ACS Publications. Most Trusted. Most Cited. Most Read
Variable Temperature and Pressure Operando MAS NMR for Catalysis Science and Related Materials
My Activity
    Article

    Variable Temperature and Pressure Operando MAS NMR for Catalysis Science and Related Materials
    Click to copy article linkArticle link copied!

    Other Access Options

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2020, 53, 3, 611–619
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.accounts.9b00557
    Published January 13, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image
    Conspectus

    The characterization of catalytic materials under working conditions is of paramount importance for a realistic depiction and comprehensive understanding of the system. Under such relevant environments, catalysts often exhibit properties or reactivity not observed under standard spectroscopic conditions. Fulfilling such harsh environments as high temperature and pressure is a particular challenge for solid-state NMR where samples spin several thousand times a second within a strong magnetic field. To address concerns about the disparities between spectroscopic environments and operando conditions, novel MAS NMR technology has been developed that enables the probing of catalytic systems over a wide range of pressures, temperatures, and chemical environments. In this Account, new efforts to overcome the technical challenges in the development of operando and in situ MAS NMR will be briefly outlined. Emphasis will be placed on exploring the unique chemical regimes that take advantage of the new developments. With the progress achieved, it is possible to interrogate both structure and dynamics of the environments surrounding various nuclear constituents (1H, 13C, 23Na, 27Al, etc.), as well as assess time-resolved interactions and transformations.

    Operando and in situ NMR enables the direct observation of chemical components and their interactions with active sites (such as Brønsted acid sites on zeolites) to reveal the nature of the active center under catalytic conditions. Further, mixtures of such constituents can also be assessed to reveal the transformation of the active site when side products, such as water, are generated. These interactions are observed across a range of temperatures (−10 to 230 °C) and pressures (vacuum to 100 bar) for both vapor and condensed phase analysis. When coupled with 2D NMR, computational modeling, or both, specific binding modes are identified where the adsorbed state provides distinct signatures. In addition to vapor phase chemical environments, gaseous environments can be introduced and controlled over a wide range of pressures to support catalytic studies that require H2, CO, CO2, etc. Mixtures of three phases may also be employed. Such reactions can be monitored in situ to reveal the transformation of the substrates, active sites, intermediates, and products over the course of the study. Further, coupling of operando NMR with isotopic labeling schemes reveals specific mechanistic insights otherwise unavailable. Examples of these strategies will be outlined to reveal important fundamental insights on working catalyst systems possible only under operando conditions. Extension of operando MAS NMR to study the solid–electrolyte interface and solvation structures associated with energy storage systems and biomedical systems will also be presented to highlight the versatility of this powerful technique.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 61 publications.

    1. Sungmin Kim, Boda Yang, Oliver Y. Gutiérrez, Wei Zhang, Carlos Lizandara-Pueyo, Piyush Ingale, Ivana Jevtovikj, Reni Grauke, Janos Szanyi, Huamin Wang, Stephan A. Schunk, Johannes A. Lercher. Ru-Catalyzed Polyethylene Hydrogenolysis under Quasi-Supercritical Conditions. JACS Au 2025, Article ASAP.
    2. Murilo T. Suekuni, Carmine D’Agostino, Alan M. Allgeier. Time-Domain NMR: Generating Unique Insights into the Characterization of Heterogeneous Catalysis in Liquid Phase. ACS Catalysis 2025, 15 (3) , 2063-2081. https://doi.org/10.1021/acscatal.4c04789
    3. Pan Gao, Yi Ji, Guangjin Hou. Solid-State Nuclear Magnetic Resonance Spectroscopy for Surface Characterization of Metal Oxide Nanoparticles: State of the Art and Perspectives. Journal of the American Chemical Society 2025, 147 (4) , 2919-2937. https://doi.org/10.1021/jacs.4c10468
    4. Fan Lin, Meijun Li, Stephen C. Purdy, Junyan Zhang, Yilin Wang, Sungmin Kim, Mark Engelhard, Zhenglong Li, Andrew D. Sutton, Yong Wang, Jian Zhi Hu, Huamin Wang. Restructuring of the Lewis Acid Sites in Y-Modified Dealuminated Beta-Zeolite by Hydrothermal Treatment. ACS Catalysis 2024, 14 (20) , 15250-15264. https://doi.org/10.1021/acscatal.4c04135
    5. Xinlong Yao, Yi Ji, Zheng-Qing Huang, Zhenchao Zhao, Pan Gao, Meiling Guo, Xuebin Liu, Caixia Meng, Qiang Fu, Chun-Ran Chang, Xinhe Bao, Guangjin Hou. Nondissociative Activated Dihydrogen Binding on CeO2 Revealed by High-Pressure Operando Solid-State NMR Spectroscopy. Journal of the American Chemical Society 2024, 146 (35) , 24609-24618. https://doi.org/10.1021/jacs.4c08258
    6. Jun Zhi Tan, Maaso Ortega, Sophia A. Miller, Cole W. Hullfish, Hojoon Kim, Sungmin Kim, Wenda Hu, Jian Zhi Hu, Johannes A. Lercher, Bruce E. Koel, Michele L. Sarazen. Catalytic Consequences of Hierarchical Pore Architectures within MFI and FAU Zeolites for Polyethylene Conversion. ACS Catalysis 2024, 14 (10) , 7536-7552. https://doi.org/10.1021/acscatal.4c01213
    7. Diganta Sarkar, Amit Bhattacharya, Jan Meyer, Anna Maria Kirchberger, Vidyanshu Mishra, Tom Nilges, Vladimir K. Michaelis. Unraveling Sodium-Ion Dynamics in Honeycomb-Layered Na2MgxZn2–xTeO6 Solid Electrolytes with Solid-State NMR. Journal of the American Chemical Society 2023, 145 (36) , 19727-19745. https://doi.org/10.1021/jacs.3c04928
    8. Irina I. Ivanova, Egor P. Andriako, Ilya A. Kostyukov, Dmitry S. Zasukhin, Daniil A. Fedosov, Dmitry N. Zarubin. Multinuclear MAS NMR Monitoring of the Effect of Silicate Speciation on the Mechanism of Zeolite BEA Formation: Toward Engineering of Crystal Size and Morphology. Crystal Growth & Design 2023, 23 (8) , 5677-5689. https://doi.org/10.1021/acs.cgd.3c00336
    9. Zhun Dong, Wenda Hu, Hongjun Liu, Zhenzhen Yang, Debabrata Moitra, De-en Jiang, Sheng Dai, Jian Zhi Hu, Di Wu, Hongfei Lin. Solvent-Treated Zirconium-Based Nanoporous UiO-66 Metal–Organic Frameworks for Enhanced CO2 Capture. ACS Applied Nano Materials 2023, 6 (13) , 12159-12167. https://doi.org/10.1021/acsanm.3c01909
    10. Zhenchao Zhao, Xinlong Yao, Guangjin Hou. Reaction Pathways of Methanol Reforming over Pt/α-MoC Catalysts Revealed by In Situ High-Pressure MAS NMR. ACS Catalysis 2023, 13 (12) , 7978-7986. https://doi.org/10.1021/acscatal.3c01337
    11. Qiang Zhang, Shiqin Gao, Jihong Yu. Metal Sites in Zeolites: Synthesis, Characterization, and Catalysis. Chemical Reviews 2023, 123 (9) , 6039-6106. https://doi.org/10.1021/acs.chemrev.2c00315
    12. Junchao Chen, Fang Wang, Yujie Wen, Weiping Tang, Luming Peng. Emerging Applications of 17O Solid-State NMR Spectroscopy for Catalytic Oxides. ACS Catalysis 2023, 13 (6) , 3485-3500. https://doi.org/10.1021/acscatal.2c06267
    13. Steven Chavez, Baraa Werghi, Kenzie M. Sanroman Gutierrez, Ruitian Chen, Supriya Lall, Matteo Cargnello. Studying, Promoting, Exploiting, and Predicting Catalyst Dynamics: the Next Frontier in Heterogeneous Catalysis. The Journal of Physical Chemistry C 2023, 127 (5) , 2127-2146. https://doi.org/10.1021/acs.jpcc.2c06519
    14. Fan Lin, Wenda Hu, Nicholas R. Jaegers, Feng Gao, Jian Zhi Hu, Huamin Wang, Yong Wang. Elucidation of the Roles of Water on the Reactivity of Surface Intermediates in Carboxylic Acid Ketonization on TiO2. Journal of the American Chemical Society 2023, 145 (1) , 99-109. https://doi.org/10.1021/jacs.2c08511
    15. Shunsaku Yasumura, Taisetsu Kato, Yucheng Qian, Takashi Toyao, Zen Maeno, Ken-ichi Shimizu. Dynamic Structural Evolution of [Rh(NO)2]+ Complex/Rh Metal Cluster in Zeolite during de-NOx via in Situ Formed NH3 under Lean/Rich Periodic Conditions. The Journal of Physical Chemistry C 2022, 126 (45) , 19147-19158. https://doi.org/10.1021/acs.jpcc.2c05705
    16. Jian Zhi Hu, Nicholas R. Jaegers, Nathan T. Hahn, Wenda Hu, Kee Sung Han, Ying Chen, Jesse A. Sears, Vijayakumar Murugesan, Kevin R. Zavadil, Karl T. Mueller. Understanding the Solvation-Dependent Properties of Cyclic Ether Multivalent Electrolytes Using High-Field NMR and Quantum Chemistry. JACS Au 2022, 2 (4) , 917-932. https://doi.org/10.1021/jacsau.2c00046
    17. Houqian Li, Dezhou Guo, Nisa Ulumuddin, Nicholas R. Jaegers, Junming Sun, Bo Peng, Jean-Sabin McEwen, Jianzhi Hu, Yong Wang. Elucidating the Cooperative Roles of Water and Lewis Acid–Base Pairs in Cascade C–C Coupling and Self-Deoxygenation Reactions. JACS Au 2021, 1 (9) , 1471-1487. https://doi.org/10.1021/jacsau.1c00218
    18. Nicholas R. Jaegers, Yong Wang, Jian Zhi Hu, Israel E. Wachs. Impact of Hydration on Supported V2O5/TiO2 Catalysts as Explored by Magnetic Resonance Spectroscopy. The Journal of Physical Chemistry C 2021, 125 (30) , 16766-16775. https://doi.org/10.1021/acs.jpcc.1c04150
    19. Marianne Wenzel, Muhammad A. Zaheer, Dilara Issayeva, David Poppitz, Jörg Matysik, Roger Gläser, Muslim Dvoyashkin. Flow MAS NMR for In Situ Monitoring of Carbon Dioxide Capture and Hydrogenation Using Nanoporous Solids. The Journal of Physical Chemistry C 2021, 125 (19) , 10219-10225. https://doi.org/10.1021/acs.jpcc.1c00037
    20. Liqi Qiu, Narges Mokhtarinori, Hongjun Liu, De-en Jiang, Zhenzhen Yang, Sheng Dai. The carbon challenge: Design, synthesis, and chemisorption behavior of solid sorbents in direct air capture of carbon dioxide. Materials Today Energy 2025, 47 , 101740. https://doi.org/10.1016/j.mtener.2024.101740
    21. Chao Wang, Min Hu, Jun Xu, Feng Deng. Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects. Frontiers of Chemical Science and Engineering 2025, 19 (1) https://doi.org/10.1007/s11705-024-2505-2
    22. Shoushun Chen, Xin Du, Yuzhen Liu, Jun Xu, Xingbao Han, Bryan E. G. Lucier, Yining Huang. NMR Investigations of Host–Guest Interactions in MOFs and COFs. 2024, 153-234. https://doi.org/10.1039/9781839167287-00153
    23. Linfeng Chen, Xinzhi Ding, Zheren Wang, Shutao Xu, Qike Jiang, Chaochao Dun, Jeffrey J. Urban. Advances in in situ/operando techniques for catalysis research: enhancing insights and discoveries. Surface Science and Technology 2024, 2 (1) https://doi.org/10.1007/s44251-024-00038-5
    24. Ifeanyi Michael Smarte Anekwe, Stephen Okiemute Akpasi, Emeka Michael Enemuo, Darlington Ashiegbu, Sherif Ishola Mustapha, Yusuf Makarfi Isa. Innovations in catalytic understanding: A journey through advanced characterization. Materials Today Catalysis 2024, 7 , 100061. https://doi.org/10.1016/j.mtcata.2024.100061
    25. Wei Zhang, Rachit Khare, Sungmin Kim, Lillian Hale, Wenda Hu, Chunlin Yuan, Yaoci Sheng, Peiran Zhang, Lennart Wahl, Jiande Mai, Boda Yang, Oliver Y. Gutiérrez, Debmalya Ray, John Fulton, Donald M. Camaioni, Jianzhi Hu, Huamin Wang, Mal-Soon Lee, Johannes A. Lercher. Active species in chloroaluminate ionic liquids catalyzing low-temperature polyolefin deconstruction. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-49827-4
    26. Wei Chen, Pieter Cnudde. A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry 2024, 43 (11) , 100412. https://doi.org/10.1016/j.cjsc.2024.100412
    27. Shaoqu Xie, Caiqi Wang, Wenda Hu, Jian Zhi Hu, Yong Wang, Zhun Dong, Nadia N. Intan, Jim Pfaendtner, Hongfei Lin. Chemical recycling of post-consumer polyester wastes using a tertiary amine organocatalyst. Cell Reports Physical Science 2024, 5 (8) , 102145. https://doi.org/10.1016/j.xcrp.2024.102145
    28. Hao Lin, Longfei Li, Lanbo Liu, Zhihui Li, Thi-Mo Nguyen, Matthieu Jouffroy, Rafael Gramage-Doria. Penta- versus hexa-coordinated iridium catalysts control the reactivity of the direct reductive amination between aliphatic amines and aliphatic ketones: a DFT-guided mechanism. Catalysis Science & Technology 2024, 14 (14) , 3984-3995. https://doi.org/10.1039/D4CY00516C
    29. Zhun Dong, Ahmad Mukhtar, Thomas Ludwig, Sneha A. Akhade, Wenda Hu, Jian Zhi Hu, Katarzyna Grubel, Mark Engelhard, Brandon C. Wood, Tom Autrey, Hongfei Lin. Silver-decorated palladium on carbon catalyst for enhanced ammonium formate dehydrogenation. Catalysis Science & Technology 2024, 14 (2) , 449-463. https://doi.org/10.1039/D3CY01057K
    30. Lin-Hai He, Jun-Jie Li, Song-Yue Han, Dong Fan, Xiu-Jie Li, Shu-Tao Xu, Ying-Xu Wei, Zhong-Min Liu. Dynamic evolution of HZSM-5 zeolite framework under steam treatment. Chemical Synthesis 2023, 3 (4) https://doi.org/10.20517/cs.2023.55
    31. Irina I. Ivanova, Egor P. Andriako. In situ MAS NMR at the service of catalysis by zeolites: From the unraveling catalytic mechanisms towards the elucidation of the mechanisms of synthesis and rational design of zeolite catalysts. Microporous and Mesoporous Materials 2023, 358 , 112363. https://doi.org/10.1016/j.micromeso.2022.112363
    32. Wei Zhang, Sungmin Kim, Lennart Wahl, Rachit Khare, Lillian Hale, Jianzhi Hu, Donald M. Camaioni, Oliver Y. Gutiérrez, Yue Liu, Johannes A. Lercher. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation. Science 2023, 379 (6634) , 807-811. https://doi.org/10.1126/science.ade7485
    33. Pan Gao, Guangjin Hou. Recent advances on surface metal hydrides studied by solid-state nuclear magnetic resonance spectroscopy. Magnetic Resonance Letters 2023, 3 (1) , 31-42. https://doi.org/10.1016/j.mrl.2022.09.001
    34. Nicholas Jaegers, Nancy M. Washton, Yong Wang, Jian Zhi Hu. High-Field Nuclear Magnetic Resonance (NMR) Spectroscopy. 2023, 757-785. https://doi.org/10.1007/978-3-031-07125-6_34
    35. Guanna Li, Evgeny A. Pidko. Metal containing nanoclusters in zeolites. 2023, 112-147. https://doi.org/10.1016/B978-0-12-823144-9.00022-4
    36. Yuqing Xiao, Shenhui Li, Jun Xu, Feng Deng. Solid-state NMR studies of host–guest chemistry in metal-organic frameworks. Current Opinion in Colloid & Interface Science 2022, 61 , 101633. https://doi.org/10.1016/j.cocis.2022.101633
    37. Erika Janitz, Konstantin Herb, Laura A. Völker, William S. Huxter, Christian L. Degen, John M. Abendroth. Diamond surface engineering for molecular sensing with nitrogen—vacancy centers. Journal of Materials Chemistry C 2022, 10 (37) , 13533-13569. https://doi.org/10.1039/D2TC01258H
    38. E. S. Matveenko, M. V. Grigoriev, T. A. Kremleva, E. V. Andrusenko, N. A. Kosinov. Methods for Studies of Reactions on Zeolite Catalysts Occurring by the Hydrocarbon Pool Mechanism. Kinetics and Catalysis 2022, 63 (4) , 351-363. https://doi.org/10.1134/S0023158422040061
    39. Wenda Hu, Nicholas R. Jaegers, Austin D. Winkelman, Shiva Murali, Karl T. Mueller, Yong Wang, Jian Zhi Hu. Modelling complex molecular interactions in catalytic materials for energy storage and conversion in nuclear magnetic resonance. Frontiers in Catalysis 2022, 2 https://doi.org/10.3389/fctls.2022.935174
    40. Wei Chen, Xianfeng Yi, Zhiqiang Liu, Xiaomin Tang, Anmin Zheng. Carbocation chemistry confined in zeolites: spectroscopic and theoretical characterizations. Chemical Society Reviews 2022, 51 (11) , 4337-4385. https://doi.org/10.1039/D1CS00966D
    41. Yuqing Xiao, Yueying Chu, Shenhui Li, Jun Xu, Feng Deng. Preferential adsorption sites for propane/propylene separation on ZIF-8 as revealed by solid-state NMR spectroscopy. Physical Chemistry Chemical Physics 2022, 24 (11) , 6535-6543. https://doi.org/10.1039/D1CP05931A
    42. Charlotte Vogt, Bert M. Weckhuysen. The concept of active site in heterogeneous catalysis. Nature Reviews Chemistry 2022, 6 (2) , 89-111. https://doi.org/10.1038/s41570-021-00340-y
    43. Li Deng, Shaobo Han, Di Zhou, Yong Li, Wenjie Shen. Morphology dependent effect of γ-Al 2 O 3 for ethanol dehydration: nanorods and nanosheets. CrystEngComm 2022, 24 (4) , 796-804. https://doi.org/10.1039/D1CE01316E
    44. Jacob Johny, Oleg Prymak, Marius Kamp, Florent Calvo, Se-Ho Kim, Anna Tymoczko, Ayman El-Zoka, Christoph Rehbock, Ulrich Schürmann, Baptiste Gault, Lorenz Kienle, Stephan Barcikowski. Multidimensional thermally-induced transformation of nest-structured complex Au-Fe nanoalloys towards equilibrium. Nano Research 2022, 15 (1) , 581-592. https://doi.org/10.1007/s12274-021-3524-7
    45. Giovanni Palmisano, Samar Al Jitan, Corrado Garlisi. Characterization techniques. 2022, 243-314. https://doi.org/10.1016/B978-0-323-89845-4.00008-4
    46. Francisco Zaera. In-situ and operando spectroscopies for the characterization of catalysts and of mechanisms of catalytic reactions. Journal of Catalysis 2021, 404 , 900-910. https://doi.org/10.1016/j.jcat.2021.08.013
    47. Nicholas R. Jaegers, Wenda Hu, Thomas J. Weber, Jian Zhi Hu. Low-temperature (< 200 °C) degradation of electronic nicotine delivery system liquids generates toxic aldehydes. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-87044-x
    48. Bernd Reif, Sharon E. Ashbrook, Lyndon Emsley, Mei Hong. Solid-state NMR spectroscopy. Nature Reviews Methods Primers 2021, 1 (1) https://doi.org/10.1038/s43586-020-00002-1
    49. Konstantin Khivantsev, Nicholas R. Jaegers, Ja‐Hun Kwak, Janos Szanyi, Libor Kovarik. Precise Identification and Characterization of Catalytically Active Sites on the Surface of γ‐Alumina**. Angewandte Chemie 2021, 133 (32) , 17663-17671. https://doi.org/10.1002/ange.202102106
    50. Konstantin Khivantsev, Nicholas R. Jaegers, Ja‐Hun Kwak, Janos Szanyi, Libor Kovarik. Precise Identification and Characterization of Catalytically Active Sites on the Surface of γ‐Alumina**. Angewandte Chemie International Edition 2021, 60 (32) , 17522-17530. https://doi.org/10.1002/anie.202102106
    51. Lokeswara Rao Potnuru, Nghia Tuan Duong, Budaraju Sasank, Sreejith Raran-Kurussi, Yusuke Nishiyama, Vipin Agarwal. Selective 1H–1H recoupling via symmetry sequences in fully protonated samples at fast magic angle spinning. Journal of Magnetic Resonance 2021, 328 , 107004. https://doi.org/10.1016/j.jmr.2021.107004
    52. S Zhang, G S Oehrlein. From thermal catalysis to plasma catalysis: a review of surface processes and their characterizations. Journal of Physics D: Applied Physics 2021, 54 (21) , 213001. https://doi.org/10.1088/1361-6463/abe572
    53. Sharon E. Ashbrook, Zachary H. Davis, Russell E. Morris, Cameron M. Rice. 17 O NMR spectroscopy of crystalline microporous materials. Chemical Science 2021, 12 (14) , 5016-5036. https://doi.org/10.1039/D1SC00552A
    54. Houqian Li, Jifeng Pang, Nicholas R. Jaegers, Libor Kovarik, Mark Engelhard, Anthony W. Savoy, Jianzhi Hu, Junming Sun, Yong Wang. Conversion of ethanol to 1,3–butadiene over Ag–ZrO2/SiO2 catalysts: The role of surface interfaces. Journal of Energy Chemistry 2021, 54 , 7-15. https://doi.org/10.1016/j.jechem.2020.05.038
    55. Pedro B. Groszewicz. NMR spectroscopy of electroceramics – Applications to lead-free perovskite oxides. Open Ceramics 2021, 5 , 100083. https://doi.org/10.1016/j.oceram.2021.100083
    56. Xiaomin Tang, Wei Chen, Xianfeng Yi, Zhiqiang Liu, Yao Xiao, Zhongfang Chen, Anmin Zheng. In Situ Observation of Non‐Classical 2‐Norbornyl Cation in Confined Zeolites at Ambient Temperature. Angewandte Chemie 2021, 133 (9) , 4631-4637. https://doi.org/10.1002/ange.202013384
    57. Xiaomin Tang, Wei Chen, Xianfeng Yi, Zhiqiang Liu, Yao Xiao, Zhongfang Chen, Anmin Zheng. In Situ Observation of Non‐Classical 2‐Norbornyl Cation in Confined Zeolites at Ambient Temperature. Angewandte Chemie International Edition 2021, 60 (9) , 4581-4587. https://doi.org/10.1002/anie.202013384
    58. Konstantin Khivantsev, Nicholas R. Jaegers, Libor Kovarik, Meng Wang, Jian Zhi Hu, Yong Wang, Miroslaw A. Derewinski, János Szanyi. The superior hydrothermal stability of Pd/SSZ-39 in low temperature passive NOx adsorption (PNA) and methane combustion. Applied Catalysis B: Environmental 2021, 280 , 119449. https://doi.org/10.1016/j.apcatb.2020.119449
    59. Yao Fu, Hanxi Guan, Jinglin Yin, Xueqian Kong. Probing molecular motions in metal-organic frameworks with solid-state NMR. Coordination Chemistry Reviews 2021, 427 , 213563. https://doi.org/10.1016/j.ccr.2020.213563
    60. Nicholas R. Jaegers, Yong Wang, Jian Zhi Hu. Thermal perturbation of NMR properties in small polar and non-polar molecules. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-63174-6
    61. Shenhui Li, Olivier Lafon, Weiyu Wang, Qiang Wang, Xingxing Wang, Yi Li, Jun Xu, Feng Deng. Recent Advances of Solid‐State NMR Spectroscopy for Microporous Materials. Advanced Materials 2020, 32 (44) https://doi.org/10.1002/adma.202002879

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2020, 53, 3, 611–619
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.accounts.9b00557
    Published January 13, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    2631

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.