Design of Nanocomposite Injectable Hydrogels for Minimally Invasive Surgery
- Etienne PiantanidaEtienne PiantanidaInstitut de Science et d’Ingénierie Supramoléculaires, CNRS, UMR 7006, Université de Strasbourg, 8 rue Gaspard Monge, 67000 Strasbourg, FranceMore by Etienne Piantanida
- ,
- Giuseppe AlonciGiuseppe AlonciInstitut de Science et d’Ingénierie Supramoléculaires, CNRS, UMR 7006, Université de Strasbourg, 8 rue Gaspard Monge, 67000 Strasbourg, FranceMore by Giuseppe Alonci
- ,
- Alessandro BertucciAlessandro BertucciDepartment of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, ItalyMore by Alessandro Bertucci
- , and
- Luisa De Cola*Luisa De Cola*L.D.C. E-mail: [email protected]Institut de Science et d’Ingénierie Supramoléculaires, CNRS, UMR 7006, Université de Strasbourg, 8 rue Gaspard Monge, 67000 Strasbourg, FranceInstitute of Nanotecnology and Karlsruhe Nano and Micro Facility, Karlsruhe Institute of Technology (KIT), Herman-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyMore by Luisa De Cola
Abstract

Conspectus
Biocompatible hydrogels are materials that hold great promise in medicine and biology since the porous structure, the ability to entrap a large amount of water, and the tunability of their mechanical and tissue adhesive properties make them suitable for several applications, including wound healing, drug and cell delivery, cancer treatment, bioelectronics, and tissue regeneration. Among the possible developed systems, injectable hydrogels, owing to their properties, are optimal candidates for in vivo minimally invasive procedures. To be injectable, a hydrogel must be liquid before and during the injection, but it must quickly jellify after injection to form a soft, self-standing, solid material. The possibility to work with a liquid precursor encoding the functions that will be available after gelation allows the development of biocompatible materials that can be employed in surgery and, in particular, in noninvasive procedures. The underlying idea is to reach the target tissue by using just a needle, or by exploiting the natural body orifices, reducing surgery procedure time, induced pain, and risk of infections.
Hydrogels with different properties can be obtained by changing the type of cross-linking, the cross-linking density or the molecular weight of the polymer, or by introducing pending functional groups. The introduction of a nanofiller in the hydrogel network allows for expanding the suite of the structural and functional properties and for better mimicking native tissues. In this Account, we discuss how to provide a hydrogel network with designed properties by playing with both the polymeric chains and the fillers. We present selected examples from the literature that show how to introduce stiffness, stretchability, adhesiveness, self-healing, anisotropy, antimicrobial activity, biodegradability, and conductivity in injectable hydrogels. We further describe how the chemical composition, the mechanical properties, and the microarchitecture of the hydrogel influence cell adhesion, proliferation, and differentiation. Examples of injectable hydrogels for innovative minimally invasive procedures are then discussed in detail; in particular, we showcase the use of hydrogels for tumor resection and as vascular chemoembolization agents. We further discuss how one can improve the rheological properties of injectable hydrogels to exploit them in osteochondral tissue engineering. The effect of the introduction of a conductive filler is then presented in relation to the development of electroactive scaffolds for cardiac-tissue engineering and neural and nerve repair. We believe that the rational design of biocompatible, injectable hybrid hydrogels with tunable properties will likely play a crucial role in reducing the invasiveness and improving the outcome of several clinical and surgical setups.
Cited By
This article is cited by 136 publications.
- Nur Hidayah Shahemi, Mohd Muzamir Mahat, Nurul Ain Najihah Asri, Muhammad Abid Amir, Sharaniza Ab Rahim, Mohamad Arif Kasri. Application of Conductive Hydrogels on Spinal Cord Injury Repair: A Review. ACS Biomaterials Science & Engineering 2023, 9
(7)
, 4045-4085. https://doi.org/10.1021/acsbiomaterials.3c00194
- Narsimha Mamidi, Fatemeh Ijadi, Mohammad Hadi Norahan. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2023, Article ASAP.
- Xueyu Jiang, Fanwei Zeng, Lina Zhang, Aixi Yu, Ang Lu. Engineered Injectable Cell-Laden Chitin/Chitosan Hydrogel with Adhesion and Biodegradability for Calvarial Defect Regeneration. ACS Applied Materials & Interfaces 2023, 15
(17)
, 20761-20773. https://doi.org/10.1021/acsami.3c02108
- Xuerui Chen, Liyun Zhu, Xu Wang, Junjie Xiao. Insight into Heart-Tailored Architectures of Hydrogel to Restore Cardiac Functions after Myocardial Infarction. Molecular Pharmaceutics 2023, 20
(1)
, 57-81. https://doi.org/10.1021/acs.molpharmaceut.2c00650
- Prottasha Sarker, Danielle M. Nalband, Donald O. Freytes, Orlando J. Rojas, Saad A. Khan. High-Axial-Aspect Tannic Acid Microparticles Facilitate Gelation and Injectability of Collagen-Based Hydrogels. Biomacromolecules 2022, 23
(11)
, 4696-4708. https://doi.org/10.1021/acs.biomac.2c00916
- Christine Warwar Damouny, Patrick Martin, Gleb Vasilyev, Rita Vilensky, Reema Fadul, Idan Redenski, Samer Srouji, Eyal Zussman. Injectable Hydrogels Based on Inter-Polyelectrolyte Interactions between Hyaluronic Acid, Gelatin, and Cationic Cellulose Nanocrystals. Biomacromolecules 2022, 23
(8)
, 3222-3234. https://doi.org/10.1021/acs.biomac.2c00316
- Mari C. Mañas-Torres, Cristina Gila-Vilchez, Francisco J. Vazquez-Perez, Pavel Kuzhir, David Momier, Jean-Claude Scimeca, Arnaud Borderie, Marianne Goracci, Fanny Burel-Vandenbos, Cristina Blanco-Elices, Ismael A. Rodriguez, Miguel Alaminos, Luis Álvarez de Cienfuegos, Modesto T. Lopez-Lopez. Injectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluation. ACS Applied Materials & Interfaces 2021, 13
(42)
, 49692-49704. https://doi.org/10.1021/acsami.1c13972
- Ana A. Aldana, Sofie Houben, Lorenzo Moroni, Matthew B. Baker, Louis M. Pitet. Trends in Double Networks as Bioprintable and Injectable Hydrogel Scaffolds for Tissue Regeneration. ACS Biomaterials Science & Engineering 2021, 7
(9)
, 4077-4101. https://doi.org/10.1021/acsbiomaterials.0c01749
- Chang Liu, Guangzheng Yang, Mingliang Zhou, Xiangkai Zhang, Xiaolin Wu, Peishi Wu, Xiaoyu Gu, Xinquan Jiang. Magnesium Ammonium Phosphate Composite Cell-Laden Hydrogel Promotes Osteogenesis and Angiogenesis In Vitro. ACS Omega 2021, 6
(14)
, 9449-9459. https://doi.org/10.1021/acsomega.0c06083
- Xianpeng Yang, Lei Wang, Hiroyuki Yano, Kentaro Abe. Toughened Hydrogels through UV Grafting of Cellulose Nanofibers. ACS Sustainable Chemistry & Engineering 2021, 9
(4)
, 1507-1511. https://doi.org/10.1021/acssuschemeng.0c08531
- Sang Cheon Lee, Gregory Gillispie, Peter Prim, Sang Jin Lee. Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Chemical Reviews 2020, 120
(19)
, 10834-10886. https://doi.org/10.1021/acs.chemrev.0c00015
- Hongjie Zong, Bo Wang, Guifei Li, Shifeng Yan, Kunxi Zhang, Yufeng Shou, Jingbo Yin. Biodegradable High-Strength Hydrogels with Injectable Performance Based on Poly(l-Glutamic Acid) and Gellan Gum. ACS Biomaterials Science & Engineering 2020, 6
(8)
, 4702-4713. https://doi.org/10.1021/acsbiomaterials.0c00915
- Na Tao, Yandi Liu, Yingjiao Wu, Xilong Li, Juan Li, Xiaoyi Sun, Shu Chen, You-Nian Liu. Minimally Invasive Antitumor Therapy Using Biodegradable Nanocomposite Micellar Hydrogel with Functionalities of NIR-II Photothermal Ablation and Vascular Disruption. ACS Applied Bio Materials 2020, 3
(7)
, 4531-4542. https://doi.org/10.1021/acsabm.0c00465
- Shen Wang, Jinfeng Lei, Xueling Yi, Lun Yuan, Liming Ge, Defu Li, Changdao Mu. Fabrication of Polypyrrole-Grafted Gelatin-Based Hydrogel with Conductive, Self-Healing, and Injectable Properties. ACS Applied Polymer Materials 2020, 2
(7)
, 3016-3023. https://doi.org/10.1021/acsapm.0c00468
- Arooba Shahzad, Sadia Yazdani, Mansoor Khan, Luqman Ali Shah. Adhesion tuning by Molsive clay in Guar gum based polymer hydrogels. International Journal of Adhesion and Adhesives 2024, 128 , 103533. https://doi.org/10.1016/j.ijadhadh.2023.103533
- Zhengang Sun, Danzhu Zhu, Hong Zhao, Jia Liu, Peng He, Xin Luan, Huiqiang Hu, Xuanfen Zhang, Gang Wei, Yongming Xi. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. Journal of Nanobiotechnology 2023, 21
(1)
https://doi.org/10.1186/s12951-023-01996-y
- Fatima Ijaz, Hafiz Muhammad Tahir, Shaukat Ali, Aamir Ali, Hooria Ashraf Khan, Ayesha Muzamil, Hafiz Hamid Manzoor, Kunza Abdul Qayyum. Biomolecules based hydrogels and their potential biomedical applications: A comprehensive review. International Journal of Biological Macromolecules 2023, 253 , 127362. https://doi.org/10.1016/j.ijbiomac.2023.127362
- Wenqian Zhang, Kangkang Zha, Weixian Hu, Yuan Xiong, Samuel Knoedler, Doha Obed, Adriana C. Panayi, Ze Lin, Faqi Cao, Bobin Mi, Guohui Liu. Multifunctional hydrogels: advanced therapeutic tools for osteochondral regeneration. Biomaterials Research 2023, 27
(1)
https://doi.org/10.1186/s40824-023-00411-9
- Ahmed A. Holiel, Eman M. Sedek. Marginal adaptation, physicochemical and rheological properties of treated dentin matrix hydrogel as a novel injectable pulp capping material for dentin regeneration. BMC Oral Health 2023, 23
(1)
https://doi.org/10.1186/s12903-023-03677-6
- Jing Peng, Tinghang Yang, Shanshan Chen, Ningyue Deng, Xinyao Luo, Ruoxi Liao, Baihai Su. Utilization of Hydrogels in Mesenchymal Stem Cell-Based Therapy for Kidney Diseases. Tissue Engineering Part B: Reviews 2023, 34 https://doi.org/10.1089/ten.teb.2023.0196
- Prottasha Sarker, Pallav K. Jani, Lilian C. Hsiao, Orlando J. Rojas, Saad A. Khan. Interacting collagen and tannic acid Particles: Uncovering pH-dependent rheological and thermodynamic behaviors. Journal of Colloid and Interface Science 2023, 650 , 541-552. https://doi.org/10.1016/j.jcis.2023.06.209
- Jingyu He, Chen Wang, Gan Lin, Xiao Xia, Hangping Chen, Zhiyuan Feng, Zhengwei Huang, Xin Pan, Xuejuan Zhang, Chuanbin Wu, Ying Huang. Guard against internal and external: An antibacterial, anti-inflammation and healing-promoting spray gel based on lyotropic liquid crystals for the treatment of diabetic wound. International Journal of Pharmaceutics 2023, 646 , 123442. https://doi.org/10.1016/j.ijpharm.2023.123442
- Jiaheng Liang, Ronghao Lv, Maorui Li, Jin Chai, Shuo Wang, Wenjun Yan, Zijian Zheng, Peng Li. Hydrogels for the Treatment of Myocardial Infarction: Design and Therapeutic Strategies. Macromolecular Bioscience 2023, 145 https://doi.org/10.1002/mabi.202300302
- Cholong Choi, Eunhye Yun, Chaenyung Cha. Emerging Technology of Nanofiber‐Composite Hydrogels for Biomedical Applications. Macromolecular Bioscience 2023, https://doi.org/10.1002/mabi.202300222
- Xiaoli Yang, Xiaojing Li, Zhaoping Wu, Lingling Cao. Photocrosslinked methacrylated natural macromolecular hydrogels for tissue engineering: A review. International Journal of Biological Macromolecules 2023, 246 , 125570. https://doi.org/10.1016/j.ijbiomac.2023.125570
- Parisa Ghandforoushan, Morteza Alehosseini, Nasim Golafshan, Miguel Castilho, Alireza Dolatshahi-Pirouz, Jalal Hanaee, Soodabeh Davaran, Gorka Orive. Injectable hydrogels for cartilage and bone tissue regeneration: A review. International Journal of Biological Macromolecules 2023, 246 , 125674. https://doi.org/10.1016/j.ijbiomac.2023.125674
- Ghada H. Naguib, Gamal S. Abd El-Aziz, Ahmad Almehmadi, Amr Bayoumi, Abdulghani I. Mira, Ali Habiballah Hassan, Mohamed T. Hamed. Evaluation of the time-dependent osteogenic activity of glycerol incorporated magnesium oxide nanoparticles in induced calvarial defects. Heliyon 2023, 9
(8)
, e18757. https://doi.org/10.1016/j.heliyon.2023.e18757
- Elena Merotto, Piero G. Pavan, Martina Piccoli. Three-Dimensional Bioprinting of Naturally Derived Hydrogels for the Production of Biomimetic Living Tissues: Benefits and Challenges. Biomedicines 2023, 11
(6)
, 1742. https://doi.org/10.3390/biomedicines11061742
- Mengshan Shang, Han Jiang, Jiaqi Li, Na Ji, Man Li, Lei Dai, Jian He, Yang Qin. A dual physical crosslinking starch-based hydrogel exhibiting high strength, fatigue resistance, excellent biocompatibility, and biodegradability. Food Chemistry: X 2023, 18 , 100728. https://doi.org/10.1016/j.fochx.2023.100728
- Shihua Yang, Mingge Wang, Tianye Wang, Mengchi Sun, Hanwei Huang, Xianbao Shi, Shijie Duan, Ying Wu, Jiaming Zhu, Funan Liu. Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Materials Today Bio 2023, 20 , 100644. https://doi.org/10.1016/j.mtbio.2023.100644
- Yao Liu, Xiaonong Zhang, Chunsheng Xiao, Bin Liu. Engineered hydrogels for peripheral nerve repair. Materials Today Bio 2023, 20 , 100668. https://doi.org/10.1016/j.mtbio.2023.100668
- Yingying Huang, Bohan Yin, Siu Hong Dexter Wong. Multicomponent Hydrogels in Clinical and Pharmaceutical Applications. 2023, 449-501. https://doi.org/10.1039/BK9781837670055-00449
- Xinlin Li, Mengfei Xu, Zhaoli Geng, Yi Liu. Functional hydrogels for the repair and regeneration of tissue defects. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1190171
- Jiansan Li, Huan Hu, Zhenyu Wang. Self‐Healing Nanocomposite Hydrogel Loaded with Sodium Citrate for Corrosion Protection of Q235 Carbon Steel. ChemistrySelect 2023, 8
(18)
https://doi.org/10.1002/slct.202300212
- Wanwan Li, Jiao Liu, Jingnan Wei, Zhaoyan Yang, Chunlei Ren, Bingxiang Li. Recent Progress of Conductive Hydrogel Fibers for Flexible Electronics: Fabrications, Applications, and Perspectives. Advanced Functional Materials 2023, 33
(17)
https://doi.org/10.1002/adfm.202213485
- Haohua Ma, Xin Qiao, Lu Han. Advances of Mussel-Inspired Nanocomposite Hydrogels in Biomedical Applications. Biomimetics 2023, 8
(1)
, 128. https://doi.org/10.3390/biomimetics8010128
- Xinwei Guo, Huimin Zheng, Yusi Guo, Boon Chin Heng, Yue Yang, Weitong Yao, Shengjie Jiang. A three-dimensional actively spreading bone repair material based on cell spheroids can facilitate the preservation of tooth extraction sockets. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1161192
- Feng Cheng, Lei Xu, Qingzhu Yang, Jinmei He, Yudong Huang, Hongbin Li. The fabrication of conductive material-decorated hydrogels for tissue repair. Molecular Systems Design & Engineering 2023, 8
(2)
, 167-180. https://doi.org/10.1039/D2ME00144F
- Mengmeng Sun, Peiyi Li, Haiyang Qin, Na Liu, Hude Ma, Zhilin Zhang, Junye Li, Baoyang Lu, Xiaofang Pan, Lidong Wu. Liquid metal/CNTs hydrogel-based transparent strain sensor for wireless health monitoring of aquatic animals. Chemical Engineering Journal 2023, 454 , 140459. https://doi.org/10.1016/j.cej.2022.140459
- Kapender Phogat, Subrata Bandhu Ghosh, Sanchita Bandyopadhyay‐Ghosh. Recent advances on injectable nanocomposite hydrogels towards bone tissue rehabilitation. Journal of Applied Polymer Science 2023, 140
(4)
https://doi.org/10.1002/app.53362
- Fatemeh Zehtabi, Hossein Montazerian, Reihaneh Haghniaz, Kaylee Tseng, Neda Mohaghegh, Kalpana Mandal, Behnam Zamanian, Mehmet Remzi Dokmeci, Mohsen Akbari, Alireza Hassani Najafabadi, Han‐Jun Kim, Ali Khademhosseini. Sodium Phytate‐Incorporated Gelatin‐Silicate Nanoplatelet Composites for Enhanced Cohesion and Hemostatic Function of Shear‐Thinning Biomaterials. Macromolecular Bioscience 2023, 23
(1)
https://doi.org/10.1002/mabi.202200333
- Jino Affrald R., Shoba Narayan. Animal Model-Based Studies to Evaluate the Lipid-Based Drug Delivery Nanocarriers for Cancer Treatment. 2023, 1019-1038. https://doi.org/10.1007/978-981-19-3824-5_52
- Mohsen Khodadadi Yazdi, Ali Khodadadi, Payam Zarrintaj, Mohammad Reza Ganjali, Foad Salehnia, Morteza Rezapour, Sajjad Habibzadeh, Mohammad Reza Saeb. Cross-linked polysaccharides in drug delivery. 2023, 107-127. https://doi.org/10.1016/B978-0-12-821286-8.00005-7
- Ehsan Zeimaran, Sara Pourshahrestani, Nasrul Anuar bin Abd Razak, Nahrizul Adib Kadri, Saeid Kargozar, Francesco Baino. Nanoscale bioactive glass/injectable hydrogel composites for biomedical applications. 2023, 125-147. https://doi.org/10.1016/B978-0-323-99638-9.00005-8
- Soumya Nair, Jayanthi Abraham. Collagen-inspired mineral nanocomposite hydrogels for bone tissue regeneration. 2023, 267-281. https://doi.org/10.1016/B978-0-323-99638-9.00011-3
- Qiaoyun Gong, Yue Zhao, Tianwei Qian, Haiyan Wang, Zuhao Li. Functionalized hydrogels in ophthalmic applications: Ocular inflammation, corneal injuries, vitreous substitutes and intravitreal injection. Materials & Design 2022, 224 , 111277. https://doi.org/10.1016/j.matdes.2022.111277
- Piyarat Sungkhaphan, Nuttapol Risangud, Weerawan Hankamolsiri, Pacharapan Sonthithai, Wanida Janvikul. Pluronic-F127 and Click chemistry-based injectable biodegradable hydrogels with controlled mechanical properties for cell encapsulation. Reactive and Functional Polymers 2022, 181 , 105439. https://doi.org/10.1016/j.reactfunctpolym.2022.105439
- Yue Zhao, Shanliang Song, Dongdong Wang, He Liu, Junmin Zhang, Zuhao Li, Jincheng Wang, Xiangzhong Ren, Yanli Zhao. Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nature Communications 2022, 13
(1)
https://doi.org/10.1038/s41467-022-34481-5
- Shuai Liu, Rurong Lin, Chunyi Pu, Jianxing Huang, Jie Zhang, Honghao Hou. Nanocomposite Biomaterials for Tissue Engineering and Regenerative Medicine Applications. 2022https://doi.org/10.5772/intechopen.102417
- Long Zhao, Zhen Shi, Xiuli Sun, Yaoyao Yu, Xin Wang, Hongwei Wang, Tan Li, Hengrui Zhang, Xiaoyu Zhang, Fuyan Wang, Xia Qi, Rui Cao, Lixin Xie, Qingjun Zhou, Weiyun Shi. Natural Dual‐Crosslinking Bioadhesive Hydrogel for Corneal Regeneration in Large‐Size Defects. Advanced Healthcare Materials 2022, 11
(21)
https://doi.org/10.1002/adhm.202201576
- Zheng Cao, Chang Su, Xiaojie Sun, Kai Shao, Xiaoye Wang, Yuzhi Mu, Xiguang Chen, Chao Feng. Enhanced mechanical properties of hydroxybutyl chitosan hydrogel through anchoring interface effects of diatom biosilica. Carbohydrate Polymers 2022, 296 , 119975. https://doi.org/10.1016/j.carbpol.2022.119975
- Lu Wang, Jing Lian, Yijing Xia, Yanqin Guo, Changzhen Xu, Yufang Zhang, Jie Xu, Xinsong Zhang, Bing Li, Bin Zhao. A study on in vitro and in vivo bioactivity of silk fibroin / nano-hydroxyapatite / graphene oxide composite scaffolds with directional channels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 652 , 129886. https://doi.org/10.1016/j.colsurfa.2022.129886
- Senbo Zhu, Yong Li, Zeju He, Lichen Ji, Wei Zhang, Yu Tong, Junchao Luo, Dongsheng Yu, Qiong Zhang, Qing Bi. Advanced injectable hydrogels for cartilage tissue engineering. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.954501
- Shanghui Huang, Xiangqian Hong, Mingyi Zhao, Nanbo Liu, Huiling Liu, Jun Zhao, Longquan Shao, Wei Xue, Han Zhang, Ping Zhu, Rui Guo. Nanocomposite hydrogels for biomedical applications. Bioengineering & Translational Medicine 2022, 7
(3)
https://doi.org/10.1002/btm2.10315
- Yuanyuan Jiang, Jie Wang, Hui Zhang, Guopu Chen, Yuanjin Zhao. Bio-inspired natural platelet hydrogels for wound healing. Science Bulletin 2022, 67
(17)
, 1776-1784. https://doi.org/10.1016/j.scib.2022.07.032
- Li Xu, Shengnan Tang, Huiquan Yang, Min Liang, Pengfei Ren, Dandan Wei, Jian He, Weiwei Kong, Peidang Liu, Tianzhu Zhang. Sustained delivery of gemcitabine
via in situ
injectable mussel-inspired hydrogels for the local therapy of pancreatic cancer. Journal of Materials Chemistry B 2022, 10
(33)
, 6338-6350. https://doi.org/10.1039/D1TB02858H
- Yuedan Li, Xiaozhong Qiu. Bioelectricity‐coupling patches for repairing impaired myocardium. WIREs Nanomedicine and Nanobiotechnology 2022, 14
(4)
https://doi.org/10.1002/wnan.1787
- Mingyi Zhao, Hanqi Zhang, Zixin Li. A Bibliometric and Visual Analysis of Nanocomposite Hydrogels Based on VOSviewer From 2010 to 2022. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.914253
- Zhenshan Lv, Chao Dong, Tianjiao Zhang, Shaokun Zhang. Hydrogels in Spinal Cord Injury Repair: A Review. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.931800
- Jiahui Guo, Yu Wang, Hui Zhang, Yuanjin Zhao. Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics. Advanced Materials 2022, 34
(23)
https://doi.org/10.1002/adma.202110024
- Wenjin Xing, Youhong Tang. On mechanical properties of nanocomposite hydrogels: Searching for superior properties. Nano Materials Science 2022, 4
(2)
, 83-96. https://doi.org/10.1016/j.nanoms.2021.07.004
- Yaxin Xie, Qiuyue Guan, Jiusi Guo, Yilin Chen, Yijia Yin, Xianglong Han. Hydrogels for Exosome Delivery in Biomedical Applications. Gels 2022, 8
(6)
, 328. https://doi.org/10.3390/gels8060328
- Yiwei Gao, Jie Zhao, Zehuan Huang, Tanya K. Ronson, Fen Zhao, Yue Wang, Boyang Li, Chenlu Feng, You Yu, Yongliang Cheng, Dong Yang, Xiao‐Juan Yang, Biao Wu. Hierarchical Self‐Assembly of Adhesive and Conductive Gels with Anion‐Coordinated Triple Helicate Junctions. Angewandte Chemie 2022, 134
(22)
https://doi.org/10.1002/ange.202201793
- Yiwei Gao, Jie Zhao, Zehuan Huang, Tanya K. Ronson, Fen Zhao, Yue Wang, Boyang Li, Chenlu Feng, You Yu, Yongliang Cheng, Dong Yang, Xiao‐Juan Yang, Biao Wu. Hierarchical Self‐Assembly of Adhesive and Conductive Gels with Anion‐Coordinated Triple Helicate Junctions. Angewandte Chemie International Edition 2022, 61
(22)
https://doi.org/10.1002/anie.202201793
- Shenqiang Wang, Letao Yang, Bolei Cai, Fuwei Liu, Yannan Hou, Hua Zheng, Fang Cheng, Hepeng Zhang, Le Wang, Xiaoyi Wang, Qianxin Lv, Liang Kong, Ki-Bum Lee, Qiuyu Zhang. Injectable hybrid inorganic nanoscaffold as rapid stem cell assembly template for cartilage repair. National Science Review 2022, 9
(4)
https://doi.org/10.1093/nsr/nwac037
- Yinghong Wu, Yang Luo, Tyler J. Cuthbert, Alexander V. Shokurov, Paul K. Chu, Shien‐Ping Feng, Carlo Menon. Hydrogels as Soft Ionic Conductors in Flexible and Wearable Triboelectric Nanogenerators. Advanced Science 2022, 9
(11)
https://doi.org/10.1002/advs.202106008
- Mohammad M. Fares, Samah K. Radaydeh. Multifunctional sustainable quercetin polyphenol/functionalized carbon nanotubes; semi‐transparent conductive films and
3D
printing inks. Polymer Composites 2022, 43
(4)
, 2318-2328. https://doi.org/10.1002/pc.26542
- Jinru Sun, Zhifeng Yin, Xiuhui Wang, Jiacan Su. Exosome-Laden Hydrogels: A Novel Cell-free Strategy for In-situ Bone Tissue Regeneration. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.866208
- Louise Griveau, Marianne Lafont, Héloïse le Goff, Clémence Drouglazet, Baptiste Robbiani, Aurore Berthier, Dominique Sigaudo-Roussel, Najma Latif, Catherine Le Visage, Vincent Gache, Romain Debret, Pierre Weiss, Jérôme Sohier. Design and characterization of an in vivo injectable hydrogel with effervescently generated porosity for regenerative medicine applications. Acta Biomaterialia 2022, 140 , 324-337. https://doi.org/10.1016/j.actbio.2021.11.036
- Pingdong Wei, Lei Wang, Fang Xie, Jie Cai. Strong and tough cellulose–graphene oxide composite hydrogels by multi-modulus components strategy as photothermal antibacterial platform. Chemical Engineering Journal 2022, 431 , 133964. https://doi.org/10.1016/j.cej.2021.133964
- Jinlong Li, Kaiyang Wang, Jiawei Wang, Yue Yuan, Hua Wu. High-tough hydrogels formed via Schiff base reaction between PAMAM dendrimer and Tetra-PEG and their potential as dual-function delivery systems. Materials Today Communications 2022, 30 , 103019. https://doi.org/10.1016/j.mtcomm.2021.103019
- Chaojie Yu, Fanglian Yao, Junjie Li. Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Acta Biomaterialia 2022, 139 , 4-21. https://doi.org/10.1016/j.actbio.2021.04.027
- Amal George Kurian, Rajendra K. Singh, Kapil D. Patel, Jung-Hwan Lee, Hae-Won Kim. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioactive Materials 2022, 8 , 267-295. https://doi.org/10.1016/j.bioactmat.2021.06.027
- Maryam Tajabadi, Hanif Goran Orimi, Maryam Roya Ramzgouyan, Alireza Nemati, Niloofar Deravi, Nima Beheshtizadeh, Mahmoud Azami. Regenerative strategies for the consequences of myocardial infarction: Chronological indication and upcoming visions. Biomedicine & Pharmacotherapy 2022, 146 , 112584. https://doi.org/10.1016/j.biopha.2021.112584
- Mohsen Khodadadi Yazdi, Payam Zarrintaj, Ali Khodadadi, Ahmad Arefi, Farzad Seidi, Hanieh Shokrani, Mohammad Reza Saeb, Masoud Mozafari. Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications. Carbohydrate Polymers 2022, 278 , 118998. https://doi.org/10.1016/j.carbpol.2021.118998
- Bakhtawara, Syed Faizan, Luqman Ali Shah. Adhesion tuning of hydrogels via cross-linker for the junction of solid surfaces in dry and wet conditions. Surfaces and Interfaces 2022, 28 , 101659. https://doi.org/10.1016/j.surfin.2021.101659
- Evgenia Tsanaktsidou, Olga Kammona, Costas Kiparissides. Recent Developments in Hyaluronic Acid-Based Hydrogels for Cartilage Tissue Engineering Applications. Polymers 2022, 14
(4)
, 839. https://doi.org/10.3390/polym14040839
- Tomoki Maeda, Keishi Tanimoto, Atsushi Hotta. Thermogelling Nanocomposite Hydrogel: PLGA Molecular Weight in PLGA‐
b
‐PEG‐
b
‐PLGA Affecting the Thermogelling Behavior. Macromolecular Chemistry and Physics 2022, 223
(1)
https://doi.org/10.1002/macp.202100316
- Jino Affrald R, Shoba Narayan. Animal Model-Based Studies to Evaluate the Lipid-Based Drug Delivery Nanocarriers for Cancer Treatment. 2022, 1-21. https://doi.org/10.1007/978-981-19-1282-5_52-1
- Florian Ruther, Lena Vogt, Aldo R. Boccaccini. Myocardial tissue engineering. 2022, 409-457. https://doi.org/10.1016/B978-0-12-820508-2.00011-8
- Yian Luo, Lei Fan, Can Liu, Huiquan Wen, Shihuan Wang, Pengfei Guan, Dafu Chen, Chengyun Ning, Lei Zhou, Guoxin Tan. An injectable, self-healing, electroconductive extracellular matrix-based hydrogel for enhancing tissue repair after traumatic spinal cord injury. Bioactive Materials 2022, 7 , 98-111. https://doi.org/10.1016/j.bioactmat.2021.05.039
- Fengshi Zhang, Meng Zhang, Songyang Liu, Ci Li, Zhentao Ding, Teng Wan, Peixun Zhang. Application of Hybrid Electrically Conductive Hydrogels Promotes Peripheral Nerve Regeneration. Gels 2022, 8
(1)
, 41. https://doi.org/10.3390/gels8010041
- Teresa Aditya, Jean Paul Allain, Camilo Jaramillo, Andrea Mesa Restrepo. Surface Modification of Bacterial Cellulose for Biomedical Applications. International Journal of Molecular Sciences 2022, 23
(2)
, 610. https://doi.org/10.3390/ijms23020610
- Ehsan Zeimaran, Sara Pourshahrestani, Ali Fathi, Nasrul Anuar bin Abd Razak, Nahrizul Adib Kadri, Amir Sheikhi, Francesco Baino. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomaterialia 2021, 136 , 1-36. https://doi.org/10.1016/j.actbio.2021.09.034
- Tan Phuoc Ton, Van Toan Nguyen, Phuong Doan, Dinh Trung Nguyen, Thi Phuong Nguyen, Chan Khon Huynh, Thi Cam Quyen Ngo, Le Hang Dang, Ngoc Quyen Tran. Hematin-conjugated gelatin as an effective catalyst for preparing biological hydrogels. New Journal of Chemistry 2021, 45
(39)
, 18327-18336. https://doi.org/10.1039/D1NJ01426A
- Xiao Yue, Xuejuan Zhang, Chen Wang, Ying Huang, Ping Hu, Guanlin Wang, Yingtong Cui, Xiao Xia, Ziqiang Zhou, Xin Pan, Chuanbin Wu. A bacteria-resistant and self-healing spray dressing based on lyotropic liquid crystals to treat infected post-operative wounds. Journal of Materials Chemistry B 2021, 9
(38)
, 8121-8137. https://doi.org/10.1039/D1TB01201K
- Yonggang Zhang, Jiaping Li, Mohammad Soleimani, Francesca Giacomini, Heiner Friedrich, Roman Truckenmüller, Pamela Habibovic. Biodegradable Elastic Sponge from Nanofibrous Biphasic Calcium Phosphate Ceramic as an Advanced Material for Regenerative Medicine. Advanced Functional Materials 2021, 31
(40)
https://doi.org/10.1002/adfm.202102911
- Alain García Vázquez, María Rita Rodríguez-Luna, Juan Verde, Etienne Piantanida, Giuseppe Alonci, Mariano Palermo, Edgardo Serra, Luisa De Cola, Mariano Eduardo Giménez. Image-Guided Surgical Simulation in Minimally Invasive Liver Procedures: Development of a Liver Tumor Porcine Model Using a Multimodality Imaging Assessment. Journal of Laparoendoscopic & Advanced Surgical Techniques 2021, 31
(10)
, 1097-1103. https://doi.org/10.1089/lap.2021.0105
- Kareem Kashif, Kfir Ben-David. Commentary on: Image-Guided Surgical Simulation in Minimally Invasive Liver Procedures: Development of a Liver Tumor Porcine Model Using a Multimodality Imaging Assessment by Vázquez et al.. Journal of Laparoendoscopic & Advanced Surgical Techniques 2021, 31
(10)
, 1104-1105. https://doi.org/10.1089/lap.2021.29039.kbd
- Xiaoyi Zhang, Qingqing Lu, Zhaozhao Ding, Weinan Cheng, Liying Xiao, Qiang Lu. Injectable Biopolymer Hydrogels for Regenerative Medicine. 2021, 155-200. https://doi.org/10.1039/9781839163975-00155
- Mengnan Li, Xiuli Li, Chunyu Li, Hongchen Liu, Wenxiang Wang, Liangjiu Bai, Hou Chen, Lixia Yang. Silica-based Janus nanosheets for self-healing nanocomposite hydrogels. European Polymer Journal 2021, 155 , 110580. https://doi.org/10.1016/j.eurpolymj.2021.110580
- Zhi Zheng, Ying Tan, Yi Li, Ying Liu, Guanghui Yi, Cui-Yun Yu, Hua Wei. Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. Journal of Controlled Release 2021, 335 , 216-236. https://doi.org/10.1016/j.jconrel.2021.05.023
- Zhenguang Li, Yingze Li, Chang Chen, Yu Cheng. Magnetic-responsive hydrogels: From strategic design to biomedical applications. Journal of Controlled Release 2021, 335 , 541-556. https://doi.org/10.1016/j.jconrel.2021.06.003
- Ilma Jahović, You-Quan Zou, Simone Adorinni, Jonathan R. Nitschke, Silvia Marchesan. Cages meet gels: Smart materials with dual porosity. Matter 2021, 4
(7)
, 2123-2140. https://doi.org/10.1016/j.matt.2021.04.018
- Yulian Yang, Min Wang, Meng Luo, Mi Chen, Kun Wei, Bo Lei. Injectable self-healing bioactive antioxidative one-component poly(salicylic acid) hydrogel with strong ultraviolet-shielding for preventing skin light injury. Materials Science and Engineering: C 2021, 126 , 112107. https://doi.org/10.1016/j.msec.2021.112107
- Chendan Liu, Yudi Ma, Song Guo, Bingfang He, Tianyue Jiang. Topical delivery of chemotherapeutic drugs using nano-hybrid hydrogels to inhibit post-surgical tumour recurrence. Biomaterials Science 2021, 9
(12)
, 4356-4363. https://doi.org/10.1039/D0BM01766C
- P. Lavrador, J. Borges, V. M. Gaspar, J. F. Mano. Stimuli-responsive Nanocomposite Hydrogels Incorporating Soft Nanoparticles for Biomedical Applications. 2021, 566-593. https://doi.org/10.1039/9781839161124-00566
- Tao Cheng, Yi‐Zhou Zhang, Shi Wang, Ya‐Li Chen, Si‐Ya Gao, Feng Wang, Wen‐Yong Lai, Wei Huang. Conductive Hydrogel‐Based Electrodes and Electrolytes for Stretchable and Self‐Healable Supercapacitors. Advanced Functional Materials 2021, 31
(24)
https://doi.org/10.1002/adfm.202101303
- Shuai Liu, Sarmad Ahmad Qamar, Mahpara Qamar, Kanta Basharat, Muhammad Bilal. Engineered nanocellulose-based hydrogels for smart drug delivery applications. International Journal of Biological Macromolecules 2021, 181 , 275-290. https://doi.org/10.1016/j.ijbiomac.2021.03.147
- Ujith S. K. Madduma‐Bandarage, Sundararajan V. Madihally. Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science 2021, 138
(19)
https://doi.org/10.1002/app.50376