    84. Jing Sun, Fang Sun, Jiaqi Tang, Xiongkai Tang, Qingyuan Wu, Rong Huo, Ayisha He, Sachurilatu, Xueli Sun, Chaolumen, Qing Tang, Hui Shen. Carboxylate engineering for manipulating the optical and assembly properties of copper clusters. Inorganic Chemistry Frontiers 2023, 10 (9) , 2618-2625. https://doi.org/10.1039/D3QI00409K
    85. Chunwei Dong, Saidkhodzha Nematulloev, Peng Yuan, Osman M. Bakr. Atomically Precise Copper Nanoclusters. 2023, 257-283. https://doi.org/10.1002/9781119788676.ch8
    86. Li Tang, Yuting Luo, Xiaoshuang Ma, Bin Wang, Mei Ding, Ru Wang, Pu Wang, Yong Pei, Shuxin Wang. Poly‐Hydride [Au I 7 (PPh 3 ) 7 H 5 ](SbF 6 ) 2 cluster complex: Structure, Transformation, and Electrocatalytic CO 2 Reduction Properties. Angewandte Chemie International Edition 2023, 62 (11) https://doi.org/10.1002/anie.202300553
    87. Li Tang, Yuting Luo, Xiaoshuang Ma, Bin Wang, Mei Ding, Ru Wang, Pu Wang, Yong Pei, Shuxin Wang. Poly‐Hydride [Au I 7 (PPh 3 ) 7 H 5 ](SbF 6 ) 2 cluster complex: Structure, Transformation, and Electrocatalytic CO 2 Reduction Properties. Angewandte Chemie 2023, 135 (11) https://doi.org/10.1002/ange.202300553
    88. Haiming Wu, Rajini Anumula, Gaya N. Andrew, Zhixun Luo. A stable superatomic Cu 6 (SMPP) 6 nanocluster with dual emission. Nanoscale 2023, 15 (8) , 4137-4142. https://doi.org/10.1039/D2NR07223H
    89. Yu‐Mei Wang, Xiao‐Chun Lin, Kai‐Ming Mo, Mo Xie, Yong‐Liang Huang, Guo‐Hong Ning, Dan Li. An Atomically Precise Pyrazolate‐Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity. Angewandte Chemie 2023, 135 (9) https://doi.org/10.1002/ange.202218369
    90. Yu‐Mei Wang, Xiao‐Chun Lin, Kai‐Ming Mo, Mo Xie, Yong‐Liang Huang, Guo‐Hong Ning, Dan Li. An Atomically Precise Pyrazolate‐Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity. Angewandte Chemie International Edition 2023, 62 (9) https://doi.org/10.1002/anie.202218369
    91. Rhone P. Brocha Silalahi, Jian-Hong Liao, Yu-Fang Tseng, Tzu-Hao Chiu, Samia Kahlal, Jean-Yves Saillard, C. W. Liu. Unusual core engineering on a copper hydride nanoball. Dalton Transactions 2023, 52 (7) , 2106-2114. https://doi.org/10.1039/D2DT03449B
    92. Jie Tang, Chong Liu, Chenyu Zhu, Keju Sun, He Wang, Wen Yin, Chuting Xu, Yang Li, Weiguo Wang, Li Wang, Renan Wu, Chao Liu, Jiahui Huang. High-nuclearity and thiol protected core–shell [Cu 75 (S-Adm) 32 ] 2+ : distorted octahedra fixed to Cu 15 core via strong cuprophilic interactions. Nanoscale 2023, 15 (6) , 2843-2848. https://doi.org/10.1039/D2NR05921E
    93. Howard Z. Ma, Allan J. Canty, Richard A. J. O'Hair. Near thermal, selective liberation of hydrogen from formic acid catalysed by copper hydride ate complexes. Dalton Transactions 2023, 52 (6) , 1574-1581. https://doi.org/10.1039/D2DT03764E
    94. Leon Li‐Min Zhang, Wai‐Yeung Wong. Atomically precise copper nanoclusters as ultrasmall molecular aggregates: Appealing compositions, structures, properties, and applications. Aggregate 2023, 4 (1) https://doi.org/10.1002/agt2.266
    95. Huixian Miao, Yujie Zhou, Pingping Wang, Zetao Huang, Wenjiang Zhaxi, Luying Liu, Fengnan Duan, Jinmin Wang, Xiao Ma, Shenlong Jiang, Wei Huang, Qun Zhang, Dayu Wu. High-temperature negative thermal quenching phosphors from molecular-based materials. Chemical Communications 2023, 59 (9) , 1229-1232. https://doi.org/10.1039/D2CC05921E
    96. Bo Li, Lei Lou, Peng Jin. Locating the hydrogen atoms in endohedral clusterfullerenes by density functional theory. Physical Chemistry Chemical Physics 2023, 25 (3) , 2451-2461. https://doi.org/10.1039/D2CP05050A
    97. Xiao Wei, Xi Kang, Manzhou Zhu. Photoluminescence of metal nanoclusters. 2023, 536-561. https://doi.org/10.1016/B978-0-12-822425-0.00043-9
    98. Indranath Chakraborty, Thalappil Pradeep. Other metal nanoclusters. 2023, 497-518. https://doi.org/10.1016/B978-0-323-90879-5.00006-8
    99. Megalamane S. Bootharaju, Thalappil Pradeep. Hydrides, alkynyls, phosphines, and amines as ligands for nanoclusters. 2023, 551-573. https://doi.org/10.1016/B978-0-323-90879-5.00011-1
    100. Yizheng Bao, Xiaohang Wu, Bing Yin, Xi Kang, Zidong Lin, Huijuan Deng, Haizhu Yu, Shan Jin, Shuang Chen, Manzhou Zhu. Structured copper-hydride nanoclusters provide insight into the surface-vacancy-defect to non-defect structural evolution. Chemical Science 2022, 13 (48) , 14357-14365. https://doi.org/10.1039/D2SC03239B
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect