ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions

  • Varun V. Gadkari
    Varun V. Gadkari
    Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
  • Carolina Rojas Ramírez
    Carolina Rojas Ramírez
    Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
  • Daniel D. Vallejo
    Daniel D. Vallejo
    Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
  • Ruwan T. Kurulugama
    Ruwan T. Kurulugama
    Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
  • John C. Fjeldsted
    John C. Fjeldsted
    Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
  • , and 
  • Brandon T. Ruotolo*
    Brandon T. Ruotolo
    Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
    *Email: [email protected]. Tel.: 1-734-615-0198. Fax: 1-734-615-3718.
Cite this: Anal. Chem. 2020, 92, 23, 15489–15496
Publication Date (Web):November 9, 2020
https://doi.org/10.1021/acs.analchem.0c03372
Copyright © 2020 American Chemical Society

    Article Views

    2160

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Native ion mobility-mass spectrometry (IM-MS) is capable of revealing much that remains unknown within the structural proteome, promising such information on refractory protein targets. Here, we report the development of a unique drift tube IM-MS (DTIM-MS) platform, which combines high-energy source optics for improved collision induced unfolding (CIU) experiments and an electromagnetostatic cell for electron capture dissociation (ECD). We measured a series of high precision collision cross section (CCS) values for protein and protein complex ions ranging from 6–1600 kDa, exhibiting an average relative standard deviation (RSD) of 0.43 ± 0.20%. Furthermore, we compare our CCS results to previously reported DTIM values, finding strong agreement across similarly configured instrumentation (average RSD of 0.82 ± 0.73%), and systematic differences for DTIM CCS values commonly used to calibrate traveling-wave IM separators (−3% average RSD). Our CIU experiments reveal that the modified DTIM-MS instrument described here achieves enhanced levels of ion activation when compared with any previously reported IM-MS platforms, allowing for comprehensive unfolding of large multiprotein complex ions as well as interplatform CIU comparisons. Using our modified DTIM instrument, we studied two protein complexes. The enhanced CIU capabilities enable us to study the gas phase stability of the GroEL 7-mer and 14-mer complexes. Finally, we report CIU-ECD experiments for the alcohol dehydrogenase tetramer, demonstrating improved sequence coverage by combining ECD fragmentation integrated over multiple CIU intermediates. Further improvements for such native top-down sequencing experiments were possible by leveraging IM separation, which enabled us to separate and analyze CID and ECD fragmentation simultaneously.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.analchem.0c03372.

    • Computationally measured CCS of GroEL complexes, CID and CIU of GroEL complexes, additional CIU comparisons between TWIM and DTIM platforms, IM-ECD supplemental information regarding analysis, collision cross section measurement tables, and IM-ECD fragment count tables (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 31 publications.

    1. Yousef Haidar, Lars Konermann. Effects of Hydrogen/Deuterium Exchange on Protein Stability in Solution and in the Gas Phase. Journal of the American Society for Mass Spectrometry 2023, 34 (7) , 1447-1458. https://doi.org/10.1021/jasms.3c00130
    2. Virginia K. James, James D. Sanders, Konstantin Aizikov, Kyle L. Fort, Dmitry Grinfeld, Alexander Makarov, Jennifer S. Brodbelt. Expanding Orbitrap Collision Cross-Section Measurements to Native Protein Applications Through Kinetic Energy and Signal Decay Analysis. Analytical Chemistry 2023, 95 (19) , 7656-7664. https://doi.org/10.1021/acs.analchem.3c00594
    3. Emilia Christofi, Perdita Barran. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chemical Reviews 2023, 123 (6) , 2902-2949. https://doi.org/10.1021/acs.chemrev.2c00600
    4. Christopher P. West, Daniela Mesa Sanchez, Ana C. Morales, Yun-Jung Hsu, Jackson Ryan, Andrew Darmody, Lyudmila V. Slipchenko, Julia Laskin, Alexander Laskin. Molecular and Structural Characterization of Isomeric Compounds in Atmospheric Organic Aerosol Using Ion Mobility-Mass Spectrometry. The Journal of Physical Chemistry A 2023, 127 (7) , 1656-1674. https://doi.org/10.1021/acs.jpca.2c06459
    5. Longchan Liu, Ziying Wang, Qian Zhang, Yuqi Mei, Linnan Li, Huwei Liu, Zhengtao Wang, Li Yang. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Analytical Chemistry 2023, 95 (1) , 134-151. https://doi.org/10.1021/acs.analchem.2c02866
    6. Kevin Jeanne Dit Fouque, Samuel A. Miller, Khoa Pham, Natarajan V. Bhanu, Yarixa L. Cintron-Diaz, Dennys Leyva, Desmond Kaplan, Valery G. Voinov, Mark E. Ridgeway, Melvin A. Park, Benjamin A. Garcia, Francisco Fernandez-Lima. Top-“Double-Down” Mass Spectrometry of Histone H4 Proteoforms: Tandem Ultraviolet-Photon and Mobility/Mass-Selected Electron Capture Dissociations. Analytical Chemistry 2022, 94 (44) , 15377-15385. https://doi.org/10.1021/acs.analchem.2c03147
    7. Julian A. Harrison, Adam Pruška, Philipp Bittner, Alexander Muck, Dale A. Cooper-Shepherd, Renato Zenobi. Advancing Cyclic Ion Mobility Mass Spectrometry Methods for Studying Biomolecules: Toward the Conformational Dynamics of Mega Dalton Protein Aggregates. Analytical Chemistry 2022, 94 (36) , 12435-12443. https://doi.org/10.1021/acs.analchem.2c02406
    8. Sarah N. Sipe, Emily B. Lancaster, Jamie P. Butalewicz, Christian P. Whitman, Jennifer S. Brodbelt. Symmetry of 4-Oxalocrotonate Tautomerase Trimers Influences Unfolding and Fragmentation in the Gas Phase. Journal of the American Chemical Society 2022, 144 (27) , 12299-12309. https://doi.org/10.1021/jacs.2c03564
    9. Samuel A. Miller, Kevin Jeanne Dit Fouque, Mark E. Ridgeway, Melvin A. Park, Francisco Fernandez-Lima. Trapped Ion Mobility Spectrometry, Ultraviolet Photodissociation, and Time-of-Flight Mass Spectrometry for Gas-Phase Peptide Isobars/Isomers/Conformers Discrimination. Journal of the American Society for Mass Spectrometry 2022, 33 (7) , 1267-1275. https://doi.org/10.1021/jasms.2c00091
    10. Ashley Phetsanthad, Gongyu Li, Chae Kyung Jeon, Brandon T. Ruotolo, Lingjun Li. Comparing Selected-Ion Collision Induced Unfolding with All Ion Unfolding Methods for Comprehensive Protein Conformational Characterization. Journal of the American Society for Mass Spectrometry 2022, 33 (6) , 944-951. https://doi.org/10.1021/jasms.2c00004
    11. Daniel D. Vallejo, Chae Kyung Jeon, Kristine F. Parson, Hayley R. Herderschee, Joseph D. Eschweiler, Dana I. Filoti, Brandon T. Ruotolo. Ion Mobility–Mass Spectrometry Reveals the Structures and Stabilities of Biotherapeutic Antibody Aggregates. Analytical Chemistry 2022, 94 (18) , 6745-6753. https://doi.org/10.1021/acs.analchem.2c00160
    12. Dalton T. Snyder, Sophie R. Harvey, Vicki H. Wysocki. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chemical Reviews 2022, 122 (8) , 7442-7487. https://doi.org/10.1021/acs.chemrev.1c00309
    13. Daniel D. Vallejo, Carolina Rojas Ramírez, Kristine F. Parson, Yilin Han, Varun V. Gadkari, Brandon T. Ruotolo. Mass Spectrometry Methods for Measuring Protein Stability. Chemical Reviews 2022, 122 (8) , 7690-7719. https://doi.org/10.1021/acs.chemrev.1c00857
    14. Brandon T. Ruotolo. Collision Cross Sections for Native Proteomics: Challenges and Opportunities. Journal of Proteome Research 2022, 21 (1) , 2-8. https://doi.org/10.1021/acs.jproteome.1c00686
    15. Nicholas B. Borotto, Kemi E. Osho, Talitha Kamakamakamae Richards, Katherine A. Graham. Collision-Induced Unfolding of Native-like Protein Ions Within a Trapped Ion Mobility Spectrometry Device. Journal of the American Society for Mass Spectrometry 2022, 33 (1) , 83-89. https://doi.org/10.1021/jasms.1c00273
    16. Jean-Francois Greisch, Maurits A. den Boer, Szu-Hsueh Lai, Kelly Gallagher, Albert Bondt, Jan Commandeur, Albert J.R. Heck. Extending Native Top-Down Electron Capture Dissociation to MDa Immunoglobulin Complexes Provides Useful Sequence Tags Covering Their Critical Variable Complementarity-Determining Regions. Analytical Chemistry 2021, 93 (48) , 16068-16075. https://doi.org/10.1021/acs.analchem.1c03740
    17. Daniel D. Vallejo, Jukyung Kang, Jill Coghlan, Carolina Rojas Ramírez, Daniel A. Polasky, Ruwan T. Kurulugama, John C. Fjeldsted, Anna A. Schwendeman, Brandon T. Ruotolo. Collision-Induced Unfolding Reveals Stability Differences in Infliximab Therapeutics under Native and Heat Stress Conditions. Analytical Chemistry 2021, 93 (48) , 16166-16174. https://doi.org/10.1021/acs.analchem.1c03946
    18. Alexis N. Edwards, Hien M. Tran, Elyssia S. Gallagher. Propagating Error through Traveling-Wave Ion Mobility Calibration. Journal of the American Society for Mass Spectrometry 2021, 32 (11) , 2621-2630. https://doi.org/10.1021/jasms.1c00144
    19. Joseph S. Beckman, Valery G. Voinov, Michael Hare, Derrill Sturgeon, Yury Vasil’ev, Diana Oppenheimer, Jared B. Shaw, Shuai Wu, Rebecca Glaskin, Christian Klein, Cody Schwarzer, George Stafford. Improved Protein and PTM Characterization with a Practical Electron-Based Fragmentation on Q-TOF Instruments. Journal of the American Society for Mass Spectrometry 2021, 32 (8) , 2081-2091. https://doi.org/10.1021/jasms.0c00482
    20. Tarick J. El-Baba, Shannon A. Raab, Rachel P. Buckley, Christopher J. Brown, Corinne A. Lutomski, Lucas W. Henderson, Daniel W. Woodall, Jiangchuan Shen, Jonathan C. Trinidad, Hengyao Niu, Martin F. Jarrold, David H. Russell, Arthur Laganowsky, David E. Clemmer. Thermal Analysis of a Mixture of Ribosomal Proteins by vT-ESI-MS: Toward a Parallel Approach for Characterizing the Stabilitome. Analytical Chemistry 2021, 93 (24) , 8484-8492. https://doi.org/10.1021/acs.analchem.1c00772
    21. Ruijie Liu, Shujun Xia, Huilin Li. Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes. Mass Spectrometry Reviews 2023, 42 (5) , 1876-1926. https://doi.org/10.1002/mas.21793
    22. Katherine A. Graham, Charles F. Lawlor, Nicholas B. Borotto. Characterizing the top-down sequencing of protein ions prior to mobility separation in a timsTOF. The Analyst 2023, 148 (7) , 1534-1542. https://doi.org/10.1039/D2AN01682F
    23. Varun V. Gadkari, Brock R. Juliano, Christopher S. Mallis, Jody C. May, Ruwan T. Kurulugama, John C. Fjeldsted, John A. McLean, David H. Russell, Brandon T. Ruotolo. Performance evaluation of in-source ion activation hardware for collision-induced unfolding of proteins and protein complexes on a drift tube ion mobility-mass spectrometer. The Analyst 2023, 148 (2) , 391-401. https://doi.org/10.1039/D2AN01452A
    24. Daniel G. Delafield, Gaoyuan Lu, Cameron J. Kaminsky, Lingjun Li. High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. TrAC Trends in Analytical Chemistry 2022, 157 , 116761. https://doi.org/10.1016/j.trac.2022.116761
    25. Halle M. Edwards, Hoi‐Ting Wu, Ryan R. Julian, Glen P. Jackson. Differentiation of leucine and isoleucine residues in peptides using charge transfer dissociation mass spectrometry (CTD‐MS). Rapid Communications in Mass Spectrometry 2022, 36 (5) https://doi.org/10.1002/rcm.9246
    26. Jessica J. Waninger, Tyler S. Beyett, Varun V. Gadkari, Ronald F. Siebenaler, Carson Kenum, Sunita Shankar, Brandon T. Ruotolo, Arul M. Chinnaiyan, John J.G. Tesmer. Biochemical characterization of the interaction between KRAS and Argonaute 2. Biochemistry and Biophysics Reports 2022, 29 , 101191. https://doi.org/10.1016/j.bbrep.2021.101191
    27. Ian K. Webb. Recent technological developments for native mass spectrometry. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2022, 1870 (1) , 140732. https://doi.org/10.1016/j.bbapap.2021.140732
    28. Rishav Mitra, Varun V. Gadkari, Ben A. Meinen, Carlo P. M. van Mierlo, Brandon T. Ruotolo, James C. A. Bardwell. Mechanism of the small ATP-independent chaperone Spy is substrate specific. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21120-8
    29. K. Jeanne Dit Fouque, M. Wellmann, D. Leyva Bombuse, M. Santos-Fernandez, Y. L. Cintron-Diaz, M. E. Gomez-Hernandez, D. Kaplan, V. G. Voinov, F. Fernandez-Lima. Effective discrimination of gas-phase peptide conformers using TIMS-ECD-ToF MS/MS. Analytical Methods 2021, 13 (43) , 5216-5223. https://doi.org/10.1039/D1AY01461G
    30. Dalton T. Snyder, Benjamin J. Jones, Yu-Fu Lin, Dale A. Cooper-Shepherd, Darren Hewitt, Jason Wildgoose, Jeffery M. Brown, James I. Langridge, Vicki H. Wysocki. Surface-induced dissociation of protein complexes on a cyclic ion mobility spectrometer. The Analyst 2021, 146 (22) , 6861-6873. https://doi.org/10.1039/D1AN01407B
    31. Zachary J. Sasiene, Praneeth M. Mendis, David Ropartz, Hélène Rogniaux, Glen P. Jackson. The influence of Na/H exchange on the charge transfer dissociation (CTD) spectra of mannuronic acid oligomers. International Journal of Mass Spectrometry 2021, 468 , 116634. https://doi.org/10.1016/j.ijms.2021.116634

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect