ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Facile C–F Bond Formation through a Concerted Nucleophilic Aromatic Substitution Mediated by the PhenoFluor Reagent

View Author Information
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
Cite this: Acc. Chem. Res. 2017, 50, 11, 2822–2833
Publication Date (Web):November 9, 2017
https://doi.org/10.1021/acs.accounts.7b00413
Copyright © 2017 American Chemical Society

    Article Views

    6567

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)

    Abstract

    Abstract Image
    Conspectus

    Late-stage fluorination reactions aim to reduce the synthetic limitations of conventional organofluorine chemistry with respect to substrate scope and functional group tolerance. C–F bond formation is commonly thermodynamically favorable but almost universally associated with high kinetic barriers. Apart from PhenoFluor chemistry, most modern aromatic fluorination methods reported to date rely on the use of transition metal catalysts, with C–F bonds often formed through reductive elimination. Reductive elimination chemistry to make C–X bonds becomes increasingly challenging when moving to higher atomic numbers in the periodic table from C–C to C–F, in part because of higher metal–X bond dissociation energies. The formation of C–C, C–N, and C–O bonds via reductive elimination has become routine in the 20th century, but it took until the 21st century to develop complexes that could afford general C–F bond formation. The availability of such complexes enabled the substrate scope of modern fluorination chemistry to exceed that of conventional fluorination.

    PhenoFluor chemistry departs from conventional reaction mechanisms for aromatic fluorination chemistry. Instead, we have revealed a concerted nucleophilic aromatic substitution reaction (CSNAr) for PhenoFluor that proceeds through a single neutral four-membered transition state. Conceptually, PhenoFluor chemistry is therefore distinct from conventional SNAr chemistry, which typically proceeds through a two-barrier process with Meisenheimer complexes as reaction intermediates. As a consequence, PhenoFluor chemistry has a larger substrate scope than conventional SNAr chemistry and can be performed on arenes as electron-rich as anilines. Moreover, PhenoFluor chemistry is tolerant of protic functional groups, which sets it apart from modern metal-mediated processes. Primary and secondary amines, alcohols, thiols, and phenols are often not tolerated under metal-catalyzed late-stage fluorination reactions because C–N and C–O reductive elimination can have lower activation barriers than C–F reductive elimination. The mechanism by which PhenoFluor chemistry forms C–F bonds not only rationalizes the substrate scope and functional group tolerance but also informs the side-product profile. Fluorinated isomers are not observed because the four-membered transition state necessitates ipso substitution. In addition, no reduced product, e.g., H instead of F incorporation, as is often observed with metal-mediated methods, has ever been observed with PhenoFluor.

    PhenoFluor chemistry can be used to deoxyfluorinate both phenols and alcohols. PhenoFluor is an expensive reagent that must be used stoichiometrically and therefore cannot replace cost-efficient methods to make simple fluorinated molecules on a large scale. However, PhenoFluor is often successful when other fluorination methods fail. The synthesis of 18F-labeled molecules for positron emission tomography (PET) is one application of modern fluorination chemistry for which material throughput is not an issue because of the small quantities of PET tracers used in imaging (typically nanomoles). The high emphasis on functional group tolerance, side-product profiles, and reliability combined with less stringent cost requirements render PhenoFluor-based deoxyfluorination with 18F promising for human PET imaging.

    Cited By

    This article is cited by 80 publications.

    1. Hongchen Zhang, Qi Shao, Qiao Zhang, Congjian Xia, Wengang Xu, Mingbo Wu. Visible-Light-Induced Selective α-Fluoroarylation of Secondary N-Alkyl Anilines with Polyfluoroarenes via Direct C–H/C–F Coupling. Organic Letters 2023, 25 (24) , 4556-4561. https://doi.org/10.1021/acs.orglett.3c01591
    2. Yu-Rou Zhao, Zhi-Yong Ma, Le Liu, Pin Gao, Xin-Hua Duan, Mingyou Hu. Synthesis of α-Difluoromethylene Ethers via Photoredox-Induced Hyperconjugative Ring Opening of gem-Difluorocyclopropanes. The Journal of Organic Chemistry 2023, 88 (6) , 3787-3793. https://doi.org/10.1021/acs.joc.2c03062
    3. Nick Y. Shin, Elaine Tsui, Adam Reinhold, Gregory D. Scholes, Matthew J. Bird, Robert R. Knowles. Radicals as Exceptional Electron-Withdrawing Groups: Nucleophilic Aromatic Substitution of Halophenols Via Homolysis-Enabled Electronic Activation. Journal of the American Chemical Society 2022, 144 (47) , 21783-21790. https://doi.org/10.1021/jacs.2c10296
    4. Vincent A. Pistritto, Shubin Liu, David A. Nicewicz. Mechanistic Investigations into Amination of Unactivated Arenes via Cation Radical Accelerated Nucleophilic Aromatic Substitution. Journal of the American Chemical Society 2022, 144 (33) , 15118-15131. https://doi.org/10.1021/jacs.2c04577
    5. Oriol Planas, Vytautas Peciukenas, Markus Leutzsch, Nils Nöthling, Dimitrios A. Pantazis, Josep Cornella. Mechanism of the Aryl–F Bond-Forming Step from Bi(V) Fluorides. Journal of the American Chemical Society 2022, 144 (32) , 14489-14504. https://doi.org/10.1021/jacs.2c01072
    6. Jun Xu, Chao Peng, Bolin Yao, Hua-Jian Xu, Qiang Xie. Direct Deoxyfluorination of Alcohols with KF as the Fluorine Source. The Journal of Organic Chemistry 2022, 87 (9) , 6471-6478. https://doi.org/10.1021/acs.joc.2c00388
    7. Sora Ito, Hayato Fujimoto, Mamoru Tobisu. Non-Stabilized Vinyl Anion Equivalents from Styrenes by N-Heterocyclic Carbene Catalysis and Its Use in Catalytic Nucleophilic Aromatic Substitution. Journal of the American Chemical Society 2022, 144 (15) , 6714-6718. https://doi.org/10.1021/jacs.2c02579
    8. Yigao Tao, Rong Hu, Zeyu Xie, Ping Lin, Weiping Su. Cobalt-Catalyzed Regioselective para-Amination of Azobenzenes via Nucleophilic Aromatic Substitution of Hydrogen. The Journal of Organic Chemistry 2022, 87 (7) , 4724-4731. https://doi.org/10.1021/acs.joc.2c00026
    9. Han Luo, Yumeng Li, Yuan Zhang, Qixing Lu, Qiaoyu An, Mingchuan Xu, Shanshan Li, Jun Li, Baosheng Li. Nucleophilic Aromatic Substitution of 5-Bromo-1,2,3-triazines with Phenols. The Journal of Organic Chemistry 2022, 87 (5) , 2590-2600. https://doi.org/10.1021/acs.joc.1c02543
    10. Jingjing Zhang, Xiao Zhao, Jin-Dong Yang, Jin-Pei Cheng. Diazaphospholene-Catalyzed Hydrodefluorination of Polyfluoroarenes with Phenylsilane via Concerted Nucleophilic Aromatic Substitution. The Journal of Organic Chemistry 2022, 87 (1) , 294-300. https://doi.org/10.1021/acs.joc.1c02360
    11. Riya Halder, Tobias Ritter. 18F-Fluorination: Challenge and Opportunity for Organic Chemists. The Journal of Organic Chemistry 2021, 86 (20) , 13873-13884. https://doi.org/10.1021/acs.joc.1c01474
    12. Tsubasa Matsuzawa, Takamitsu Hosoya, Suguru Yoshida. Transition-Metal-Free Synthesis of N-Arylphenothiazines through an N- and S-Arylation Sequence. Organic Letters 2021, 23 (6) , 2347-2352. https://doi.org/10.1021/acs.orglett.1c00515
    13. Cynthia M. Hong, Aaron M. Whittaker, Danielle M. Schultz. Nucleophilic Fluorination of Heteroaryl Chlorides and Aryl Triflates Enabled by Cooperative Catalysis. The Journal of Organic Chemistry 2021, 86 (5) , 3999-4006. https://doi.org/10.1021/acs.joc.0c02845
    14. Matteo Tironi, Lilian M. Maas, Arushi Garg, Stefan Dix, Jan P. Götze, Matthew N. Hopkinson. Deoxygenative Tri- and Difluoromethylthiolation of Carboxylic Acids with Benzothiazolium Reagents. Organic Letters 2020, 22 (22) , 8925-8930. https://doi.org/10.1021/acs.orglett.0c03328
    15. Shiyu Zhao, Yong Guo, Zhaoben Su, Wei Cao, Chengying Wu, Qing-Yun Chen. A Series of Deoxyfluorination Reagents Featuring OCF2 Functional Groups. Organic Letters 2020, 22 (21) , 8634-8637. https://doi.org/10.1021/acs.orglett.0c03238
    16. Yi Yang See, María T. Morales-Colón, Douglas C. Bland, Melanie S. Sanford. Development of SNAr Nucleophilic Fluorination: A Fruitful Academia-Industry Collaboration. Accounts of Chemical Research 2020, 53 (10) , 2372-2383. https://doi.org/10.1021/acs.accounts.0c00471
    17. Vincent A. Pistritto, Megan E. Schutzbach-Horton, David A. Nicewicz. Nucleophilic Aromatic Substitution of Unactivated Fluoroarenes Enabled by Organic Photoredox Catalysis. Journal of the American Chemical Society 2020, 142 (40) , 17187-17194. https://doi.org/10.1021/jacs.0c09296
    18. Zihang Qiu, Chao-Jun Li. Transformations of Less-Activated Phenols and Phenol Derivatives via C–O Cleavage. Chemical Reviews 2020, 120 (18) , 10454-10515. https://doi.org/10.1021/acs.chemrev.0c00088
    19. Qi-Kai Kang, Yunzhi Lin, Yuntong Li, Hang Shi. Ru(II)-Catalyzed Amination of Aryl Fluorides via η6-Coordination. Journal of the American Chemical Society 2020, 142 (8) , 3706-3711. https://doi.org/10.1021/jacs.9b13684
    20. Man Li, Xiao-Song Xue, Jin-Pei Cheng. Establishing Cation and Radical Donor Ability Scales of Electrophilic F, CF3, and SCF3 Transfer Reagents. Accounts of Chemical Research 2020, 53 (1) , 182-197. https://doi.org/10.1021/acs.accounts.9b00393
    21. Timothy J. Fuhrer, Matthew Houck, Cynthia A. Corley, Scott T. Iacono. Theoretical Explanation of Reaction Site Selectivity in the Addition of a Phenoxy Group to Perfluoropyridine. The Journal of Physical Chemistry A 2019, 123 (44) , 9450-9455. https://doi.org/10.1021/acs.jpca.9b06413
    22. Xia Wang, Qiu-Xia Yang, Cheng-Yu Long, Yan Tan, Yi-Xin Qu, Min-Hui Su, Si-Jie Huang, Weihong Tan, Xue-Qiang Wang. Anticancer-Active N-Heteroaryl Amines Syntheses: Nucleophilic Amination of N-Heteroaryl Alkyl Ethers with Amines. Organic Letters 2019, 21 (13) , 5111-5115. https://doi.org/10.1021/acs.orglett.9b01711
    23. Baoping Ling, Yuxia Liu, Yuan-Ye Jiang, Peng Liu, Siwei Bi. Mechanistic Insights into the Ruthenium-Catalyzed [4 + 1] Annulation of Benzamides and Propargyl Alcohols by DFT Studies. Organometallics 2019, 38 (9) , 1877-1886. https://doi.org/10.1021/acs.organomet.8b00769
    24. Francisco de Azambuja, Sydney M. Lovrien, Patrick Ross, Brett R. Ambler, Ryan A. Altman. Catalytic One-Step Deoxytrifluoromethylation of Alcohols. The Journal of Organic Chemistry 2019, 84 (4) , 2061-2071. https://doi.org/10.1021/acs.joc.8b03072
    25. Hongfei Yin, Jakob J. Kumke, Katrine Domino, Troels Skrydstrup. Palladium Catalyzed Carbonylative Coupling of Alkyl Boron Reagents with Bromodifluoroacetamides. ACS Catalysis 2018, 8 (5) , 3853-3858. https://doi.org/10.1021/acscatal.8b00420
    26. Jiang Su, Kai Chen, Qi‐Kai Kang, Hang Shi. Catalytic S N Ar Hexafluoroisopropoxylation of Aryl Chlorides and Bromides. Angewandte Chemie 2023, 135 (24) https://doi.org/10.1002/ange.202302908
    27. Jiang Su, Kai Chen, Qi‐Kai Kang, Hang Shi. Catalytic S N Ar Hexafluoroisopropoxylation of Aryl Chlorides and Bromides. Angewandte Chemie International Edition 2023, 62 (24) https://doi.org/10.1002/anie.202302908
    28. Xinzi Pan, Maria Talavera, Thomas Braun. Efficient hydrostannation of fluorinated alkenes. Journal of Fluorine Chemistry 2023, 267 , 110116. https://doi.org/10.1016/j.jfluchem.2023.110116
    29. Wengang Xu, Qi Shao, Congjian Xia, Qiao Zhang, Yadi Xu, Yingguo Liu, Mingbo Wu. Visible-light-induced selective defluoroalkylations of polyfluoroarenes with alcohols. Chemical Science 2023, 14 (4) , 916-922. https://doi.org/10.1039/D2SC06290A
    30. Rongqing Ma, Hongfan Hu, Xinle Li, Guoliang Mao, Yuming Song, Shixuan Xin. Advances in Catalytic C–F Bond Activation and Transformation of Aromatic Fluorides. Catalysts 2022, 12 (12) , 1665. https://doi.org/10.3390/catal12121665
    31. Jingru Lu, Irina Paci, David C. Leitch. A broadly applicable quantitative relative reactivity model for nucleophilic aromatic substitution (S N Ar) using simple descriptors. Chemical Science 2022, 13 (43) , 12681-12695. https://doi.org/10.1039/D2SC04041G
    32. Akihisa Matsuura, Yusuke Ano, Naoto Chatani. Nucleophilic aromatic substitution of non-activated aryl fluorides with aliphatic amides. Chemical Communications 2022, 58 (71) , 9898-9901. https://doi.org/10.1039/D2CC02999E
    33. Paola R. Campodónico, Jazmín Alarcón-Espósito, Belén Olivares. Kinetics and Reaction Mechanism of Biothiols Involved in SNAr Reactions: An Experimental Study. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.854918
    34. Bright C. Uzuegbunam, Junhao Li, Wojciech Paslawski, Wolfgang Weber, Per Svenningsson, Hans Ågren, Behrooz Hooshyar Yousefi. Toward Novel [18F]Fluorine-Labeled Radiotracers for the Imaging of α-Synuclein Fibrils. Frontiers in Aging Neuroscience 2022, 14 https://doi.org/10.3389/fnagi.2022.830704
    35. Guofu Zhang, Huimin Wang, Wenliang Wu, Qiankun Fan, Chengrong Ding. SO 2 F 2 ‐Promoted Dehydroxylative Fluorination of Alcohols. ChemistrySelect 2022, 7 (5) https://doi.org/10.1002/slct.202104114
    36. Paola R. Campodónico, Ricardo A. Tapia, Cristian Suárez-Rozas. How the Nature of an Alpha-Nucleophile Determines a Brønsted Type-Plot and Its Reaction Pathways. An Experimental Study. Frontiers in Chemistry 2022, 9 https://doi.org/10.3389/fchem.2021.740161
    37. Vladimir Iashin, Tom Wirtanen, Jesus E. Perea-Buceta. Tetramethylammonium Fluoride: Fundamental Properties and Applications in C-F Bond-Forming Reactions and as a Base. Catalysts 2022, 12 (2) , 233. https://doi.org/10.3390/catal12020233
    38. Timothy J. Fuhrer, Matthew Houck, Rachel M. Chapman, Scott T. Iacono. Theoretical Prediction and Explanation of Reaction Site Selectivity in the Addition of a Phenoxy Group to Perfluoropyrimidine, Perfluoropyridazine, and Perfluoropyrazine. Molecules 2021, 26 (24) , 7637. https://doi.org/10.3390/molecules26247637
    39. Trapti Aggarwal, Sushmita, Akhilesh K. Verma. Achievements in fluorination using variable reagents through a deoxyfluorination reaction. Organic Chemistry Frontiers 2021, 8 (22) , 6452-6468. https://doi.org/10.1039/D1QO00952D
    40. Wengang Xu, Qiao Zhang, Qi Shao, Congjian Xia, Mingbo Wu. Photocatalytic C−F Bond Activation of Fluoroarenes, gem ‐Difluoroalkenes and Trifluoromethylarenes. Asian Journal of Organic Chemistry 2021, 10 (10) , 2454-2472. https://doi.org/10.1002/ajoc.202100426
    41. Qi‐Kai Kang, Yunzhi Lin, Yuntong Li, Lun Xu, Ke Li, Hang Shi. Catalytic S N Ar Hydroxylation and Alkoxylation of Aryl Fluorides. Angewandte Chemie International Edition 2021, 60 (37) , 20391-20399. https://doi.org/10.1002/anie.202106440
    42. Qi‐Kai Kang, Yunzhi Lin, Yuntong Li, Lun Xu, Ke Li, Hang Shi. Catalytic S N Ar Hydroxylation and Alkoxylation of Aryl Fluorides. Angewandte Chemie 2021, 133 (37) , 20554-20562. https://doi.org/10.1002/ange.202106440
    43. Xiu Wang, Min Zhou, Qinghe Liu, Chuanfa Ni, Zhongbo Fei, Wei Li, Jinbo Hu. Deoxyfluorination of alcohols with aryl fluorosulfonates. Chemical Communications 2021, 57 (66) , 8170-8173. https://doi.org/10.1039/D1CC02617H
    44. Shivani Sharma, Jitender Singh, Anuj Sharma. Visible Light Assisted Radical‐Polar/Polar‐Radical Crossover Reactions in Organic Synthesis. Advanced Synthesis & Catalysis 2021, 363 (13) , 3146-3169. https://doi.org/10.1002/adsc.202100205
    45. Zhensheng You, Kosuke Higashida, Tomohiro Iwai, Masaya Sawamura. Phosphinylation of Non‐activated Aryl Fluorides through Nucleophilic Aromatic Substitution at the Boundary of Concerted and Stepwise Mechanisms. Angewandte Chemie 2021, 133 (11) , 5842-5846. https://doi.org/10.1002/ange.202013544
    46. Zhensheng You, Kosuke Higashida, Tomohiro Iwai, Masaya Sawamura. Phosphinylation of Non‐activated Aryl Fluorides through Nucleophilic Aromatic Substitution at the Boundary of Concerted and Stepwise Mechanisms. Angewandte Chemie International Edition 2021, 60 (11) , 5778-5782. https://doi.org/10.1002/anie.202013544
    47. Shaolei Xie, Zhi-Juan He, Ling-Hui Zhang, Bo-Lun Huang, Xiao-Wei Chen, Zong-Song Zhan, Fu-Min Zhang. The organocatalytic enantiodivergent fluorination of β-ketodiaryl-phosphine oxides for the construction of carbon-fluorine quaternary stereocenters. Chemical Communications 2021, 57 (16) , 2069-2072. https://doi.org/10.1039/D0CC07770D
    48. Constanze N. Neumann, Tobias Ritter, . Transition‐Metal‐Mediated and Transition‐Metal‐Catalyzed Carbon–Fluorine Bond Formation. 2020, 1-181. https://doi.org/10.1002/0471264180.or104.03
    49. Harjinder Singh. A DFT investigation on aromatic nucleophilic substitution (SNAr) reaction between 4-fluoro-1-naphthaldehyde/4-fluoro-2-naphthaldehyde/1-fluoro-2-naphthaldehyde/1-fluoronaphthalene and methylthiolate ion in gas phase and in protic/aprotic solvents. Structural Chemistry 2020, 31 (6) , 2205-2213. https://doi.org/10.1007/s11224-020-01581-1
    50. M. R. Crampton. Aromatic Substitution. 2020, 213-295. https://doi.org/10.1002/9781119426295.ch5
    51. Dehang Yin, Dengquan Su, Jian Jin. Photoredox Catalytic Trifluoromethylation and Perfluoroalkylation of Arenes Using Trifluoroacetic and Related Carboxylic Acids. Cell Reports Physical Science 2020, 1 (8) , 100141. https://doi.org/10.1016/j.xcrp.2020.100141
    52. Shunsuke Takahashi, Yuki Umakoshi, Kaii Nakayama, Yohei Okada, Viktor V. Zhdankin, Akira Yoshimura, Akio Saito. Fluorocyclization of N ‐Propargyl Carboxamides by λ 3 ‐Iodane Catalysts with Coordinating Substituents. Advanced Synthesis & Catalysis 2020, 362 (14) , 2997-3003. https://doi.org/10.1002/adsc.202000381
    53. Paola R. Campodónico, Belén Olivares, Ricardo A. Tapia. Experimental Analyses Emphasize the Stability of the Meisenheimer Complex in a SNAr Reaction Toward Trends in Reaction Pathways. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00583
    54. Roman Abrams, Jonathan Clayden. Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce–Smiles Rearrangement Cascades. Angewandte Chemie 2020, 132 (28) , 11697-11703. https://doi.org/10.1002/ange.202003632
    55. Roman Abrams, Jonathan Clayden. Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce–Smiles Rearrangement Cascades. Angewandte Chemie International Edition 2020, 59 (28) , 11600-11606. https://doi.org/10.1002/anie.202003632
    56. Rodrigo Ormazábal-Toledo, Sebastián Richter, Andrés Robles-Navarro, Boris Maulén, Ricardo A. Matute, Sebastián Gallardo-Fuentes. Meisenheimer complexes as hidden intermediates in the aza-S N Ar mechanism. Organic & Biomolecular Chemistry 2020, 18 (22) , 4238-4247. https://doi.org/10.1039/D0OB00600A
    57. Paola R. Campodónico. Solvent Effect on a Model of S N Ar Reaction in Conventional and Non-Conventional Solvents. 2020https://doi.org/10.5772/intechopen.89838
    58. V. Prakash Reddy. Nucleophilic reactions in the synthesis of organofluorine compounds. 2020, 1-42. https://doi.org/10.1016/B978-0-12-813286-9.00001-8
    59. V. Prakash Reddy. Synthesis and applications of 18F-labeled compounds. 2020, 215-278. https://doi.org/10.1016/B978-0-12-813286-9.00006-7
    60. Simon Rohrbach, Andrew J. Smith, Jia Hao Pang, Darren L. Poole, Tell Tuttle, Shunsuke Chiba, John A. Murphy. Concerted Nucleophilic Aromatic Substitution Reactions. Angewandte Chemie International Edition 2019, 58 (46) , 16368-16388. https://doi.org/10.1002/anie.201902216
    61. Simon Rohrbach, Andrew J. Smith, Jia Hao Pang, Darren L. Poole, Tell Tuttle, Shunsuke Chiba, John A. Murphy. Konzertierte nukleophile aromatische Substitutionen. Angewandte Chemie 2019, 131 (46) , 16518-16540. https://doi.org/10.1002/ange.201902216
    62. Francisco José Aguilar Troyano, Frederic Ballaschk, Marcel Jaschinski, Yasemin Özkaya, Adrián Gómez‐Suárez. Light‐Mediated Formal Radical Deoxyfluorination of Tertiary Alcohols through Selective Single‐Electron Oxidation with TEDA 2+.. Chemistry – A European Journal 2019, 25 (62) , 14054-14058. https://doi.org/10.1002/chem.201903702
    63. Kosuke Yasui, Miharu Kamitani, Mamoru Tobisu. N‐Heterocyclic Carbene Catalyzed Concerted Nucleophilic Aromatic Substitution of Aryl Fluorides Bearing α,β‐Unsaturated Amides. Angewandte Chemie 2019, 131 (40) , 14295-14299. https://doi.org/10.1002/ange.201907837
    64. Kosuke Yasui, Miharu Kamitani, Mamoru Tobisu. N‐Heterocyclic Carbene Catalyzed Concerted Nucleophilic Aromatic Substitution of Aryl Fluorides Bearing α,β‐Unsaturated Amides. Angewandte Chemie International Edition 2019, 58 (40) , 14157-14161. https://doi.org/10.1002/anie.201907837
    65. Chengwei Liu, Zhi-Xin Qin, Chong-Lei Ji, Xin Hong, Michal Szostak. Highly-chemoselective step-down reduction of carboxylic acids to aromatic hydrocarbons via palladium catalysis. Chemical Science 2019, 10 (22) , 5736-5742. https://doi.org/10.1039/C9SC00892F
    66. Junkai Guo, Cuiwen Kuang, Jian Rong, Lingchun Li, Chuanfa Ni, Jinbo Hu. Rapid Deoxyfluorination of Alcohols with N ‐Tosyl‐4‐chlorobenzenesulfonimidoyl Fluoride (SulfoxFluor) at Room Temperature. Chemistry – A European Journal 2019, 25 (30) , 7259-7264. https://doi.org/10.1002/chem.201901176
    67. Kumiko Kojima, Yuki Nagashima, Chao Wang, Masanobu Uchiyama. In Situ Generation of Silyl Anion Species through Si−B Bond Activation for the Concerted Nucleophilic Aromatic Substitution of Fluoroarenes. ChemPlusChem 2019, 84 (3) , 277-280. https://doi.org/10.1002/cplu.201900069
    68. Martí Garçon, Clare Bakewell, Andrew J. P. White, Mark R. Crimmin. Unravelling nucleophilic aromatic substitution pathways with bimetallic nucleophiles. Chemical Communications 2019, 55 (12) , 1805-1808. https://doi.org/10.1039/C8CC09701A
    69. Shubhadip Mallick, Pan Xu, Ernst‐Ulrich Würthwein, Armido Studer. Silyldefluorination of Fluoroarenes by Concerted Nucleophilic Aromatic Substitution. Angewandte Chemie 2019, 131 (1) , 289-293. https://doi.org/10.1002/ange.201808646
    70. Shubhadip Mallick, Pan Xu, Ernst‐Ulrich Würthwein, Armido Studer. Silyldefluorination of Fluoroarenes by Concerted Nucleophilic Aromatic Substitution. Angewandte Chemie International Edition 2019, 58 (1) , 283-287. https://doi.org/10.1002/anie.201808646
    71. Al Postigo. Introduction and Outline. 2019, 1-27. https://doi.org/10.1016/B978-0-12-812958-6.00001-X
    72. Shi-Zhong Tang, Hong-Li Bian, Zong-Song Zhan, Meng-En Chen, Jian-Wei Lv, Shaolei Xie, Fu-Min Zhang. p -Toluenesulfonic acid catalysed fluorination of α-branched ketones for the construction of fluorinated quaternary carbon centres. Chemical Communications 2018, 54 (87) , 12377-12380. https://doi.org/10.1039/C8CC06643D
    73. Tharwat Mohy El Dine, Omar Sadek, Emmanuel Gras, David M. Perrin. Expanding the Balz–Schiemann Reaction: Organotrifluoroborates Serve as Competent Sources of Fluoride Ion for Fluoro‐Dediazoniation. Chemistry – A European Journal 2018, 24 (56) , 14933-14937. https://doi.org/10.1002/chem.201803575
    74. Daniel J. Leonard, John W. Ward, Jonathan Clayden. Asymmetric α-arylation of amino acids. Nature 2018, 562 (7725) , 105-109. https://doi.org/10.1038/s41586-018-0553-9
    75. Liana A. Hayriyan, Anna F. Mkrtchyan, Margarita A. Moskalenko, Victor I. Maleev, Zalina T. Gugkaeva, Mikhail M. Ilyin, Kirill K. Babievsky, Pavel V. Dorovatovskii, Victor N. Khrustalev, Alexander S. Peregudov, Yuri N. Belokon. Nickel-coordinated chiral enols and Michael addition intermediate stabilized by the Ni–C bond. Mendeleev Communications 2018, 28 (5) , 464-466. https://doi.org/10.1016/j.mencom.2018.09.003
    76. Eugene E. Kwan, Yuwen Zeng, Harrison A. Besser, Eric N. Jacobsen. Concerted nucleophilic aromatic substitutions. Nature Chemistry 2018, 10 (9) , 917-923. https://doi.org/10.1038/s41557-018-0079-7
    77. M. B. Johansen, A. T. Lindhardt. Nucleophilic fluorination facilitated by a CsF–CaF 2 packed bed reactor in continuous flow. Chemical Communications 2018, 54 (7) , 825-828. https://doi.org/10.1039/C7CC09035H
    78. Markus D. Kärkäs. Electrochemical strategies for C–H functionalization and C–N bond formation. Chemical Society Reviews 2018, 47 (15) , 5786-5865. https://doi.org/10.1039/C7CS00619E
    79. Pooja Tomar, Thomas Braun, Erhard Kemnitz. Photochemical activation of SF 6 by N-heterocyclic carbenes to provide a deoxyfluorinating reagent. Chemical Communications 2018, 54 (70) , 9753-9756. https://doi.org/10.1039/C8CC05494K
    80. Josefredo R. Pliego. Potassium fluoride activation for the nucleophilic fluorination reaction using 18-crown-6, [2.2.2]-cryptand, pentaethylene glycol and comparison with the new hydro-crown scaffold: a theoretical analysis. Organic & Biomolecular Chemistry 2018, 16 (17) , 3127-3137. https://doi.org/10.1039/C8OB00418H

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect