ACS Publications. Most Trusted. Most Cited. Most Read
Removable Backbone Modification Method for the Chemical Synthesis of Membrane Proteins
My Activity

Figure 1Loading Img
    Article

    Removable Backbone Modification Method for the Chemical Synthesis of Membrane Proteins
    Click to copy article linkArticle link copied!

    View Author Information
    School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
    Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
    Other Access Options

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2017, 50, 5, 1143–1153
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.accounts.7b00001
    Published April 4, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image
    Conspectus

    Chemical synthesis can produce water-soluble globular proteins bearing specifically designed modifications. These synthetic molecules have been used to study the biological functions of proteins and to improve the pharmacological properties of protein drugs. However, the above advances notwithstanding, membrane proteins (MPs), which comprise 20–30% of all proteins in the proteomes of most eukaryotic cells, remain elusive with regard to chemical synthesis. This difficulty stems from the strong hydrophobic character of MPs, which can cause considerable handling issues during ligation, purification, and characterization steps. Considerable efforts have been made to improve the solubility of transmembrane peptides for chemical ligation. These methods can be classified into two main categories: the manipulation of external factors and chemical modification of the peptide. This Account summarizes our research advances in the development of chemical modification especially the two generations of removable backbone modification (RBM) strategy for the chemical synthesis of MPs.

    In the first RBM generation, we install a removable modification group at the backbone amide of Gly within the transmembrane peptides. In the second RBM generation, the RBM group can be installed into all primary amino acid residues. The second RBM strategy combines the activated intramolecular O-to-N acyl transfer reaction, in which a phenyl group remains unprotected during the coupling process, which can play a catalytic role to generate the activated phenyl ester to assist in the formation of amide. The key feature of the RBM group is its switchable stability in trifluoroacetic acid. The stability of these backbone amide N-modifications toward TFA can be modified by regulating the electronic effects of phenol groups. The free phenol group is acylated to survive the TFA deprotection step, while the acyl phenyl ester will be quantitatively hydrolyzed in a neutral aqueous solution, and the free phenol group increases the electron density of the benzene ring to make the RBM labile to TFA.

    The transmembrane peptide segment bearing RBM groups behaves like a water-soluble peptide during fluorenylmethyloxycarbonyl based solid-phase peptide synthesis (Fmoc SPPS), ligation, purification, and characterization. The quantitative removal of the RBM group can be performed to obtain full-length MPs. The RBM strategy was used to prepare the core transmembrane domain Kir5.1[64–179] not readily accessible by recombinant protein expression, the influenza A virus M2 proton channel with phosphorylation, the cation-specific ion channel p7 from the hepatitis C virus with site-specific NMR isotope labels, and so on. The RBM method enables the practical engineering of small- to medium-sized MPs or membrane protein domains to address fundamental questions in the biochemical, biophysical, and pharmaceutical sciences.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 80 publications.

    1. Huasong Ai, Man Pan, Lei Liu. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS Central Science 2024, 10 (8) , 1442-1459. https://doi.org/10.1021/acscentsci.4c00642
    2. Alexander J. Lander, Yifu Kong, Yi Jin, Chuanliu Wu, Louis Y. P. Luk. Deciphering the Synthetic and Refolding Strategy of a Cysteine-Rich Domain in the Tumor Necrosis Factor Receptor (TNF-R) for Racemic Crystallography Analysis and d-Peptide Ligand Discovery. ACS Bio & Med Chem Au 2024, 4 (1) , 68-76. https://doi.org/10.1021/acsbiomedchemau.3c00060
    3. Hongxiang Wu, Tongyao Wei, Wai Lok Ngai, Haiyan Zhou, Xuechen Li. Ligation Embedding Aggregation Disruptor Strategy Enables the Chemical Synthesis of PD-1 Immunoglobulin and Extracellular Domains. Journal of the American Chemical Society 2022, 144 (32) , 14748-14757. https://doi.org/10.1021/jacs.2c05350
    4. Kohei Sato, Shoko Tanaka, Junzhen Wang, Kenya Ishikawa, Shugo Tsuda, Tetsuo Narumi, Taku Yoshiya, Nobuyuki Mase. Late-Stage Solubilization of Poorly Soluble Peptides Using Hydrazide Chemistry. Organic Letters 2021, 23 (5) , 1653-1658. https://doi.org/10.1021/acs.orglett.1c00074
    5. Vangelis Agouridas, Ouafâa El Mahdi, Oleg Melnyk. Chemical Protein Synthesis in Medicinal Chemistry. Journal of Medicinal Chemistry 2020, 63 (24) , 15140-15152. https://doi.org/10.1021/acs.jmedchem.0c01082
    6. Yi Tan, Hongxiang Wu, Tongyao Wei, Xuechen Li. Chemical Protein Synthesis: Advances, Challenges, and Outlooks. Journal of the American Chemical Society 2020, 142 (48) , 20288-20298. https://doi.org/10.1021/jacs.0c09664
    7. Hongli Yin, Mengjie Zheng, Huan Chen, Siyao Wang, Qingqing Zhou, Qiang Zhang, Ping Wang. Stereoselective and Divergent Construction of β-Thiolated/Selenolated Amino Acids via Photoredox-Catalyzed Asymmetric Giese Reaction. Journal of the American Chemical Society 2020, 142 (33) , 14201-14209. https://doi.org/10.1021/jacs.0c04994
    8. Haidi Li, Jie Chao, Jaafar Hasan, Guang Tian, Yatao Jin, Zixin Zhang, Chuanguang Qin. Synthesis of Tri(4-formylphenyl) Phosphonate Derivatives as Recyclable Triple-Equivalent Supports of Peptide Synthesis. The Journal of Organic Chemistry 2020, 85 (10) , 6271-6280. https://doi.org/10.1021/acs.joc.9b03023
    9. Dong-Liang Huang, Ying Li, Jun Liang, Lu Yu, Min Xue, Xiu-Xiu Cao, Bin Xiao, Chang-Lin Tian, Lei Liu, Ji-Shen Zheng. The New Salicylaldehyde S,S-Propanedithioacetal Ester Enables N-to-C Sequential Native Chemical Ligation and Ser/Thr Ligation for Chemical Protein Synthesis. Journal of the American Chemical Society 2020, 142 (19) , 8790-8799. https://doi.org/10.1021/jacs.0c01561
    10. Muhammad Jbara, Emad Eid, Ashraf Brik. Gold(I)-Mediated Decaging or Cleavage of Propargylated Peptide Bond in Aqueous Conditions for Protein Synthesis and Manipulation. Journal of the American Chemical Society 2020, 142 (18) , 8203-8210. https://doi.org/10.1021/jacs.9b13216
    11. Timothy S. Chisholm, Sameer S. Kulkarni, Khondker R. Hossain, Flemming Cornelius, Ronald J. Clarke, Richard J. Payne. Peptide Ligation at High Dilution via Reductive Diselenide-Selenoester Ligation. Journal of the American Chemical Society 2020, 142 (2) , 1090-1100. https://doi.org/10.1021/jacs.9b12558
    12. Vangelis Agouridas, Ouafâa El Mahdi, Vincent Diemer, Marine Cargoët, Jean-Christophe M. Monbaliu, Oleg Melnyk. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chemical Reviews 2019, 119 (12) , 7328-7443. https://doi.org/10.1021/acs.chemrev.8b00712
    13. Yuanhang Li, Haiting Ye, Shaohong Wang, Silong Xu, Martin J. Lear, Kendall N. Houk, Pengchen Ma, Jing Li. Light‐Dependent Amide or Thioamide Formation of Acylsilanes with Amines using Elemental Sulfur. Chemistry – A European Journal 2025, 31 (12) https://doi.org/10.1002/chem.202404555
    14. Xiaowan Yuan, Jienan Shen, Liang Luan, Wentao Wang, Guangpei Qi, Lingzhi Ye, Hui Yang, Yunhui Li, Xiangmeng Qu. A cross-reactive imaging matrix of membrane protein profiling for single-cell analysis. Sensors and Actuators B: Chemical 2025, 422 , 136704. https://doi.org/10.1016/j.snb.2024.136704
    15. Yun-Kun Qi, Ji-Shen Zheng, Lei Liu. Mirror-image protein and peptide drug discovery through mirror-image phage display. Chem 2024, 10 (8) , 2390-2407. https://doi.org/10.1016/j.chempr.2024.06.004
    16. Dong-Liang Huang, Wu-Chen Guo, Wei-Wei Shi, Yun-Pu Gao, Yong-Kang Zhou, Long-Jie Wang, Chen Wang, Shan Tang, Lei Liu, Ji-Shen Zheng. Enhanced native chemical ligation by peptide conjugation in trifluoroacetic acid. Science Advances 2024, 10 (29) https://doi.org/10.1126/sciadv.ado9413
    17. Ying Li, Long-Jie Wang, Yong-Kang Zhou, Jun Liang, Bin Xiao, Ji-Shen Zheng. An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters 2024, 35 (5) , 109033. https://doi.org/10.1016/j.cclet.2023.109033
    18. Yupeng Zheng, Baochang Zhang, Wei‐Wei Shi, Xiangyu Deng, Tong‐Yue Wang, Dongyang Han, Yuxiang Ren, Ziyi Yang, Yong‐Kang Zhou, Jian Kuang, Zhi‐Wen Wang, Shan Tang, Ji‐Shen Zheng. An Enzyme‐Cleavable Solubilizing‐Tag Facilitates the Chemical Synthesis of Mirror‐Image Proteins. Angewandte Chemie 2024, 136 (14) https://doi.org/10.1002/ange.202318897
    19. Yupeng Zheng, Baochang Zhang, Wei‐Wei Shi, Xiangyu Deng, Tong‐Yue Wang, Dongyang Han, Yuxiang Ren, Ziyi Yang, Yong‐Kang Zhou, Jian Kuang, Zhi‐Wen Wang, Shan Tang, Ji‐Shen Zheng. An Enzyme‐Cleavable Solubilizing‐Tag Facilitates the Chemical Synthesis of Mirror‐Image Proteins. Angewandte Chemie International Edition 2024, 63 (14) https://doi.org/10.1002/anie.202318897
    20. Suwei Dong, Ji-Shen Zheng, Yiming Li, Huan Wang, Gong Chen, Yongxiang Chen, Gemin Fang, Jun Guo, Chunmao He, Honggang Hu, Xuechen Li, Yanmei Li, Zigang Li, Man Pan, Shan Tang, Changlin Tian, Ping Wang, Bian Wu, Chuanliu Wu, Junfeng Zhao, Lei Liu. Recent advances in chemical protein synthesis: method developments and biological applications. Science China Chemistry 2024, 67 (4) , 1060-1096. https://doi.org/10.1007/s11426-024-1950-1
    21. Sanjeev Saini, Arun Sharma, Navneet Kaur, Narinder Singh. Solvent directed morphogenesis of a peptidic-benzimidazolium dipodal receptor: ratiometric detection and catalytic degradation of ochratoxin A. Analytical Methods 2024, 16 (7) , 1111-1122. https://doi.org/10.1039/D3AY02045B
    22. Yun-Pu Gao, Peng-Fei Sun, Wu-Chen Guo, Yong-Kang Zhou, Ji-Shen Zheng, Shan Tang. Chemical synthesis of a 28 kDa full-length PET degrading enzyme ICCG by the removable backbone modification strategy. Bioorganic Chemistry 2024, 143 , 107047. https://doi.org/10.1016/j.bioorg.2023.107047
    23. Xiaowan Yuan, Jienan Shen, Liang Luan, Wentao Wang, Guangpei Qi, Linzhi Ye, Hui Yang, yun-hui li, Xiangmeng Qu. A Cross-Reactive Imaging Matrix of Membrane Protein Profiling for Single-Cell Analysis. 2024https://doi.org/10.2139/ssrn.4882218
    24. Xiaonan Wang, Silong Xu, Yuhai Tang, Martin J. Lear, Wangxiao He, Jing Li. Nitroalkanes as thioacyl equivalents to access thioamides and thiopeptides. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40334-6
    25. Hongxiang Wu, Zhenquan Sun, Xuechen Li. N , O ‐Benzylidene Acetal Dipeptides (NBDs) Enable the Synthesis of Difficult Peptides via a Kinked Backbone Strategy. Angewandte Chemie 2023, 135 (44) https://doi.org/10.1002/ange.202310624
    26. Hongxiang Wu, Zhenquan Sun, Xuechen Li. N , O ‐Benzylidene Acetal Dipeptides (NBDs) Enable the Synthesis of Difficult Peptides via a Kinked Backbone Strategy. Angewandte Chemie International Edition 2023, 62 (44) https://doi.org/10.1002/anie.202310624
    27. Wenjie Ma, Han Liu, Xuechen Li. Chemical Synthesis of Peptides and Proteins Bearing Base‐Labile Post‐Translational Modifications: Evolution of the Methods in Four Decades. ChemBioChem 2023, 24 (20) https://doi.org/10.1002/cbic.202300348
    28. Baochang Zhang, Yupeng Zheng, Guochao Chu, Xiangyu Deng, Tongyue Wang, Weiwei Shi, Yongkang Zhou, Shan Tang, Ji‐Shen Zheng, Lei Liu. Backbone‐Installed Split Intein‐Assisted Ligation for the Chemical Synthesis of Mirror‐Image Proteins. Angewandte Chemie 2023, 135 (33) https://doi.org/10.1002/ange.202306270
    29. Baochang Zhang, Yupeng Zheng, Guochao Chu, Xiangyu Deng, Tongyue Wang, Weiwei Shi, Yongkang Zhou, Shan Tang, Ji‐Shen Zheng, Lei Liu. Backbone‐Installed Split Intein‐Assisted Ligation for the Chemical Synthesis of Mirror‐Image Proteins. Angewandte Chemie International Edition 2023, 62 (33) https://doi.org/10.1002/anie.202306270
    30. Omer Harel, Muhammad Jbara. Chemical Synthesis of Bioactive Proteins. Angewandte Chemie 2023, 135 (13) https://doi.org/10.1002/ange.202217716
    31. Omer Harel, Muhammad Jbara. Chemical Synthesis of Bioactive Proteins. Angewandte Chemie International Edition 2023, 62 (13) https://doi.org/10.1002/anie.202217716
    32. Hongxiang Wu, Yi Tan, Wai Lok Ngai, Xuechen Li. Total synthesis of interleukin-2 via a tunable backbone modification strategy. Chemical Science 2023, 14 (6) , 1582-1589. https://doi.org/10.1039/D2SC05660G
    33. Omer Harel, Muhammad Jbara. Posttranslational Chemical Mutagenesis Methods to Insert Posttranslational Modifications into Recombinant Proteins. Molecules 2022, 27 (14) , 4389. https://doi.org/10.3390/molecules27144389
    34. Jiamei Liu, Tongyao Wei, Yi Tan, Heng Liu, Xuechen Li. Enabling chemical protein (semi)synthesis via reducible solubilizing tags (RSTs). Chemical Science 2022, 13 (5) , 1367-1374. https://doi.org/10.1039/D1SC06387A
    35. Dong-Liang Huang, Ying Li, Ji-Shen Zheng. Removable Backbone Modification (RBM) Strategy for the Chemical Synthesis of Hydrophobic Peptides/Proteins. 2022, 241-256. https://doi.org/10.1007/978-1-0716-2489-0_16
    36. Xue Zhang, Jinhua Yang, Junfeng Zhao. Ynamide-Mediated Synthetic Approach to Thioamide-Substituted Peptides. 2022, 69-80. https://doi.org/10.1007/978-1-0716-2489-0_6
    37. Hongli Yin, Qingqing Zhou, Mengjie Zheng, Siyao Wang, Ping Wang. General Solution to the Preparation of β-Thiolated/Selenolated Amino Acids Via Visible Light Catalyzed Asymmetric Giese Reaction. 2022, 109-123. https://doi.org/10.1007/978-1-0716-2489-0_8
    38. Zhipeng A. Wang, Ji-Shen Zheng. Advances in peptide synthesis. 2022, 73-97. https://doi.org/10.1016/B978-0-12-820141-1.00004-2
    39. Emma H. Garst, Tandrila Das, Howard C. Hang. Chemical approaches for investigating site-specific protein S-fatty acylation. Current Opinion in Chemical Biology 2021, 65 , 109-117. https://doi.org/10.1016/j.cbpa.2021.06.004
    40. Dominik P. Vogl, Anne C. Conibear, Christian F. W. Becker. Segmental and site-specific isotope labelling strategies for structural analysis of posttranslationally modified proteins. RSC Chemical Biology 2021, 2 (5) , 1441-1461. https://doi.org/10.1039/D1CB00045D
    41. Tingting Cui, Junyou Chen, Rui Zhao, Yanyan Guo, Jiahui Tang, Yulei Li, Yi‐Ming Li, Donald Bierer, Lei Liu. Use of a Removable Backbone Modification Strategy to Prevent Aspartimide Formation in the Synthesis of Asp Lactam Cyclic Peptides †. Chinese Journal of Chemistry 2021, 39 (9) , 2517-2522. https://doi.org/10.1002/cjoc.202100272
    42. Vanessa Reusche, Franziska Thomas. Effect of Methionine Sulfoxide on the Synthesis and Purification of Aggregation‐Prone Peptides. ChemBioChem 2021, 22 (10) , 1779-1783. https://doi.org/10.1002/cbic.202000865
    43. Shay Laps, Gandhesiri Satish, Ashraf Brik. Harnessing the power of transition metals in solid-phase peptide synthesis and key steps in the (semi)synthesis of proteins. Chemical Society Reviews 2021, 50 (4) , 2367-2387. https://doi.org/10.1039/D0CS01156H
    44. Alanca Schmid, Christian F.W. Becker. Chemical Synthesis of Membrane Proteins. 2021, 437-462. https://doi.org/10.1002/9783527823567.ch16
    45. Chino C. Cabalteja, W. Seth Horne. Application of Chemical Synthesis to Engineer Protein Backbone Connectivity. 2021, 515-532. https://doi.org/10.1002/9783527823567.ch19
    46. Vincent Diemer, Jennifer Bouchenna, Florent Kerdraon, Vangelis Agouridas, Oleg Melnyk. N,S ‐ and N,Se ‐Acyl Transfer Devices in Protein Synthesis. 2021, 59-85. https://doi.org/10.1002/9783527823567.ch3
    47. Riley J. Giesler, James M. Fulcher, Michael T. Jacobsen, Michael S. Kay. Controlling Segment Solubility in Large Protein Synthesis. 2021, 185-209. https://doi.org/10.1002/9783527823567.ch7
    48. Dinara S. Shapenova, Alexey A. Shiryaev, Michael Bolte, Mercedes Kukułka, Dariusz W. Szczepanik, James Hooper, Maria G. Babashkina, Ghodrat Mahmoudi, Mariusz P. Mitoraj, Damir A. Safin. Resonance Assisted Hydrogen Bonding Phenomenon Unveiled through Both Experiments and Theory: A New Family of Ethyl N‐Salicylideneglycinate Dyes. Chemistry – A European Journal 2020, 26 (57) , 12987-12995. https://doi.org/10.1002/chem.202001551
    49. Baochang Zhang, Yulei Li, Weiwei Shi, Tongyue Wang, Feng Zhang, Lei Liu. Chemical Synthesis of Proteins Containing 300 Amino Acids. Chemical Research in Chinese Universities 2020, 36 (5) , 733-747. https://doi.org/10.1007/s40242-020-0150-y
    50. Vangelis Agouridas, Vincent Diemer, Oleg Melnyk. Strategies and open questions in solid-phase protein chemical synthesis. Current Opinion in Chemical Biology 2020, 58 , 1-9. https://doi.org/10.1016/j.cbpa.2020.02.007
    51. Yun‐Kun Qi, Qian Qu, Donald Bierer, Lei Liu. A Diaminodiacid (DADA) Strategy for the Development of Disulfide Surrogate Peptides. Chemistry – An Asian Journal 2020, 15 (18) , 2793-2802. https://doi.org/10.1002/asia.202000609
    52. Ying Li, Xiuxiu Cao, Changlin Tian, Ji-Shen Zheng. Chemical protein synthesis-assisted high-throughput screening strategies for d-peptides in drug discovery. Chinese Chemical Letters 2020, 31 (9) , 2365-2374. https://doi.org/10.1016/j.cclet.2020.04.015
    53. Abhisek Kar, Jamsad Mannuthodikayil, Sameer Singh, Anamika Biswas, Puneet Dubey, Amit Das, Kalyaneswar Mandal. Efficient Chemical Protein Synthesis using Fmoc‐Masked N‐Terminal Cysteine in Peptide Thioester Segments. Angewandte Chemie 2020, 132 (35) , 14906-14911. https://doi.org/10.1002/ange.202000491
    54. Abhisek Kar, Jamsad Mannuthodikayil, Sameer Singh, Anamika Biswas, Puneet Dubey, Amit Das, Kalyaneswar Mandal. Efficient Chemical Protein Synthesis using Fmoc‐Masked N‐Terminal Cysteine in Peptide Thioester Segments. Angewandte Chemie International Edition 2020, 59 (35) , 14796-14801. https://doi.org/10.1002/anie.202000491
    55. Yu Luo, Chen Jiang, Lihua Yu, Aimin Yang. Chemical Biology of Autophagy-Related Proteins With Posttranslational Modifications: From Chemical Synthesis to Biological Applications. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00233
    56. Dong‐Liang Huang, Cédric Montigny, Yong Zheng, Veronica Beswick, Ying Li, Xiu‐Xiu Cao, Thomas Barbot, Christine Jaxel, Jun Liang, Min Xue, Chang‐Lin Tian, Nadège Jamin, Ji‐Shen Zheng. Chemical Synthesis of Native S‐Palmitoylated Membrane Proteins through Removable‐Backbone‐Modification‐Assisted Ser/Thr Ligation. Angewandte Chemie 2020, 132 (13) , 5216-5222. https://doi.org/10.1002/ange.201914836
    57. Dong‐Liang Huang, Cédric Montigny, Yong Zheng, Veronica Beswick, Ying Li, Xiu‐Xiu Cao, Thomas Barbot, Christine Jaxel, Jun Liang, Min Xue, Chang‐Lin Tian, Nadège Jamin, Ji‐Shen Zheng. Chemical Synthesis of Native S‐Palmitoylated Membrane Proteins through Removable‐Backbone‐Modification‐Assisted Ser/Thr Ligation. Angewandte Chemie International Edition 2020, 59 (13) , 5178-5184. https://doi.org/10.1002/anie.201914836
    58. Lena K. Mueller, Andreas C. Baumruck, Hanna Zhdanova, Alesia A. Tietze. Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.00162
    59. James M. Fulcher, Mark E. Petersen, Riley J. Giesler, Zachary S. Cruz, Debra M. Eckert, J. Nicholas Francis, Eric M. Kawamoto, Michael T. Jacobsen, Michael S. Kay. Chemical synthesis of Shiga toxin subunit B using a next-generation traceless “helping hand” solubilizing tag. Organic & Biomolecular Chemistry 2019, 17 (48) , 10237-10244. https://doi.org/10.1039/C9OB02012H
    60. Shun Masuda, Shugo Tsuda, Taku Yoshiya. A trimethyllysine-containing trityl tag for solubilizing hydrophobic peptides. Organic & Biomolecular Chemistry 2019, 17 (48) , 10228-10236. https://doi.org/10.1039/C9OB02253H
    61. Shugo Tsuda, Shun Masuda, Taku Yoshiya. Solubilizing Trityl‐Type Tag To Synthesize Asx/Glx‐Containing Peptides. ChemBioChem 2019, 20 (16) , 2063-2069. https://doi.org/10.1002/cbic.201900193
    62. Taku Yoshiya, Shugo Tsuda, Shun Masuda. Development of Trityl Group Anchored Solubilizing Tags for Peptide and Protein Synthesis. ChemBioChem 2019, 20 (15) , 1906-1913. https://doi.org/10.1002/cbic.201900105
    63. Dong-Dong Zhao, Xiao-Wen Fan, He Hao, Hong-Li Zhang, Ye Guo. Temporary Solubilizing Tags Method for the Chemical Synthesis of Hydrophobic Proteins. Current Organic Chemistry 2019, 23 (1) , 2-13. https://doi.org/10.2174/1385272822666181211121758
    64. Yun-Kun Qi, Yan-Yan Si, Shan-Shan Du, Jun Liang, Ke-Wei Wang, Ji-Shen Zheng. Recent advances in the chemical synthesis and semi-synthesis of poly-ubiquitin-based proteins and probes. Science China Chemistry 2019, 62 (3) , 299-312. https://doi.org/10.1007/s11426-018-9401-8
    65. Catherine J. Hutchings, Paul Colussi, Theodore G. Clark. Ion channels as therapeutic antibody targets. mAbs 2019, 11 (2) , 265-296. https://doi.org/10.1080/19420862.2018.1548232
    66. Shugo Tsuda, Shun Masuda, Taku Yoshiya. The versatile use of solubilizing trityl tags for difficult peptide/protein synthesis. Organic & Biomolecular Chemistry 2019, 17 (5) , 1202-1205. https://doi.org/10.1039/C8OB03098G
    67. Jinhua Yang, Changliu Wang, Silin Xu, Junfeng Zhao. Ynamide‐Mediated Thiopeptide Synthesis. Angewandte Chemie 2019, 131 (5) , 1396-1400. https://doi.org/10.1002/ange.201811586
    68. Jinhua Yang, Changliu Wang, Silin Xu, Junfeng Zhao. Ynamide‐Mediated Thiopeptide Synthesis. Angewandte Chemie International Edition 2019, 58 (5) , 1382-1386. https://doi.org/10.1002/anie.201811586
    69. Chong Zuo, Baochang Zhang, Bingjia Yan, Ji-Shen Zheng. One-pot multi-segment condensation strategies for chemical protein synthesis. Organic & Biomolecular Chemistry 2019, 17 (4) , 727-744. https://doi.org/10.1039/C8OB02610F
    70. Anne C. Conibear, Emma E. Watson, Richard J. Payne, Christian F. W. Becker. Native chemical ligation in protein synthesis and semi-synthesis. Chemical Society Reviews 2018, 47 (24) , 9046-9068. https://doi.org/10.1039/C8CS00573G
    71. Wan-Min Cheng, Xi Lu, Jing Shi, Lei Liu. Selective modification of natural nucleophilic residues in peptides and proteins using arylpalladium complexes. Organic Chemistry Frontiers 2018, 5 (21) , 3186-3193. https://doi.org/10.1039/C8QO00765A
    72. Ge-Min Fang, Xiao-Xu Chen, Qian-Qian Yang, Liang-Jing Zhu, Ning-Ning Li, Hai-Zhu Yu, Xiang-Ming Meng. Discovery, structure, and chemical synthesis of disulfide-rich peptide toxins and their analogs. Chinese Chemical Letters 2018, 29 (7) , 1033-1042. https://doi.org/10.1016/j.cclet.2018.02.002
    73. Xiao-Qi Guo, Jun Liang, Ying Li, Yong Zhang, Dongliang Huang, Changlin Tian. Total synthesis of snake toxin α-bungarotoxin and its analogues by hydrazide-based native chemical ligation. Chinese Chemical Letters 2018, 29 (7) , 1139-1142. https://doi.org/10.1016/j.cclet.2018.05.005
    74. Xi Lu, Shi-Jiang He, Wan-Min Cheng, Jing Shi. Transition-metal-catalyzed C H functionalization for late-stage modification of peptides and proteins. Chinese Chemical Letters 2018, 29 (7) , 1001-1008. https://doi.org/10.1016/j.cclet.2018.05.011
    75. Shugo Tsuda, Masayoshi Mochizuki, Hiroyuki Ishiba, Kumiko Yoshizawa‐Kumagaye, Hideki Nishio, Shinya Oishi, Taku Yoshiya. Easy‐to‐Attach/Detach Solubilizing‐Tag‐Aided Chemical Synthesis of an Aggregative Capsid Protein. Angewandte Chemie 2018, 130 (8) , 2127-2131. https://doi.org/10.1002/ange.201711546
    76. Shugo Tsuda, Masayoshi Mochizuki, Hiroyuki Ishiba, Kumiko Yoshizawa‐Kumagaye, Hideki Nishio, Shinya Oishi, Taku Yoshiya. Easy‐to‐Attach/Detach Solubilizing‐Tag‐Aided Chemical Synthesis of an Aggregative Capsid Protein. Angewandte Chemie International Edition 2018, 57 (8) , 2105-2109. https://doi.org/10.1002/anie.201711546
    77. Yun-Kun Qi, Hua-Song Ai, Yi-Ming Li, Baihui Yan. Total Chemical Synthesis of Modified Histones. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00019
    78. Huan Chen, Yunxian Xiao, Ning Yuan, Jiaping Weng, Pengcheng Gao, Leonard Breindel, Alexander Shekhtman, Qiang Zhang. Coupling of sterically demanding peptides by β-thiolactone-mediated native chemical ligation. Chemical Science 2018, 9 (7) , 1982-1988. https://doi.org/10.1039/C7SC04744D
    79. Shugo Tsuda, Hideki Nishio, Taku Yoshiya. Peptide self-cleavage at a canaline residue: application to a solubilizing tag system for native chemical ligation. Chemical Communications 2018, 54 (64) , 8861-8864. https://doi.org/10.1039/C8CC04579H
    80. Yao Sun, Zhenbin Lyu, Zhiqiang Wang, Xiaodong Zeng, Hui Zhou, Fuchun Xu, Ziyang Chen, Yuling Xu, Ping Xu, Xuechuan Hong. Facile Cu( ii )-mediated conjugation of thioesters and thioacids to peptides and proteins under mild conditions. Organic & Biomolecular Chemistry 2018, 16 (19) , 3610-3614. https://doi.org/10.1039/C8OB00536B
    81. Shan Tang, Chao Zuo, Dong-Liang Huang, Xiao-Ying Cai, Long-Hua Zhang, Chang-Lin Tian, Ji-Shen Zheng, Lei Liu. Chemical synthesis of membrane proteins by the removable backbone modification method. Nature Protocols 2017, 12 (12) , 2554-2569. https://doi.org/10.1038/nprot.2017.129

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2017, 50, 5, 1143–1153
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.accounts.7b00001
    Published April 4, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    3897

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.