ACS Publications. Most Trusted. Most Cited. Most Read
Approaching Materials with Atomic Precision Using Supramolecular Cluster Assemblies
My Activity
    Article

    Approaching Materials with Atomic Precision Using Supramolecular Cluster Assemblies
    Click to copy article linkArticle link copied!

    • Papri Chakraborty
      Papri Chakraborty
      DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
    • Abhijit Nag
      Abhijit Nag
      DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
      More by Abhijit Nag
    • Amrita Chakraborty
      Amrita Chakraborty
      DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
    • Thalappil Pradeep*
      Thalappil Pradeep
      DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
      *E-mail: [email protected]
    Other Access Options

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2019, 52, 1, 2–11
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.accounts.8b00369
    Published December 3, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image
    Conspectus

    Supramolecular chemistry is a major area of chemistry that utilizes weaker non-covalent interactions between molecules, including hydrogen bonding, van der Waals, electrostatic, π···π, and C–H···π interactions. Such forces have been the basis of several molecular self-assemblies and host–guest complexes in organic, inorganic, and biological systems. Atomically precise nanoclusters (NCs) are materials of growing interest that display interesting structure–property correlations. The evolving science of such systems reaffirms their molecular behavior. This gives a possibility of exploring their supramolecular chemistry, leading to assemblies with similar or dissimilar cluster molecules. Such assemblies with compositional, structural, and conformational precision may ultimately result in cluster-assembled hybrid materials. In this Account, we present recent advancements on different possibilities of supramolecular interactions in atomically precise cluster systems that can occur at different length scales. We first present a brief discussion of the aspicule model of clusters, considering Au25(SR)18 as an example, that can explain various aspects of its atomic precision and distinguish the similar or dissimilar interacting sites in their structures. The supramolecular interaction of 4-tert-butylbenzyl mercaptan (BBSH)-protected [Au25(SBB)18] NCs with cyclodextrins (CD) to form Au25SBB18∩CDn (n = 1–4) and that of [Ag29(BDT)12]3– with fullerenes to form [Ag29(BDT)12(C60)n]3– (n = 1–9) (BDT = 1,3-benzenedithiolate) are discussed subsequently. The formation of these adducts was studied by electrospray ionization mass spectrometry (ESI MS), optical absorption and NMR spectroscopy. In the subsequent sections, we discuss how variation in intercluster interactions can lead to polymorphic crystals, which are observable in single-crystal X-ray diffraction. Taking [Ag29(BDT)12(TPP)4]3– (TPP = triphenylphosphine) clusters as an example, we discuss how the different patterns of C–H···π and π···π interactions between the secondary ligands can alter the packing of the NCs into cubic and trigonal lattices. Finally, we discuss how the supramolecular interactions of atomically precise clusters can result in their hybrid assemblies with plasmonic nanostructures. The interaction of p-mercaptobenzoic acid (p-MBA)-protected Ag44(p-MBA)30 NCs with tellurium nanowires (Te NWs) can form crossed-bilayer precision assemblies with a woven-fabric-like structure with an angle of 81° between the layers. Similar crossed-bilayer assemblies show an angle of 77° when Au102(p-MBA)44 clusters are used to form the structure. Such assemblies were studied by transmission electron microscopy (TEM). Precision in these hybrid assemblies of Te NWs was highly controlled by the geometry of the ligands on the NC surface. Moreover, we also present how Ag44(p-MBA)30 clusters can encapsulate gold nanorods to form cage-like nanostructures. Such studies involved TEM, scanning transmission electron microscopy (STEM), and three-dimensional tomographic reconstructions of the nanostructures. The hydrogen bonding interactions of the −COOH groups of the p-MBA ligands were the major driving force in both of these cases. An important aspect that is central to the advancement of the area is the close interplay of molecular tools such as MS with structural tools such as TEM along with detailed computational modeling. We finally conclude this Account with a future perspective on the supramolecular chemistry of clusters. Advancements in this field will help in developing new materials with potential optical, electrical, and mechanical properties.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 170 publications.

    1. Hao Li, Xi Kang, Manzhou Zhu. Superlattice Assembly for Empowering Metal Nanoclusters. Accounts of Chemical Research 2024, 57 (21) , 3194-3205. https://doi.org/10.1021/acs.accounts.4c00521
    2. Subrata Duary, Arijit Jana, Amitabha Das, Swetashree Acharya, Amoghavarsha Ramachandra Kini, Jayoti Roy, Ajay Kumar Poonia, Deepak Kumar Patel, Vivek Yadav, P. K. Sudhadevi Antharjanam, Biswarup Pathak, Adarsh Kumaran Nair Valsala Devi, Thalappil Pradeep. Milling-Induced “Turn-off” Luminescence in Copper Nanoclusters. Inorganic Chemistry 2024, 63 (40) , 18727-18737. https://doi.org/10.1021/acs.inorgchem.4c02617
    3. Xiaojing Zhao, Wen-Jie Chen, Qing-Man Liang, Su-Kang Chen, Jiao Xun, Bi-Jun Geng, Hai-Feng Su, Yang Yang. Ag+-Induced Assembly of Pt Clusters for Photocatalytic Hydrogen Production. Inorganic Chemistry 2024, 63 (38) , 17672-17680. https://doi.org/10.1021/acs.inorgchem.4c02483
    4. Qiang Li, Wenxing Gao, Zijian Wang, Wenfeng Liu, Yu Fu, Xin Wang, Li-Li Tan, Li Shang, Ying-Wei Yang. Guest-Induced Helical Superstructure from a Gold Nanocluster-Based Supramolecular Organic Framework Enables Efficient Catalysis. ACS Nano 2024, 18 (33) , 22548-22559. https://doi.org/10.1021/acsnano.4c08337
    5. Paulami Bose, Jayoti Roy, Vikash Khokhar, Biswajit Mondal, Ganapati Natarajan, Sujan Manna, Vivek Yadav, Anupriya Nyayban, Sharma S. R. K. C. Yamijala, Nonappa, Thalappil Pradeep. Interparticle Antigalvanic Reactions of Atomically Precise Silver Nanoclusters with Plasmonic Gold Nanoparticles: Interfacial Control of Atomic Exchange. Chemistry of Materials 2024, 36 (15) , 7581-7594. https://doi.org/10.1021/acs.chemmater.4c00620
    6. Yixin Wang, Gui-Fang Mu, Kuang-Shi Sun, Nan Yang, Qiang Yan. Self-Assembly of Organic Cages into 1D and 2D Hierarchical Superstructures Driven by Halogen-Bonding Interactions. ACS Materials Letters 2024, 6 (8) , 3667-3674. https://doi.org/10.1021/acsmaterialslett.4c00928
    7. Si Li, Na-Na Li, Xi-Yan Dong, Shuang-Quan Zang, Thomas C. W. Mak. Chemical Flexibility of Atomically Precise Metal Clusters. Chemical Reviews 2024, 124 (11) , 7262-7378. https://doi.org/10.1021/acs.chemrev.3c00896
    8. Sameeksha Agrawal, Saurabh Rai, Paritosh Mahato, Asif Ali, Saptarshi Mukherjee. Assemble–Disassemble–Reassemble Dynamics in Copper Nanocluster-Based Superstructures. The Journal of Physical Chemistry Letters 2024, 15 (18) , 4880-4889. https://doi.org/10.1021/acs.jpclett.4c00755
    9. Yanming Liu, Hao Li, Xuejuan Zou, Xi Kang, Manzhou Zhu. Parasitism in Metal Nanoclusters: A Case Study of (AuAg)25·(AuAg)27. ACS Nano 2024, 18 (2) , 1555-1562. https://doi.org/10.1021/acsnano.3c09207
    10. Anish Kumar Das, Sourav Biswas, Arijit Kayal, Arthur C. Reber, Subhrajyoti Bhandary, Deepak Chopra, Joy Mitra, Shiv N. Khanna, Sukhendu Mandal. Two-Dimensional Silver-Chalcogenolate-Based Cluster-Assembled Material: A p-type Semiconductor. Nano Letters 2023, 23 (19) , 8923-8931. https://doi.org/10.1021/acs.nanolett.3c02269
    11. Sourav Biswas, Anish Kumar Das, Sukhendu Mandal. Surface Engineering of Atomically Precise M(I) Nanoclusters: From Structural Control to Room Temperature Photoluminescence Enhancement. Accounts of Chemical Research 2023, 56 (13) , 1838-1849. https://doi.org/10.1021/acs.accounts.3c00176
    12. Xiao Wei, Haoqi Li, Hao Li, Zewen Zuo, Fengqi Song, Xi Kang, Manzhou Zhu. Slice Visualization for Imaging Nanocluster Transformations. Journal of the American Chemical Society 2023, 145 (25) , 13750-13757. https://doi.org/10.1021/jacs.3c02165
    13. Kai Sheng, Zhi Wang, Li Li, Zhi-Yong Gao, Chen-Ho Tung, Di Sun. Solvent-Mediated Separation and Reversible Transformation of 1D Supramolecular Polymorphs Built from [W10O32]4– Templated 48-Nuclei Silver(I) Cluster. Journal of the American Chemical Society 2023, 145 (19) , 10595-10603. https://doi.org/10.1021/jacs.3c00321
    14. Sangeeta Meena, Saptarshi G. Dastider, Chandra Shekhar Nishad, Dilip Kumar Jangid, Pankaj Kumar, Samreet Khirid, Shubhankar Kumar Bose, Krishnakanta Mondal, Biplab Banerjee, Rajendra S. Dhayal. Ag–S Type Quantum Dots versus Superatom Nanocatalyst: A Single Sulfur Atom Modulated Decarboxylative Radical Cascade Reaction. Inorganic Chemistry 2023, 62 (15) , 6092-6101. https://doi.org/10.1021/acs.inorgchem.3c00070
    15. Yao Li, Xi-Ming Luo, Peng Luo, Qiu-Xu Zang, Zhao-Yang Wang, Shuang-Quan Zang. Cocrystallization of Two Negatively Charged Dimercaptomaleonitrile-Stabilized Silver Nanoclusters. ACS Nano 2023, 17 (6) , 5834-5841. https://doi.org/10.1021/acsnano.2c12473
    16. Zhen Han, Yubing Si, Xi-Yan Dong, Jia-Hua Hu, Chong Zhang, Xuan-Hui Zhao, Jia-Wang Yuan, Yan Wang, Shuang-Quan Zang. Smart Reversible Transformations between Chiral Superstructures of Copper Clusters for Optical and Chiroptical Switching. Journal of the American Chemical Society 2023, 145 (11) , 6166-6176. https://doi.org/10.1021/jacs.2c12055
    17. Jia-Hong Huang, Li-Ying Liu, Zhao-Yang Wang, Shuang-Quan Zang, Thomas C. W. Mak. Modular Cocrystallization of Customized Carboranylthiolate-Protected Copper Nanoclusters via Host–Guest Interactions. ACS Nano 2022, 16 (11) , 18789-18794. https://doi.org/10.1021/acsnano.2c07521
    18. Chang Xu, Yichun Zhou, Lili Shi, Longjiu Cheng. Superatomic Three-Center Bond in a Tri-Icosahedral Au36Ag2(SR)18 Cluster: Analogue of 3c-2e Bond in Molecules. The Journal of Physical Chemistry Letters 2022, 13 (43) , 10147-10152. https://doi.org/10.1021/acs.jpclett.2c02552
    19. Yu-Han Xia, Jun-Jie Fang, Xin-Yan Xia, Zheng Liu, Yun-Peng Xie, Xing Lu. Silver Clusters Coprotected by Different Diphosphine and Thiol Ligands. Crystal Growth & Design 2022, 22 (9) , 5658-5665. https://doi.org/10.1021/acs.cgd.2c00744
    20. Abhijit Nag, Thalappil Pradeep. Assembling Atomically Precise Noble Metal Nanoclusters Using Supramolecular Interactions. ACS Nanoscience Au 2022, 2 (3) , 160-178. https://doi.org/10.1021/acsnanoscienceau.1c00046
    21. Sourav Biswas, Anish Kumar Das, Arthur C. Reber, Soumya Biswas, Subhrajyoti Bhandary, Vinayak B. Kamble, Shiv N. Khanna, Sukhendu Mandal. The New Ag–S Cluster [Ag50S13(StBu)20][CF3COO]4 with a Unique hcp Ag14 Kernel and Ag36 Keplerian-Shell-Based Structural Architecture and Its Photoresponsivity. Nano Letters 2022, 22 (9) , 3721-3727. https://doi.org/10.1021/acs.nanolett.2c00609
    22. Chang Xu, Yichun Zhou, Jiuqi Yi, Dan Li, Lili Shi, Longjiu Cheng. Tri- and Tetra-superatomic Molecules in Ligand-Protected Face-Fused Icosahedral (M@Au12)n (M = Au, Pt, Ir, and Os, and n = 3 and 4) Clusters. The Journal of Physical Chemistry Letters 2022, 13 (8) , 1931-1939. https://doi.org/10.1021/acs.jpclett.2c00007
    23. Si Li, Xi-Yan Dong, Kong-Sheng Qi, Shuang-Quan Zang, Thomas C. W. Mak. Full-Color Tunable Circularly Polarized Luminescence Induced by the Crystal Defect from the Co-assembly of Chiral Silver(I) Clusters and Dyes. Journal of the American Chemical Society 2021, 143 (49) , 20574-20578. https://doi.org/10.1021/jacs.1c09245
    24. Alexander V. Virovets, Eugenia Peresypkina, Manfred Scheer. Structural Chemistry of Giant Metal Based Supramolecules. Chemical Reviews 2021, 121 (23) , 14485-14554. https://doi.org/10.1021/acs.chemrev.1c00503
    25. Anish Kumar Das, Sourav Biswas, Surya Sekhar Manna, Biswarup Pathak, Sukhendu Mandal. Solvent-Dependent Photophysical Properties of a Semiconducting One-Dimensional Silver Cluster-Assembled Material. Inorganic Chemistry 2021, 60 (23) , 18234-18241. https://doi.org/10.1021/acs.inorgchem.1c02867
    26. Xuwen Gao, Shuangtian Dong, Li Fu, Yuqi Xu, Jingna Jia, Guizheng Zou. Surface-Engineering Enhanced Charge Injection and Recombination of Silver Nanoclusters in an Aqueous Medium. The Journal of Physical Chemistry C 2021, 125 (40) , 22078-22083. https://doi.org/10.1021/acs.jpcc.1c06268
    27. Xiao Wei, Xi Kang, Tengfei Duan, Hao Li, Shuxin Wang, Yong Pei, Manzhou Zhu. [Au16Ag43H12(SPhCl2)34]5–: An Au–Ag Alloy Nanocluster with 12 Hydrides and Its Enlightenment on Nanocluster Structural Evolution. Inorganic Chemistry 2021, 60 (15) , 11640-11647. https://doi.org/10.1021/acs.inorgchem.1c01624
    28. Jie Hu, Linkun Cai, Huihui Wang, Kun Chen, Panchao Yin. Uranyl Peroxide Nanocage Assemblies for Solid-State Electrolytes. ACS Applied Nano Materials 2021, 4 (4) , 3597-3603. https://doi.org/10.1021/acsanm.1c00130
    29. Ailing Han, Yayu Yang, Xia Li, Sijia Hao, Guozhen Fang, Jifeng Liu, Shuo Wang. Self-Assembled Copper Nanoclusters for Electrocatalytic Glucose Oxidation. ACS Applied Nano Materials 2021, 4 (4) , 4129-4139. https://doi.org/10.1021/acsanm.1c00467
    30. Jose V. Rival, Paloli Mymoona, Rajendran Vinoth, A. M. Vinu Mohan, Edakkattuparambil Sidharth Shibu. Light-Emitting Atomically Precise Nanocluster-Based Flexible QR Codes for Anticounterfeiting. ACS Applied Materials & Interfaces 2021, 13 (8) , 10583-10593. https://doi.org/10.1021/acsami.0c21127
    31. Rongchao Jin, Gao Li, Sachil Sharma, Yingwei Li, Xiangsha Du. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chemical Reviews 2021, 121 (2) , 567-648. https://doi.org/10.1021/acs.chemrev.0c00495
    32. Xi Kang, Manzhou Zhu. Structural Isomerism in Atomically Precise Nanoclusters. Chemistry of Materials 2021, 33 (1) , 39-62. https://doi.org/10.1021/acs.chemmater.0c03979
    33. Beatrice Berti, Marco Bortoluzzi, Cristiana Cesari, Cristina Femoni, Maria Carmela Iapalucci, Leonardo Soleri, Stefano Zacchini. Synthesis, Structural Characterization, and DFT Investigations of [MxM′5–xFe4(CO)16]3– (M, M′ = Cu, Ag, Au; M ≠ M′) 2-D Molecular Alloy Clusters. Inorganic Chemistry 2020, 59 (21) , 15936-15952. https://doi.org/10.1021/acs.inorgchem.0c02443
    34. Abhijit Nag, Papri Chakraborty, Athira Thacharon, Ganesan Paramasivam, Biswajit Mondal, Mohammad Bodiuzzaman, Thalappil Pradeep. Atomically Precise Noble Metal Cluster-Assembled Superstructures in Water: Luminescence Enhancement and Sensing. The Journal of Physical Chemistry C 2020, 124 (40) , 22298-22303. https://doi.org/10.1021/acs.jpcc.0c06770
    35. Xi Kang, Manzhou Zhu. Cocrystallization of Atomically Precise Nanoclusters. ACS Materials Letters 2020, 2 (10) , 1303-1314. https://doi.org/10.1021/acsmaterialslett.0c00262
    36. Huijuan Deng, Yuyuan Bai, Manman Zhou, Yizheng Bao, Shan Jin, Xiaowu Li, Haizhu Yu, Manzhou Zhu. Structure and Properties of Au5Cu6(Dppf)2(SAdm)6)(BPh4). The Journal of Physical Chemistry C 2020, 124 (39) , 21867-21873. https://doi.org/10.1021/acs.jpcc.0c06978
    37. Litao Ma, Zhewei Xu, Yidan Chen, Mingxin Zhang, Jiafu Yin, Mu Li, Kun Chen, Panchao Yin. Sub-nanoscaled Metal Oxide Cluster-Integrated Polymer Network for Quasi-Homogeneous Catalysis. ACS Applied Materials & Interfaces 2020, 12 (34) , 38655-38661. https://doi.org/10.1021/acsami.0c09666
    38. Yingwei Li, Rongchao Jin. Seeing Ligands on Nanoclusters and in Their Assemblies by X-ray Crystallography: Atomically Precise Nanochemistry and Beyond. Journal of the American Chemical Society 2020, 142 (32) , 13627-13644. https://doi.org/10.1021/jacs.0c05866
    39. Xi Kang, Mengqi Ren, Manzhou Zhu, Ke Zhang. Azide-Functionalized Nanoclusters via a Ligand-Induced Rearrangement. Chemistry of Materials 2020, 32 (15) , 6736-6743. https://doi.org/10.1021/acs.chemmater.0c02347
    40. Jingjing Yang, Feifan Wang, Jake C. Russell, Taylor J. Hochuli, Xavier Roy, Michael L. Steigerwald, Xiaoyang Zhu, Daniel W. Paley, Colin Nuckolls. Shape Matching in Superatom Chemistry and Assembly. Journal of the American Chemical Society 2020, 142 (28) , 11993-11998. https://doi.org/10.1021/jacs.0c04321
    41. Papri Chakraborty, Abhijit Nag, Biswajit Mondal, Esma Khatun, Ganesan Paramasivam, Thalappil Pradeep. Fullerene-Mediated Aggregation of M25(SR)18– (M = Ag, Au) Nanoclusters. The Journal of Physical Chemistry C 2020, 124 (27) , 14891-14900. https://doi.org/10.1021/acs.jpcc.0c03383
    42. Yingwei Li, Michael J. Cowan, Meng Zhou, Michael G. Taylor, He Wang, Yongbo Song, Giannis Mpourmpakis, Rongchao Jin. Heterometal-Doped M23 (M = Au/Ag/Cd) Nanoclusters with Large Dipole Moments. ACS Nano 2020, 14 (6) , 6599-6606. https://doi.org/10.1021/acsnano.0c01000
    43. Jose V. Rival, Nonappa, Edakkattuparambil Sidharth Shibu. Light-Triggered Reversible Supracolloidal Self-Assembly of Precision Gold Nanoclusters. ACS Applied Materials & Interfaces 2020, 12 (12) , 14569-14577. https://doi.org/10.1021/acsami.0c00328
    44. Keisuke Takahashi. First-Principles Design of Cu12shellFecore Core–Shell Clusters Assembled with K3O into Hexameric Rings: Implications for Gas-Storage Materials. ACS Applied Nano Materials 2020, 3 (1) , 55-58. https://doi.org/10.1021/acsanm.9b02555
    45. Julia M. Stauber, Elaine A. Qian, Yanxiao Han, Arnold L. Rheingold, Petr Král, Daishi Fujita, Alexander M. Spokoyny. An Organometallic Strategy for Assembling Atomically Precise Hybrid Nanomaterials. Journal of the American Chemical Society 2020, 142 (1) , 327-334. https://doi.org/10.1021/jacs.9b10770
    46. Xi Kang, Manzhou Zhu. Transformation of Atomically Precise Nanoclusters by Ligand-Exchange. Chemistry of Materials 2019, 31 (24) , 9939-9969. https://doi.org/10.1021/acs.chemmater.9b03674
    47. Wakeel Ahmed Dar, Mohammad Bodiuzzaman, Debasmita Ghosh, Ganesan Paramasivam, Esma Khatun, Korath Shivan Sugi, Thalappil Pradeep. Interparticle Reactions between Silver Nanoclusters Leading to Product Cocrystals by Selective Cocrystallization. ACS Nano 2019, 13 (11) , 13365-13373. https://doi.org/10.1021/acsnano.9b06740
    48. Sijia Hao, Xia Li, Ailing Han, Yayu Yang, Guozhen Fang, Jifeng Liu, Shuo Wang. CLVFFA-Functionalized Gold Nanoclusters Inhibit Aβ40 Fibrillation, Fibrils’ Prolongation, and Mature Fibrils’ Disaggregation. ACS Chemical Neuroscience 2019, 10 (11) , 4633-4642. https://doi.org/10.1021/acschemneuro.9b00469
    49. Nirmal Goswami, Bhabananda Biswas, Ravi Naidu, Krasimir Vasilev. Spatially Localized Synthesis of Metal Nanoclusters on Clay Nanotubes and Their Catalytic Performance. ACS Sustainable Chemistry & Engineering 2019, 7 (22) , 18350-18358. https://doi.org/10.1021/acssuschemeng.9b03887
    50. Zhi Wang, Jia-Wei Liu, Hai-Feng Su, Quan-Qin Zhao, Mohamedally Kurmoo, Xing-Po Wang, Chen-Ho Tung, Di Sun, Lan-Sun Zheng. Chalcogens-Induced Ag6Z4@Ag36 (Z = S or Se) Core–Shell Nanoclusters: Enlarged Tetrahedral Core and Homochiral Crystallization. Journal of the American Chemical Society 2019, 141 (44) , 17884-17890. https://doi.org/10.1021/jacs.9b09460
    51. Papri Chakraborty, Abhijit Nag, Korath Shivan Sugi, Tripti Ahuja, Babu Varghese, Thalappil Pradeep. Crystallization of a Supramolecular Coassembly of an Atomically Precise Nanoparticle with a Crown Ether. ACS Materials Letters 2019, 1 (5) , 534-540. https://doi.org/10.1021/acsmaterialslett.9b00352
    52. Atanu Ghosh, Ren-Wu Huang, Badriah Alamer, Edy Abou-Hamad, Mohamed Nejib Hedhili, Omar F. Mohammed, Osman M. Bakr. [Cu61(StBu)26S6Cl6H14]+: A Core–Shell Superatom Nanocluster with a Quasi-J36 Cu19 Core and an “18-Crown-6” Metal-Sulfide-like Stabilizing Belt. ACS Materials Letters 2019, 1 (3) , 297-302. https://doi.org/10.1021/acsmaterialslett.9b00122
    53. Jingjing Yang, Boyuan Zhang, Alexander D. Christodoulides, Qizhi Xu, Amirali Zangiabadi, Samuel R. Peurifoy, Christine K. McGinn, Lingyun Dai, Elena Meirzadeh, Xavier Roy, Michael L. Steigerwald, Ioannis Kymissis, Jonathan A. Malen, Colin Nuckolls. Solution-Processable Superatomic Thin-Films. Journal of the American Chemical Society 2019, 141 (28) , 10967-10971. https://doi.org/10.1021/jacs.9b04705
    54. Xiao Wei, Xi Kang, Qianqin Yuan, Chenwanli Qin, Shan Jin, Shuxin Wang, Manzhou Zhu. Capture of Cesium Ions with Nanoclusters: Effects on Inter- and Intramolecular Assembly. Chemistry of Materials 2019, 31 (13) , 4945-4952. https://doi.org/10.1021/acs.chemmater.9b01890
    55. Esma Khatun, Mohammad Bodiuzzaman, Korath Shivan Sugi, Papri Chakraborty, Ganesan Paramasivam, Wakeel Ahmed Dar, Tripti Ahuja, Sudhadevi Antharjanam, Thalappil Pradeep. Confining an Ag10 Core in an Ag12 Shell: A Four-Electron Superatom with Enhanced Photoluminescence upon Crystallization. ACS Nano 2019, 13 (5) , 5753-5759. https://doi.org/10.1021/acsnano.9b01189
    56. Subrat Kumar Barik, M. Sreejit Kumar Rao, Bigyan Ranjan Jali, Jean-François Halet, Himanshu Sekhar Jena. Helical self-assemblies of molecule-like coinage metal nanoclusters and their emerging applications. Coordination Chemistry Reviews 2025, 525 , 216341. https://doi.org/10.1016/j.ccr.2024.216341
    57. Lotte L. Metz, Rens Ham, Eduard O. Bobylev, Kelly J. H. Brouwer, Alfons van Blaaderen, Rim C. J. van de Poll, Victor R. Drozhzhin, Emiel J. M. Hensen, Joost N. H. Reek. M 12 L 24 nanospheres as supramolecular templates for the controlled synthesis of Ir-nanoclusters and their use in the chemo-selective hydrogenation of nitro styrene. Chemical Science 2024, 15 (47) , 20022-20029. https://doi.org/10.1039/D4SC06324D
    58. Yujun Song, Wei Hou. State of the Art in Nanomedicine. 2024, 1-48. https://doi.org/10.1002/9783527830404.ch1
    59. Jose V. Rival, Nonappa, Edakkattuparambil Sidharth Shibu. The interplay of chromophore–spacer length in light-induced gold nanocluster self-assembly. Nanoscale 2024, 16 (30) , 14302-14309. https://doi.org/10.1039/D4NR01954G
    60. Guanzhong Wang, Hui Lu, Jiang Li, Lihua Wang, Ying Zhu, Shiping Song, Zhilei Ge, Qian Li, Jing Chen, Chunhai Fan. Hierarchical Self-assembly of Atomically Precise Au Nanoclusters with Molecular Rotor-based Ligands. Chemical Research in Chinese Universities 2024, 40 (4) , 670-674. https://doi.org/10.1007/s40242-024-4104-7
    61. Siyang Nie, Xun Wang. Electron Delocalization and Transfer Across Polyoxometalates‐Based Subnanomaterials in Catalytic Reactions. Small Methods 2024, 8 (8) https://doi.org/10.1002/smtd.202301359
    62. . Property Tailoring of Gold Clusters via Surface Engineering and Supramolecular Assembly. 2024, 1-22. https://doi.org/10.1002/9783527842094.ch1
    63. . Modification and Assembly of Atomically Precise Silver Clusters. 2024, 23-63. https://doi.org/10.1002/9783527842094.ch2
    64. Jayoti Roy, Ila Marathe, Vicki Wysocki, Thalappil Pradeep. Observing atomically precise nanocluster aggregates in solution by mass photometry. Chemical Communications 2024, 60 (52) , 6655-6658. https://doi.org/10.1039/D4CC00363B
    65. Sourav Biswas, Yuichi Negishi. Silver Cluster Assembled Materials: A Model‐Driven Perspective on Recent Progress, with a Spotlight on Ag 12 Cluster Assembly. The Chemical Record 2024, 24 (5) https://doi.org/10.1002/tcr.202400052
    66. Yuto Fukumoto, Tsubasa Omoda, Haru Hirai, Shinjiro Takano, Koji Harano, Tatsuya Tsukuda. Diphosphine‐Protected IrAu 12 Superatom with Open Site(s): Synthesis and Programmed Stepwise Assembly. Angewandte Chemie 2024, 136 (18) https://doi.org/10.1002/ange.202402025
    67. Yuto Fukumoto, Tsubasa Omoda, Haru Hirai, Shinjiro Takano, Koji Harano, Tatsuya Tsukuda. Diphosphine‐Protected IrAu 12 Superatom with Open Site(s): Synthesis and Programmed Stepwise Assembly. Angewandte Chemie International Edition 2024, 63 (18) https://doi.org/10.1002/anie.202402025
    68. Oshin D. Warerkar, Niyati H. Mudliar, Munira M. Momin, Prabhat K. Singh. Targeting Amyloids with Coated Nanoparticles: A Review on Potential Combinations of Nanoparticles and Bio-Compatible Coatings. Critical Reviews™ in Therapeutic Drug Carrier Systems 2024, 41 (2) , 85-119. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2023046209
    69. Tokuhisa Kawawaki, Tomoshige Okada, Daisuke Hirayama, Yuichi Negishi. Atomically precise metal nanoclusters as catalysts for electrocatalytic CO 2 reduction. Green Chemistry 2024, 4 https://doi.org/10.1039/D3GC02281A
    70. Priyanka Das, Manasa N, Nidhi Singh, Pallab Datta. Supramolecular Nanostructures for the Delivery of Peptides in Cancer Therapy. Journal of Pharmacology and Experimental Therapeutics 2024, 388 (1) , 67-80. https://doi.org/10.1124/jpet.123.001698
    71. Paulami Bose, Pillalamarri Srikrishnarka, Matias Paatelainen, Nonappa, Amoghavarsha Ramachandra Kini, Anirban Som, Thalappil Pradeep. Nanocluster reaction-driven in situ transformation of colloidal nanoparticles to mesostructures. Nanoscale 2024, 120 https://doi.org/10.1039/D4NR02820A
    72. Koustav Sahoo, Tapu Raihan Gazi, Soumyadip Roy, Indranath Chakraborty. Nanohybrids of atomically precise metal nanoclusters. Communications Chemistry 2023, 6 (1) https://doi.org/10.1038/s42004-023-00958-7
    73. Peiyao Pan, Di Zhang, Xuejuan Zou, Xi Kang, Manzhou Zhu. Ligand-correlated crystalline assembly of nanoclusters with atomic precision. Polyoxometalates 2023, 2 (4) , 9140035. https://doi.org/10.26599/POM.2023.9140035
    74. Zichao Xu, Yuhua Wang, Yue Li, Yitong Wang, Bo Peng, Kenneth Davey, Liang Sun, Guanjie Li, Shilin Zhang, Zaiping Guo. C 60 and Derivatives Boost Electrocatalysis and Photocatalysis: Electron Buffers to Heterojunctions. Advanced Energy Materials 2023, 13 (46) https://doi.org/10.1002/aenm.202302438
    75. Xiaowei Chen, Yi‐Fan Sun, Xiaosong Wu, Shuhui Shi, Zhongrui Wang, Jian Zhang, Wei‐Hui Fang, Weiguo Huang. Breaking the Trade‐Off Between Polymer Dielectric Constant and Loss via Aluminum Oxo Macrocycle Dopants for High‐Performance Neuromorphic Electronics. Advanced Materials 2023, 35 (49) https://doi.org/10.1002/adma.202306260
    76. Ya-Jie Wang, Xiao-Yan Shi, Pengyao Xing, Xi-Yan Dong, Shuang-Quan Zang. Halogen bonding–driven chiral amplification of a bimetallic gold-copper cluster through hierarchical assembly. Science Advances 2023, 9 (47) https://doi.org/10.1126/sciadv.adj9013
    77. Nonappa. Precision nanoengineering for functional self-assemblies across length scales. Chemical Communications 2023, 59 (93) , 13800-13819. https://doi.org/10.1039/D3CC02205F
    78. Riki Nakatani, Sourav Biswas, Tsukasa Irie, Jin Sakai, Daisuke Hirayama, Tokuhisa Kawawaki, Yoshiki Niihori, Saikat Das, Yuichi Negishi. A new two-dimensional luminescent Ag 12 cluster-assembled material and its catalytic activity for reduction of hexacyanoferrate( iii ). Nanoscale 2023, 15 (40) , 16299-16306. https://doi.org/10.1039/D3NR03343K
    79. Sourav Biswas, Saikat Das, Yuichi Negishi. Progress and prospects in the design of functional atomically-precise Ag(I)-thiolate nanoclusters and their assembly approaches. Coordination Chemistry Reviews 2023, 492 , 215255. https://doi.org/10.1016/j.ccr.2023.215255
    80. Ye Liu, Zhi Li, Xiao-He Liu, Nicola Pinna, Yu Wang. Atomically precise Au x Ag 25− x nanoclusters with a modulated interstitial Au–Ag microenvironment for enhanced visible-light-driven photocatalytic hydrogen evolution. Nanoscale Horizons 2023, 8 (10) , 1435-1439. https://doi.org/10.1039/D3NH00235G
    81. Ling-Cui Meng, Zhi-Ming Feng, Zhan-Guo Jiang, Cai-Hong Zhan. A surface-dynamic approach toward supercrystal engineering of titanium–oxo clusters. Inorganic Chemistry Frontiers 2023, 10 (19) , 5694-5699. https://doi.org/10.1039/D3QI01334K
    82. Leilei Tang, Shunping Shi, Yong Song, Zhanjiang Duan, Jing Jiang, Kai Diao, Jiabao Hu, Deliang Chen. Reaction mechanism between Ge n ( n  = 2–5) clusters and single water molecule based on density functional theory. International Journal of Quantum Chemistry 2023, 123 (16) https://doi.org/10.1002/qua.27132
    83. Qiman Liu, Manli Zhang, Longjiu Cheng. Prediction of Cu4Zn4 aggregates based on superatom network model. Chemical Physics Letters 2023, 825 , 140597. https://doi.org/10.1016/j.cplett.2023.140597
    84. Yu-Ting Lin, Shuhao Liu, Bhargavi Bhat, Kai-Yuan Kuan, Wentao Zhou, Ignacio Jose Cobos, Joseph Sang-Il Kwon, Mustafa E. S. Akbulut. pH- and temperature-responsive supramolecular assemblies with highly adjustable viscoelasticity: a multi-stimuli binary system. Soft Matter 2023, 19 (29) , 5609-5621. https://doi.org/10.1039/D3SM00549F
    85. Hongliang Zhao, Qing You, Wanli Zhu, Jin Li, Haiteng Deng, Man‐Bo Li, Yan Zhao, Zhikun Wu. Nanoclusterzyme for Dual Colorimetric Sensings: A Case Study on [Au 14 (Dppp) 5 I 4 ] 2+. Small 2023, 19 (30) https://doi.org/10.1002/smll.202207936
    86. Chunmei Lai, Linyan Li, Bangyue Luo, Jiangwen Shen, Jingwei Shao. Current Advances and Prospects in Carbon Nanomaterials-based Drug Deliver Systems for Cancer Therapy. Current Medicinal Chemistry 2023, 30 (24) , 2710-2733. https://doi.org/10.2174/0929867329666220821195353
    87. Ying Xu, Hao Li, Jiaojiao Han, Xuejuan Zou, Xi Kang, Manzhou Zhu. Solvent-induced reversible transformation between monomer-Ag32 and dimer-(Ag32)2 nanoclusters. Chinese Journal of Structural Chemistry 2023, 42 (7) , 100123. https://doi.org/10.1016/j.cjsc.2023.100123
    88. Guanglei Dong, Zhonghua Pan, Baoliang Han, Yunwen Tao, Xin Chen, Geng‐Geng Luo, Panpan Sun, Cunfa Sun, Di Sun. Multi‐layer 3D Chirality and Double‐Helical Assembly in a Copper Nanocluster with a Triple‐Helical Cu 15 Core. Angewandte Chemie International Edition 2023, 62 (24) https://doi.org/10.1002/anie.202302595
    89. Guanglei Dong, Zhonghua Pan, Baoliang Han, Yunwen Tao, Xin Chen, Geng‐Geng Luo, Panpan Sun, Cunfa Sun, Di Sun. Multi‐layer 3D Chirality and Double‐Helical Assembly in a Copper Nanocluster with a Triple‐Helical Cu 15 Core. Angewandte Chemie 2023, 135 (24) https://doi.org/10.1002/ange.202302595
    90. Wang-Chuan Xiao, Qing-Bin Nie, Geng-Geng Luo. Secondary hierarchical complexity in double-stranded cluster helicates covered by NNNNN type pincer ligands. Dalton Transactions 2023, 52 (19) , 6239-6243. https://doi.org/10.1039/D3DT00912B
    91. Yoshiki Niihori, Sayuri Miyajima, Ayaka Ikeda, Taiga Kosaka, Yuichi Negishi. Vertex‐Shared Linear Superatomic Molecules: Stepping Stones to Novel Materials Composed of Noble Metal Clusters. Small Science 2023, 3 (5) https://doi.org/10.1002/smsc.202300024
    92. Rongchao Jin. Introduction to Atomically Precise Nanochemistry. 2023, 1-55. https://doi.org/10.1002/9781119788676.ch1
    93. Sourav Biswas, Panpan Sun, Xia Xin, Sukhendu Mandal, Di Sun. Atom‐Precise Cluster‐Assembled Materials. 2023, 453-478. https://doi.org/10.1002/9781119788676.ch15
    94. Zhao‐Yang Wang, Shuang‐Quan Zang. Coinage Metal Cluster‐Assembled Materials. 2023, 479-501. https://doi.org/10.1002/9781119788676.ch16
    95. Kavalloor Murali Lakshmi, Jose V. Rival, Pakath Sreeraj, Sindhu R. Nambiar, Chinnaiah Jeyabharathi, Nonappa, Edakkattuparambil Sidharth Shibu. Precision Nanocluster‐Based Toroidal and Supertoroidal Frameworks Using Photocycloaddition‐Assisted Dynamic Covalent Chemistry. Small 2023, 19 (15) https://doi.org/10.1002/smll.202207119
    96. Yingqi Liu, Yunyun Wu, Zhong Luo, Menghuan Li. Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy. iScience 2023, 26 (3) , 106279. https://doi.org/10.1016/j.isci.2023.106279
    97. Manman Zhou, Kang Li, Pu Wang, Huimin Zhou, Shan Jin, Yong Pei, Manzhou Zhu. Overall structure of Au 12 Ag 60 (S- c -C 6 H 11 ) 31 Br 9 (Dppp) 6 : achieving a stronger assembly of icosahedral M 13 units. Nanoscale 2023, 15 (6) , 2633-2641. https://doi.org/10.1039/D2NR06613K
    98. Zhenzhen Lin, Ting Zhang, Cao Fang, Shan Jin, Chang Xu, Daqiao Hu, Manzhou Zhu. A bimetallic Ag 15 Cu 12 (S- c -C 6 H 11 ) 18 (CH 3 COO) 3 nanocluster featuring an irregular Ag 12 kernel. Dalton Transactions 2023, 52 (4) , 971-976. https://doi.org/10.1039/D2DT03423A
    99. Manzhou Zhu, Shan Jin. Assembly of metal nanoclusters. 2023, 233-287. https://doi.org/10.1016/B978-0-323-90474-2.00008-3
    100. Wakeel Ahmed Dar, Thalappil Pradeep. Cluster-based metal–organic frameworks. 2023, 129-156. https://doi.org/10.1016/B978-0-323-90879-5.00005-6
    Load all citations

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2019, 52, 1, 2–11
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.accounts.8b00369
    Published December 3, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    6322

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.