ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Quest for Selectivity in Hydrogen Atom Transfer Based Aliphatic C–H Bond Oxygenation

Cite this: Acc. Chem. Res. 2018, 51, 9, 1984–1995
Publication Date (Web):August 6, 2018
https://doi.org/10.1021/acs.accounts.8b00231
Copyright © 2018 American Chemical Society

    Article Views

    6738

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Aliphatic C–H bond functionalization is at the frontline of research because it can provide straightforward access to simplified and cost-effective synthetic procedures. A number of these methodologies are based on hydrogen atom transfer (HAT), which, as a consequence of the inert character of C–H bonds, often represents the most challenging step of the overall process. Because the majority of organic molecules contain multiple nonequivalent C–H bonds that display similar chemical properties, differentiating between these bonds with high levels of selectivity represents one of the most challenging issues. Clarification of the factors that govern the relative reactivity of C–H bonds toward HAT reagents is thus of primary importance in order to develop selective functionalization procedures.

    In this Account we describe, through the combination of kinetic studies employing a genuine HAT reagent such as the cumyloxyl radical, along with oxidations performed with H2O2 and iron or manganese catalysts, our contribution toward the development of selective C–H functionalization methodologies. Despite the different nature of these reagents, an oxygen-centered radical and a metal–oxo species, congruent reactivity and selectivity patterns have emerged, providing strong evidence that both reactions proceed via HAT. Consequently, selectivity in this class of metal catalyzed C–H oxidations can be reasonably predicted and synthetically exploited. Amides have been identified as preferential functional groups for governing selectivity on the basis of electronic, steric, and stereoelectronic effects. Torsional effects have proven moreover to be particularly important C–H directing factors in the oxidation of cyclohexane scaffolds where a delicate balance of these effects, in synergistic combination with catalyst design, enables highly chemoselective and enantioselective oxidations. Medium effects have been also shown to govern the relative HAT reactivity of C–H bonds in proximity to polar, hydrogen bond acceptor (HBA) functional groups. By engaging in hydrogen bonding with these groups, fluorinated alcohols strongly deactivate proximal C–H bonds toward HAT-based oxidation. As a result, alcohols, ethers, amines, and amides, which are electron rich and effective proximal C–H activating groups toward HAT reagents in conventional solvents, become oxidatively robust deactivating functionalities that direct C–H oxidation toward remote positions. These deactivating effects enable moreover the accomplishment of product chemoselective methylenic hydroxylations. Overall, clarification of the factors that govern HAT-based reactions has served to provide unique examples of catalytic methodologies for chemoselective and enantioselective oxidation of nonactivated aliphatic C–H bonds of potential utility in organic synthesis.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 121 publications.

    1. Priya Singh, Allyssa A. Massie, Melissa C. Denler, Yuri Lee, Jaycee R. Mayfield, Markell J. A. Lomax, Reena Singh, Ebbe Nordlander, Timothy A. Jackson. C–H Bond Oxidation by MnIV–Oxo Complexes: Hydrogen-Atom Tunneling and Multistate Reactivity. Inorganic Chemistry 2024, Article ASAP.
    2. Xiao-Yun Ruan, Dan-Xing Wu, Wen-Ao Li, Zihan Lin, Mostafa Sayed, Zhi-Yong Han, Liu-Zhu Gong. Photoinduced Pd-Catalyzed Enantioselective Carboamination of Dienes via Aliphatic C–H Bond Elaboration. Journal of the American Chemical Society 2024, Article ASAP.
    3. Marco Galeotti, Massimo Bietti, Miquel Costas. Catalyst and Medium Control over Rebound Pathways in Manganese-Catalyzed Methylenic C–H Bond Oxidation. Journal of the American Chemical Society 2024, 146 (13) , 8904-8914. https://doi.org/10.1021/jacs.3c11555
    4. Yi Sun, Fengjiao Liu, Jacob N. Sanders, K. N. Houk. Role of Steric Effects on Rates of Hydrogen Atom Transfer Reactions. The Journal of Organic Chemistry 2023, 88 (17) , 12668-12676. https://doi.org/10.1021/acs.joc.3c01361
    5. Jia-Lin Tu, Ao-Men Hu, Lin Guo, Wujiong Xia. Iron-Catalyzed C(Sp3)–H Borylation, Thiolation, and Sulfinylation Enabled by Photoinduced Ligand-to-Metal Charge Transfer. Journal of the American Chemical Society 2023, 145 (13) , 7600-7611. https://doi.org/10.1021/jacs.3c01082
    6. Norman Zhao, McKenna K. Goetz, Joseph E. Schneider, John S. Anderson. Testing the Limits of Imbalanced CPET Reactivity: Mechanistic Crossover in H-Atom Abstraction by Co(III)–Oxo Complexes. Journal of the American Chemical Society 2023, 145 (10) , 5664-5673. https://doi.org/10.1021/jacs.2c10553
    7. Jie Chen, Wenxun Song, Jinping Yao, Zhimin Wu, Yong-Min Lee, Yong Wang, Wonwoo Nam, Bin Wang. Hydrogen Bonding-Assisted and Nonheme Manganese-Catalyzed Remote Hydroxylation of C–H Bonds in Nitrogen-Containing Molecules. Journal of the American Chemical Society 2023, 145 (9) , 5456-5466. https://doi.org/10.1021/jacs.2c13832
    8. Yujeong Lee, Guilherme L. Tripodi, Donghyun Jeong, Sunggi Lee, Jana Roithova, Jaeheung Cho. Aliphatic and Aromatic C–H Bond Oxidation by High-Valent Manganese(IV)-Hydroxo Species. Journal of the American Chemical Society 2022, 144 (45) , 20752-20762. https://doi.org/10.1021/jacs.2c08531
    9. Jie Chen, Jinping Yao, Xiao-Xi Li, Yan Wang, Wenxun Song, Kyung-Bin Cho, Yong-Min Lee, Wonwoo Nam, Bin Wang. Bromoacetic Acid-Promoted Nonheme Manganese-Catalyzed Alkane Hydroxylation Inspired by α-Ketoglutarate-Dependent Oxygenases. ACS Catalysis 2022, 12 (11) , 6756-6769. https://doi.org/10.1021/acscatal.2c01096
    10. Marco Galeotti, Laia Vicens, Michela Salamone, Miquel Costas, Massimo Bietti. Resolving Oxygenation Pathways in Manganese-Catalyzed C(sp3)–H Functionalization via Radical and Cationic Intermediates. Journal of the American Chemical Society 2022, 144 (16) , 7391-7401. https://doi.org/10.1021/jacs.2c01466
    11. Shovan Mondal, Frédéric Dumur, Didier Gigmes, Mukund P. Sibi, Michèle P. Bertrand, Malek Nechab. Enantioselective Radical Reactions Using Chiral Catalysts. Chemical Reviews 2022, 122 (6) , 5842-5976. https://doi.org/10.1021/acs.chemrev.1c00582
    12. Prabaharan Thiruvengetam, Dillip Kumar Chand. Controlled and Predictably Selective Oxidation of Activated and Unactivated C(sp3)–H Bonds Catalyzed by a Molybdenum-Based Metallomicellar Catalyst in Water. The Journal of Organic Chemistry 2022, 87 (6) , 4061-4077. https://doi.org/10.1021/acs.joc.1c02855
    13. Ryan C. Cammarota, Wenbin Liu, John Bacsa, Huw M. L. Davies, Matthew S. Sigman. Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C–H Functionalization Reactions. Journal of the American Chemical Society 2022, 144 (4) , 1881-1898. https://doi.org/10.1021/jacs.1c12198
    14. Luca Capaldo, Davide Ravelli, Maurizio Fagnoni. Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C–H Bonds Elaboration. Chemical Reviews 2022, 122 (2) , 1875-1924. https://doi.org/10.1021/acs.chemrev.1c00263
    15. Philip R. D. Murray, James H. Cox, Nicholas D. Chiappini, Casey B. Roos, Elizabeth A. McLoughlin, Benjamin G. Hejna, Suong T. Nguyen, Hunter H. Ripberger, Jacob M. Ganley, Elaine Tsui, Nick Y. Shin, Brian Koronkiewicz, Guanqi Qiu, Robert R. Knowles. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chemical Reviews 2022, 122 (2) , 2017-2291. https://doi.org/10.1021/acs.chemrev.1c00374
    16. McKenna K. Goetz, Joseph E. Schneider, Alexander S. Filatov, Kate A. Jesse, John S. Anderson. Enzyme-Like Hydroxylation of Aliphatic C–H Bonds From an Isolable Co-Oxo Complex. Journal of the American Chemical Society 2021, 143 (49) , 20849-20862. https://doi.org/10.1021/jacs.1c09280
    17. Marika Di Berto Mancini, Andrea Del Gelsomino, Stefano Di Stefano, Federico Frateloreto, Andrea Lapi, Osvaldo Lanzalunga, Giorgio Olivo, Stefano Sajeva. Change of Selectivity in C–H Functionalization Promoted by Nonheme Iron(IV)-oxo Complexes by the Effect of the N-hydroxyphthalimide HAT Mediator. ACS Omega 2021, 6 (40) , 26428-26438. https://doi.org/10.1021/acsomega.1c03679
    18. Craig S. Day, Alexander Fawcett, Ruchira Chatterjee, John F. Hartwig. Mechanistic Investigation of the Iron-Catalyzed Azidation of Alkyl C(sp3)–H Bonds with Zhdankin’s λ3-Azidoiodane. Journal of the American Chemical Society 2021, 143 (39) , 16184-16196. https://doi.org/10.1021/jacs.1c07330
    19. Justin L. Lee, Dolores L. Ross, Suman K. Barman, Joseph W. Ziller, A. S. Borovik. C–H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorganic Chemistry 2021, 60 (18) , 13759-13783. https://doi.org/10.1021/acs.inorgchem.1c01754
    20. Gourab Mukherjee, Jagnyesh K. Satpathy, Umesh K. Bagha, M. Qadri E. Mubarak, Chivukula V. Sastri, Sam P. de Visser. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catalysis 2021, 11 (15) , 9761-9797. https://doi.org/10.1021/acscatal.1c01993
    21. Michela Salamone, Marco Galeotti, Eduardo Romero-Montalvo, Jeffrey A. van Santen, Benjamin D. Groff, James M. Mayer, Gino A. DiLabio, Massimo Bietti. Bimodal Evans–Polanyi Relationships in Hydrogen Atom Transfer from C(sp3)–H Bonds to the Cumyloxyl Radical. A Combined Time-Resolved Kinetic and Computational Study. Journal of the American Chemical Society 2021, 143 (30) , 11759-11776. https://doi.org/10.1021/jacs.1c05566
    22. Shao-An Hua, Lucas A. Paul, Manuel Oelschlegel, Sebastian Dechert, Franc Meyer, Inke Siewert. A Bioinspired Disulfide/Dithiol Redox Switch in a Rhenium Complex as Proton, H Atom, and Hydride Transfer Reagent. Journal of the American Chemical Society 2021, 143 (16) , 6238-6247. https://doi.org/10.1021/jacs.1c01763
    23. Luca Capaldo, Martin Ertl, Maurizio Fagnoni, Günther Knör, Davide Ravelli. Antimony–Oxo Porphyrins as Photocatalysts for Redox-Neutral C–H to C–C Bond Conversion. ACS Catalysis 2020, 10 (16) , 9057-9064. https://doi.org/10.1021/acscatal.0c02250
    24. Laia Vicens, Giorgio Olivo, Miquel Costas. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catalysis 2020, 10 (15) , 8611-8631. https://doi.org/10.1021/acscatal.0c02073
    25. Joan Inoa, Mansi Patel, Grecia Dominici, Reem Eldabagh, Anjali Patel, John Lee, Yalan Xing. Benzylic Hydroperoxidation via Visible-Light-Induced Csp3–H Activation. The Journal of Organic Chemistry 2020, 85 (9) , 6181-6187. https://doi.org/10.1021/acs.joc.0c00385
    26. Xiao-Xi Li, Mian Guo, Bin Qiu, Kyung-Bin Cho, Wei Sun, Wonwoo Nam. High-Spin Mn(V)-Oxo Intermediate in Nonheme Manganese Complex-Catalyzed Alkane Hydroxylation Reaction: Experimental and Theoretical Approach. Inorganic Chemistry 2019, 58 (21) , 14842-14852. https://doi.org/10.1021/acs.inorgchem.9b02543
    27. Gang Li, Patrick A. Kates, Andrew K. Dilger, Peter T. Cheng, William R. Ewing, John T. Groves. Manganese-Catalyzed Desaturation of N-Acyl Amines and Ethers. ACS Catalysis 2019, 9 (10) , 9513-9517. https://doi.org/10.1021/acscatal.9b03457
    28. Daniel Bím, Mauricio Maldonado-Domínguez, Radek Fučík, Martin Srnec. Dissecting the Temperature Dependence of Electron–Proton Transfer Reactivity. The Journal of Physical Chemistry C 2019, 123 (35) , 21422-21428. https://doi.org/10.1021/acs.jpcc.9b07375
    29. Wei Sun, Qiangsheng Sun. Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond. Accounts of Chemical Research 2019, 52 (8) , 2370-2381. https://doi.org/10.1021/acs.accounts.9b00285
    30. Theresa E. Boddie, Stephanie H. Carpenter, Tessa M. Baker, Joshua C. DeMuth, Gianpiero Cera, William W. Brennessel, Lutz Ackermann, Michael L. Neidig. Identification and Reactivity of Cyclometalated Iron(II) Intermediates in Triazole-Directed Iron-Catalyzed C–H Activation. Journal of the American Chemical Society 2019, 141 (31) , 12338-12345. https://doi.org/10.1021/jacs.9b05269
    31. Mateo Alajarin, Marta Marin-Luna, Pilar Sanchez-Andrada, Angel Vidal. Chemodivergent Conversion of Ketenimines Bearing Cyclic Dithioacetalic Units into Isoquinoline-1-thiones or Quinolin-4-ones as a Function of the Acetalic Ring Size. The Journal of Organic Chemistry 2019, 84 (12) , 8140-8150. https://doi.org/10.1021/acs.joc.9b01014
    32. Jianming Chen, Robertus J. M. Klein Gebbink. Deuterated N2Py2 Ligands: Building More Robust Non-Heme Iron Oxidation Catalysts. ACS Catalysis 2019, 9 (4) , 3564-3575. https://doi.org/10.1021/acscatal.8b04463
    33. McKenna K. Goetz, John S. Anderson. Experimental Evidence for pKa-Driven Asynchronicity in C–H Activation by a Terminal Co(III)–Oxo Complex. Journal of the American Chemical Society 2019, 141 (9) , 4051-4062. https://doi.org/10.1021/jacs.8b13490
    34. Hashini N. K. Herath Alexander R. Parent . Recent Advances in Ru-Catalyzed Olefin and C–H Bond Oxidation. 2019, 85-101. https://doi.org/10.1021/bk-2019-1317.ch005
    35. Zhe Gong, Liwei Wang, Yiran Xu, Duanfeng Xie, Xiaotian Qi, Wonwoo Nam, Mian Guo. Enhanced Reactivities of Iron(IV)‐Oxo Porphyrin Species in Oxidation Reactions Promoted by Intramolecular Hydrogen‐Bonding. Advanced Science 2024, 40 https://doi.org/10.1002/advs.202310333
    36. Xin Lv, Yuhao Yang, Liejin Zhou, Xiaojun Zeng. Copper‐Catalyzed Fluoroamide‐Directed Remote C( sp 3 )‐H Bond Functionalization Through Intramolecular Hydrogen Atom Transfer. European Journal of Organic Chemistry 2024, 121 https://doi.org/10.1002/ejoc.202400027
    37. Javier Cervantes-González, Salma E. Mora-Rodríguez, Luis J. Benitez-Puebla, Fernando López-Caamal, Marco A. García-Revilla, Miguel A. Vázquez, Selene Lagunas-Rivera. A Computational and Experimental Analysis of Aldehyde Photooxidation Driven by Visible Light in a Homemade Reactor. Synlett 2024, 35 (03) , 297-302. https://doi.org/10.1055/a-2131-4033
    38. Chenghao Li, Shu‐Xin Zhang, Yu Feng, Yan‐Mei He, Qing‐Hua Fan. Asymmetric Hydrogenation of Tetrapyridine‐Type N ‐Heteroarenes Using Phosphine‐Free Ruthenium Diamine Catalysts †. Chinese Journal of Chemistry 2023, 41 (24) , 3573-3578. https://doi.org/10.1002/cjoc.202300477
    39. Li-Lin Jiang, Hui Qiu, Yu Zhou, Ling-Tao Wang, Wen-Hui Yang, Chao Deng, Wen-Ting Wei. Copper-catalyzed 1,2,2-trifunctionalization of maleimides with 1,7-enynes and oxime esters via radical relay/1,5-hydrogen-atom transfer. Organic Chemistry Frontiers 2023, 10 (24) , 6096-6102. https://doi.org/10.1039/D3QO01431B
    40. Mingxu Liu, Junkai Cai, Lei Huang, Chunying Duan. Photocatalytic C(sp 3 )–H bond functionalization by Cu( i ) halide cluster-mediated O 2 activation. Dalton Transactions 2023, 52 (46) , 17109-17113. https://doi.org/10.1039/D3DT02862C
    41. Roman V. Ottenbacher, Anna A. Bryliakova, Vladimir I. Kurganskii, Petr V. Prikhodchenko, Alexander G. Medvedev, Konstantin P. Bryliakov. Bioinspired Non‐Heme Mn Catalysts for Regio‐ and Stereoselective Oxyfunctionalizations with H 2 O 2. Chemistry – A European Journal 2023, 29 (66) https://doi.org/10.1002/chem.202302772
    42. Rafal Kulmaczewski, Malcolm A. Halcrow. Iron( ii ) complexes of 2,6-bis(imidazo[1,2- a ]pyridin-2-yl)pyridine and related ligands with annelated distal heterocyclic donors. Dalton Transactions 2023, 52 (41) , 14928-14940. https://doi.org/10.1039/D3DT02747C
    43. Rahul A. Jagtap, Motomu Kanai. Sustainable and Mild Catalytic Acceptorless Dehydrogenations. Synlett 2023, 34 (12) , 1367-1375. https://doi.org/10.1055/a-1990-5102
    44. Xin-Yan Zhou, Bo Fu, Wen-Dong Jin, Xiong Wang, Ke-Ke Wang, Mei Wang, Yuan-Bin She, Hai-Min Shen. Efficient and Selective Oxygenation of Cycloalkanes and Alkyl Aromatics with Oxygen through Synergistic Catalysis of Bimetallic Active Centers in Two-Dimensional Metal-Organic Frameworks Based on Metalloporphyrins. Biomimetics 2023, 8 (3) , 325. https://doi.org/10.3390/biomimetics8030325
    45. Liang Chang, Shun Wang, Qing An, Linxuan Liu, Hexiang Wang, Yubo Li, Kaixuan Feng, Zhiwei Zuo. Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chemical Science 2023, 14 (25) , 6841-6859. https://doi.org/10.1039/D3SC01118F
    46. Kang Yan, Xingyu Yang, Jiangang Gao, Ze Zhang, Pinhua Li. Visible-light-induced cyclization of 2-alkenyl-1,1′-biphenyls. Organic Chemistry Frontiers 2023, 10 (10) , 2453-2458. https://doi.org/10.1039/D2QO02052A
    47. Anshu Singh, Bishal Boro, Ankur Maji, Ovender Singh, Sain Singh, Udai P. Singh, Kaushik Ghosh. Design and synthesis of dinuclear cobalt( ii ) complexes derived from strong π-acidic ligands: crystal structure and studies on the oxidation of sp 3 C–H bonds. New Journal of Chemistry 2023, 47 (18) , 8951-8959. https://doi.org/10.1039/D3NJ00128H
    48. Tingting Ma, Chao Xu, Fengyang Liu, Yirong Feng, Wenyan Zhang, Weiwei Tang, Haoyu Zhang, Xiaowei Li, Yingying Nie, Shuangfei Zhao, Yuguang Li, Dong Ji, Zheng Fang, Wei He, Kai Guo. Selective epoxidation and allylic oxidation of olefins catalyzed by BEA-Ti and porphyrin catalysts. Molecular Catalysis 2023, 541 , 113074. https://doi.org/10.1016/j.mcat.2023.113074
    49. Melina Knezevic, Konrad Tiefenbacher. Tweezer‐Based C−H Oxidation Catalysts Overriding the Intrinsic Reactivity of Aliphatic Ammonium Substrates. Chemistry – A European Journal 2023, 29 (13) https://doi.org/10.1002/chem.202203480
    50. A-Bing Guo, Jia-Wei Qin, Ke-Ke Wang, Qiu-Ping Liu, Hong-Ke Wu, Mei Wang, Hai-Min Shen, Yuan-Bin She. Synergetic catalytic oxidation of C-H bonds in cycloalkanes and alkyl aromatics by dimetallic active sites in 3D metalloporphyrinic MOFs employing O2 as oxidant with increased conversion and unconsumed selectivity. Molecular Catalysis 2023, 535 , 112853. https://doi.org/10.1016/j.mcat.2022.112853
    51. Li-Xin Li, Kai Hu. Radical addition-triggered remote functionalization of C–H bond via 1, n-hydrogen atom transfer process. Tetrahedron 2023, 130 , 133172. https://doi.org/10.1016/j.tet.2022.133172
    52. Renata Siedlecka. Selectivity in the Aliphatic C–H Bonds Oxidation (Hydroxylation) Catalyzed by Heme- and Non-Heme Metal Complexes—Recent Advances. Catalysts 2023, 13 (1) , 121. https://doi.org/10.3390/catal13010121
    53. Meghan J. Oddy, Daniel A. Kusza, Ryan G. Epton, Jason M. Lynam, William P. Unsworth, Wade F. Petersen. Visible‐Light‐Mediated Energy Transfer Enables the Synthesis of β‐Lactams via Intramolecular Hydrogen Atom Transfer. Angewandte Chemie 2022, 134 (48) https://doi.org/10.1002/ange.202213086
    54. Meghan J. Oddy, Daniel A. Kusza, Ryan G. Epton, Jason M. Lynam, William P. Unsworth, Wade F. Petersen. Visible‐Light‐Mediated Energy Transfer Enables the Synthesis of β‐Lactams via Intramolecular Hydrogen Atom Transfer. Angewandte Chemie International Edition 2022, 61 (48) https://doi.org/10.1002/anie.202213086
    55. Shengqing Zhu, Jian Qin, Liping Huo, Yanyan Zhang, Lingling Chu. Photocatalytic Hydrogen Atom Transfer Enabled Ni‐ and Cu‐Catalyzed C(sp 3 )H Functionalization. 2022, 1-35. https://doi.org/10.1002/9783527834242.chf0204
    56. Hai-Min Shen, A-Bing Guo, Yu Zhang, Qiu-Ping Liu, Jia-Wei Qin, Yuan-Bin She. Relay catalysis of hydrocarbon oxidation using O2 in the confining domain of 3D metalloporphyrin-based metal-organic frameworks with bimetallic catalytic centers. Chemical Engineering Science 2022, 260 , 117825. https://doi.org/10.1016/j.ces.2022.117825
    57. Stefano Bonciolini, Timothy Noël, Luca Capaldo. Synthetic Applications of Photocatalyzed Halogen‐Radical Mediated Hydrogen Atom Transfer for C−H Bond Functionalization. European Journal of Organic Chemistry 2022, 2022 (34) https://doi.org/10.1002/ejoc.202200417
    58. Hai-Min Shen, Xiong Wang, Hao Huang, Qiu-Ping Liu, Dong Lv, Yuan-Bin She. Staged oxidation of hydrocarbons with simultaneously enhanced conversion and selectivity employing O2 as oxygen source catalyzed by 2D metalloporphyrin-based MOFs possessing bimetallic active centers. Chemical Engineering Journal 2022, 443 , 136126. https://doi.org/10.1016/j.cej.2022.136126
    59. Jimei Zhou, Minxian Jia, Menghui Song, Zhiliang Huang, Alexander Steiner, Qidong An, Jianwei Ma, Zhiyin Guo, Qianqian Zhang, Huaming Sun, Craig Robertson, John Bacsa, Jianliang Xiao, Chaoqun Li. Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angewandte Chemie 2022, 134 (30) https://doi.org/10.1002/ange.202205983
    60. Jimei Zhou, Minxian Jia, Menghui Song, Zhiliang Huang, Alexander Steiner, Qidong An, Jianwei Ma, Zhiyin Guo, Qianqian Zhang, Huaming Sun, Craig Robertson, John Bacsa, Jianliang Xiao, Chaoqun Li. Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angewandte Chemie International Edition 2022, 61 (30) https://doi.org/10.1002/anie.202205983
    61. Yuwei Liang, Linbin Niu, Xing‐An Liang, Shengchun Wang, Pengjie Wang, Aiwen Lei. Electrooxidation‐Induced C(sp 3 )–H/C(sp 2 )–H Radical‐Radical Cross‐Coupling between Xanthanes and Electron‐Rich Arenes. Chinese Journal of Chemistry 2022, 40 (12) , 1422-1428. https://doi.org/10.1002/cjoc.202200020
    62. Marco Galeotti, Michela Salamone, Massimo Bietti. Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp 3 )–H functionalization promoted by electrophilic reagents. Chemical Society Reviews 2022, 51 (6) , 2171-2223. https://doi.org/10.1039/D1CS00556A
    63. Yi‐Ting Wang, Yi‐Lun Shih, Yen‐Ku Wu, Ilhyong Ryu. Site‐Selective C( sp 3 )‐H Alkenylation Using Decatungstate Anion as Photocatalyst. Advanced Synthesis & Catalysis 2022, 364 (5) , 1039-1043. https://doi.org/10.1002/adsc.202101374
    64. Lin Liu, Kai‐Xin Guo, Yu Tian, Chang‐Jiang Yang, Qiang‐Shuai Gu, Zhong‐Liang Li, Liu Ye, Xin‐Yuan Liu. Copper‐Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp 3 )−H/C(sp)−H Cross‐Coupling with Rationally Designed Oxazoline‐Derived N,N,P(O)‐Ligands. Angewandte Chemie 2021, 133 (51) , 26914-26921. https://doi.org/10.1002/ange.202110233
    65. Lin Liu, Kai‐Xin Guo, Yu Tian, Chang‐Jiang Yang, Qiang‐Shuai Gu, Zhong‐Liang Li, Liu Ye, Xin‐Yuan Liu. Copper‐Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp 3 )−H/C(sp)−H Cross‐Coupling with Rationally Designed Oxazoline‐Derived N,N,P(O)‐Ligands. Angewandte Chemie International Edition 2021, 60 (51) , 26710-26717. https://doi.org/10.1002/anie.202110233
    66. Miquel Costas. Site and Enantioselective Aliphatic C−H Oxidation with Bioinspired Chiral Complexes. The Chemical Record 2021, 21 (12) , 4000-4014. https://doi.org/10.1002/tcr.202100227
    67. Li-Cheng Yang, Xin Li, Shuo-Qing Zhang, Xin Hong. Machine learning prediction of hydrogen atom transfer reactivity in photoredox-mediated C–H functionalization. Organic Chemistry Frontiers 2021, 8 (22) , 6187-6195. https://doi.org/10.1039/D1QO01325D
    68. Konstantin P. Bryliakov. Manganese‐Catalyzed CH Oxygenation Reactions. 2021, 183-202. https://doi.org/10.1002/9783527826131.ch6
    69. Eduard Masferrer‐Rius, Margarida Borrell, Martin Lutz, Miquel Costas, Robertus J. M. Klein Gebbink. Aromatic C−H Hydroxylation Reactions with Hydrogen Peroxide Catalyzed by Bulky Manganese Complexes. Advanced Synthesis & Catalysis 2021, 363 (15) , 3783-3795. https://doi.org/10.1002/adsc.202001590
    70. Giorgio Olivo, Giorgio Capocasa, Daniele Del Giudice, Osvaldo Lanzalunga, Stefano Di Stefano. New horizons for catalysis disclosed by supramolecular chemistry. Chemical Society Reviews 2021, 50 (13) , 7681-7724. https://doi.org/10.1039/D1CS00175B
    71. Yingying Wang, Peihe Li, Jinghui Wang, Zhifei Liu, Yin Wang, Ye Lu, Ying Liu, Limei Duan, Wanfei Li, Sarina Sarina, Huaiyong Zhu, Jinghai Liu. Visible-light photocatalytic selective oxidation of C(sp 3 )–H bonds by anion–cation dual-metal-site nanoscale localized carbon nitride. Catalysis Science & Technology 2021, 11 (13) , 4429-4438. https://doi.org/10.1039/D1CY00328C
    72. Alexandra M. Zima, Oleg Y. Lyakin, Konstantin P. Bryliakov, Evgenii P. Talsi. Low‐Spin and High‐Spin Perferryl Intermediates in Non‐Heme Iron Catalyzed Oxidations of Aliphatic C−H Groups. Chemistry – A European Journal 2021, 27 (28) , 7781-7788. https://doi.org/10.1002/chem.202004395
    73. Andrey Shatskiy, Anton Axelsson, Elena V. Stepanova, Jian-Quan Liu, Azamat Z. Temerdashev, Bhushan P. Kore, Björn Blomkvist, James M. Gardner, Peter Dinér, Markus D. Kärkäs. Stereoselective synthesis of unnatural α-amino acid derivatives through photoredox catalysis. Chemical Science 2021, 12 (15) , 5430-5437. https://doi.org/10.1039/D1SC00658D
    74. Carlo Sambiagio, Bert U. W. Maes. Non‐Directed Functionalization of Distal C (sp 3 ) H Bonds. 2021, 343-382. https://doi.org/10.1002/9783527824137.ch12
    75. Joseph E. Schneider, McKenna K. Goetz, John S. Anderson. Statistical analysis of C–H activation by oxo complexes supports diverse thermodynamic control over reactivity. Chemical Science 2021, 12 (11) , 4173-4183. https://doi.org/10.1039/D0SC06058E
    76. Tjark H. Meyer, Ramesh C. Samanta, Antonio Del Vecchio, Lutz Ackermann. Mangana( iii / iv )electro-catalyzed C(sp 3 )–H azidation. Chemical Science 2021, 12 (8) , 2890-2897. https://doi.org/10.1039/D0SC05924B
    77. Laia Vicens, Massimo Bietti, Miquel Costas. General Access to Modified α‐Amino Acids by Bioinspired Stereoselective γ‐C−H Bond Lactonization. Angewandte Chemie 2021, 133 (9) , 4790-4796. https://doi.org/10.1002/ange.202007899
    78. Hai‐Xu Wang, Liangliang Wu, Bin Zheng, Lili Du, Wai‐Pong To, Cheng‐Hoi Ko, David Lee Phillips, Chi‐Ming Che. C−H Activation by an Iron‐Nitrido Bis‐Pocket Porphyrin Species. Angewandte Chemie 2021, 133 (9) , 4846-4853. https://doi.org/10.1002/ange.202014191
    79. Laia Vicens, Massimo Bietti, Miquel Costas. General Access to Modified α‐Amino Acids by Bioinspired Stereoselective γ‐C−H Bond Lactonization. Angewandte Chemie International Edition 2021, 60 (9) , 4740-4746. https://doi.org/10.1002/anie.202007899
    80. Hai‐Xu Wang, Liangliang Wu, Bin Zheng, Lili Du, Wai‐Pong To, Cheng‐Hoi Ko, David Lee Phillips, Chi‐Ming Che. C−H Activation by an Iron‐Nitrido Bis‐Pocket Porphyrin Species. Angewandte Chemie International Edition 2021, 60 (9) , 4796-4803. https://doi.org/10.1002/anie.202014191
    81. Mitsuhiro Ueda, Kazuya Kamikawa, Takahide Fukuyama, Yi‐Ting Wang, Yen‐Ku Wu, Ilhyong Ryu. Site‐Selective Alkenylation of Unactivated C(sp 3 )−H Bonds Mediated by Compact Sulfate Radical. Angewandte Chemie 2021, 133 (7) , 3587-3592. https://doi.org/10.1002/ange.202011992
    82. Mitsuhiro Ueda, Kazuya Kamikawa, Takahide Fukuyama, Yi‐Ting Wang, Yen‐Ku Wu, Ilhyong Ryu. Site‐Selective Alkenylation of Unactivated C(sp 3 )−H Bonds Mediated by Compact Sulfate Radical. Angewandte Chemie International Edition 2021, 60 (7) , 3545-3550. https://doi.org/10.1002/anie.202011992
    83. Sumon Sarkar, Kelvin Pak Shing Cheung, Vladimir Gevorgyan. C–H functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals. Chemical Science 2020, 11 (48) , 12974-12993. https://doi.org/10.1039/D0SC04881J
    84. Andreas J. Hofmann, Lukas Niederegger, Corinna R. Hess. Neighbouring effects on catalytic epoxidation by Fe-cyclam in M 2 -PDIxCy complexes. Dalton Transactions 2020, 49 (48) , 17642-17648. https://doi.org/10.1039/D0DT03758C
    85. Mandapati Bhargava Reddy, Kesavan Prasanth, Ramasamy Anandhan. Visible-light induced copper( i )-catalyzed oxidative cyclization of o -aminobenzamides with methanol and ethanol via HAT. Organic & Biomolecular Chemistry 2020, 18 (47) , 9601-9605. https://doi.org/10.1039/D0OB02234A
    86. Yuqi Tan, Shuming Chen, Zijun Zhou, Yubiao Hong, Sergei Ivlev, K. N. Houk, Eric Meggers. Intramolecular C(sp 3 )–H Bond Oxygenation by Transition‐Metal Acylnitrenoids. Angewandte Chemie 2020, 132 (48) , 21890-21894. https://doi.org/10.1002/ange.202009335
    87. Yuqi Tan, Shuming Chen, Zijun Zhou, Yubiao Hong, Sergei Ivlev, K. N. Houk, Eric Meggers. Intramolecular C(sp 3 )–H Bond Oxygenation by Transition‐Metal Acylnitrenoids. Angewandte Chemie International Edition 2020, 59 (48) , 21706-21710. https://doi.org/10.1002/anie.202009335
    88. Mònica Rodríguez, Gemma Font, Joel Nadal‐Moradell, Alberto Hernán‐Gómez, Miquel Costas. Iron‐Catalyzed Intermolecular Functionalization of Non‐Activated Aliphatic C−H Bonds via Carbene Transfer. Advanced Synthesis & Catalysis 2020, 362 (22) , 5116-5123. https://doi.org/10.1002/adsc.202000817
    89. Neppoliyan Kannan, Akshay R. Patil, Arup Sinha. Direct C–H bond halogenation and pseudohalogenation of hydrocarbons mediated by high-valent 3d metal-oxo species. Dalton Transactions 2020, 49 (41) , 14344-14360. https://doi.org/10.1039/D0DT02533J
    90. Jie Chen, Zhankun Jiang, Shunichi Fukuzumi, Wonwoo Nam, Bin Wang. Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coordination Chemistry Reviews 2020, 421 , 213443. https://doi.org/10.1016/j.ccr.2020.213443
    91. Jaycee R. Mayfield, Elizabeth N. Grotemeyer, Timothy A. Jackson. Concerted proton–electron transfer reactions of manganese–hydroxo and manganese–oxo complexes. Chemical Communications 2020, 56 (65) , 9238-9255. https://doi.org/10.1039/D0CC01201G
    92. Prasenjit Mondal, Marta Lovisari, Brendan Twamley, Aidan R. McDonald. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angewandte Chemie 2020, 132 (31) , 13144-13150. https://doi.org/10.1002/ange.202004639
    93. Prasenjit Mondal, Marta Lovisari, Brendan Twamley, Aidan R. McDonald. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angewandte Chemie International Edition 2020, 59 (31) , 13044-13050. https://doi.org/10.1002/anie.202004639
    94. Xu-Ping Yan, Cheng-Kun Li, Shao-Fang Zhou, Adedamola Shoberu, Jian-Ping Zou. Copper-catalyzed sp3-carbon radical/carbamoyl radical cross coupling: A direct strategy for carbamoylation of 1,3-dicarbonyl compounds. Tetrahedron 2020, 76 (30) , 131342. https://doi.org/10.1016/j.tet.2020.131342
    95. Luca Capaldo, Lorenzo Lafayette Quadri, Davide Ravelli. Photocatalytic hydrogen atom transfer: the philosopher's stone for late-stage functionalization?. Green Chemistry 2020, 22 (11) , 3376-3396. https://doi.org/10.1039/D0GC01035A
    96. Dmitry P. Lubov, Evgenii P. Talsi, Konstantin P. Bryliakov. Methods for selective benzylic C–H oxofunctionalization of organic compounds. Russian Chemical Reviews 2020, 89 (6) , 587-628. https://doi.org/10.1070/RCR4918
    97. Daiki Doiuchi, Tatsuya Nakamura, Hiroki Hayashi, Tatsuya Uchida. Non‐Heme‐Type Ruthenium Catalyzed Chemo‐ and Site‐Selective C−H Oxidation. Chemistry – An Asian Journal 2020, 15 (6) , 762-765. https://doi.org/10.1002/asia.202000134
    98. Sensheng Liu, Martin Klussmann. Acid promoted radical-chain difunctionalization of styrenes with stabilized radicals and (N,O)-nucleophiles. Chemical Communications 2020, 56 (10) , 1557-1560. https://doi.org/10.1039/C9CC09369A
    99. Yuannian Zhang, Xin Yang, Haidi Tang, Dong Liang, Jie Wu, Dejian Huang. Pyrenediones as versatile photocatalysts for oxygenation reactions with in situ generation of hydrogen peroxide under visible light. Green Chemistry 2020, 22 (1) , 22-27. https://doi.org/10.1039/C9GC03152A
    100. Kang Liu, Junhua Zhang, Shuaicong Huo, Qing Dong, Zhiqiang Hao, Zhangang Han, Guo-Liang Lu, Jin Lin. Highly efficient oxidation of alcohols catalyzed by Ru(II) carbonyl complexes bearing salicylaldiminato ligands. Inorganica Chimica Acta 2020, 500 , 119224. https://doi.org/10.1016/j.ica.2019.119224
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect