ACS Publications. Most Trusted. Most Cited. Most Read
Suitcase Lab for Rapid Detection of SARS-CoV-2 Based on Recombinase Polymerase Amplification Assay
My Activity
  • Open Access
Article

Suitcase Lab for Rapid Detection of SARS-CoV-2 Based on Recombinase Polymerase Amplification Assay
Click to copy article linkArticle link copied!

  • Ahmed Abd El Wahed*
    Ahmed Abd El Wahed
    Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany
    Division of Microbiology and Animal Hygiene, Georg-August-University, 37077 Goettingen, Germany
    *Email: [email protected]
  • Pranav Patel
    Pranav Patel
    Expert Molecular Diagnostics, 82256Fürstenfeldbruck, Germany
    More by Pranav Patel
  • Melanie Maier
    Melanie Maier
    Institute of Medical Microbiology and VirologyLeipzig University Hospital, 04103 Leipzig, Germany
  • Corinna Pietsch
    Corinna Pietsch
    Institute of Medical Microbiology and VirologyLeipzig University Hospital, 04103 Leipzig, Germany
  • Dana Rüster
    Dana Rüster
    Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany
    More by Dana Rüster
  • Susanne Böhlken-Fascher
    Susanne Böhlken-Fascher
    Division of Microbiology and Animal Hygiene, Georg-August-University, 37077 Goettingen, Germany
  • Jonas Kissenkötter
    Jonas Kissenkötter
    Division of Microbiology and Animal Hygiene, Georg-August-University, 37077 Goettingen, Germany
  • Ole Behrmann
    Ole Behrmann
    Institute of Microbiology & Virology, Brandenburg Medical School, 01968 Senftenberg, Germany
    More by Ole Behrmann
  • Michael Frimpong
    Michael Frimpong
    Kumasi Centre for Collaborative Research in Tropical Medicine, Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
  • Moussa Moïse Diagne
    Moussa Moïse Diagne
    Virology Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
  • Martin Faye
    Martin Faye
    Virology Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
    More by Martin Faye
  • Ndongo Dia
    Ndongo Dia
    Virology Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
    More by Ndongo Dia
  • Mohamed A. Shalaby
    Mohamed A. Shalaby
    Virology Department, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
  • Haitham Amer
    Haitham Amer
    Virology Department, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
    More by Haitham Amer
  • Mahmoud Elgamal
    Mahmoud Elgamal
    Virology Department, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
  • Ali Zaki
    Ali Zaki
    Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, 11591 Cairo, Egypt
    More by Ali Zaki
  • Ghada Ismail
    Ghada Ismail
    Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, 11591 Cairo, Egypt
    More by Ghada Ismail
  • Marco Kaiser
    Marco Kaiser
    GenExpress Gesellschaft für Proteindesign, 12103 Berlin, Germany
    More by Marco Kaiser
  • Victor M. Corman
    Victor M. Corman
    Charité−Universitätsmedizin Berlin, Institute of Virology, Berlin, Germany
    German Centre for Infection Research (DZIF), 10117 Berlin, Germany
  • Matthias Niedrig
    Matthias Niedrig
    Expert Virus Diagnostics, 12165 Berlin, Germany
  • Olfert Landt
    Olfert Landt
    TIB MOLBIOL, 12103 Berlin, Germany
    More by Olfert Landt
  • Ousmane Faye
    Ousmane Faye
    Virology Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
    More by Ousmane Faye
  • Amadou A. Sall
    Amadou A. Sall
    Virology Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
  • Frank T. Hufert
    Frank T. Hufert
    Institute of Microbiology & Virology, Brandenburg Medical School, 01968 Senftenberg, Germany
  • Uwe Truyen
    Uwe Truyen
    Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany
    More by Uwe Truyen
  • Uwe G. Liebert
    Uwe G. Liebert
    Institute of Medical Microbiology and VirologyLeipzig University Hospital, 04103 Leipzig, Germany
  • Manfred Weidmann
    Manfred Weidmann
    Institute of Microbiology & Virology, Brandenburg Medical School, 01968 Senftenberg, Germany
Open PDFSupporting Information (1)

Analytical Chemistry

Cite this: Anal. Chem. 2021, 93, 4, 2627–2634
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.analchem.0c04779
Published January 20, 2021

Copyright © 2021 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY.

Abstract

Click to copy section linkSection link copied!

In March 2020, the SARS-CoV-2 virus outbreak was declared as a world pandemic by the World Health Organization (WHO). The only measures for controlling the outbreak are testing and isolation of infected cases. Molecular real-time polymerase chain reaction (PCR) assays are very sensitive but require highly equipped laboratories and well-trained personnel. In this study, a rapid point-of-need detection method was developed to detect the RNA-dependent RNA polymerase (RdRP), envelope protein (E), and nucleocapsid protein (N) genes of SARS-CoV-2 based on the reverse transcription recombinase polymerase amplification (RT-RPA) assay. RdRP, E, and N RT-RPA assays required approximately 15 min to amplify 2, 15, and 15 RNA molecules of molecular standard/reaction, respectively. RdRP and E RT-RPA assays detected SARS-CoV-1 and 2 genomic RNA, whereas the N RT-RPA assay identified only SARS-CoV-2 RNA. All established assays did not cross-react with nucleic acids of other respiratory pathogens. The RT-RPA assay’s clinical sensitivity and specificity in comparison to real-time RT-PCR (n = 36) were 94 and 100% for RdRP; 65 and 77% for E; and 83 and 94% for the N RT-RPA assay. The assays were deployed to the field, where the RdRP RT-RPA assays confirmed to produce the most accurate results in three different laboratories in Africa (n = 89). The RPA assays were run in a mobile suitcase laboratory to facilitate the deployment at point of need. The assays can contribute to speed up the control measures as well as assist in the detection of COVID-19 cases in low-resource settings.

Copyright © 2021 The Authors. Published by American Chemical Society
In December 2019, a virus causing severe acute respiratory syndrome (SARS-CoV-2) was first identified in diseased patients in China. Genome sequencing and phylogenic analysis identified the virus as a close relative of SARS-CoV in the genus Betacornavirus of subfamily Coronavirinae within the family Coronaviridae. (1) The respiratory disease soon after was designated COVID-19 and rapidly spread first inside and then outside of China. The World Health Organization (WHO) announced COVID-19 as a global pandemic in March 2020. (2) Currently, SARS-CoV-2 has infected more than 50 million individuals worldwide due to a high transmissibility rate and a low infectious dose. (3) The only effective control measures are early identification and isolation of infected cases, contact tracing, as well as social distancing and compulsory use of facial masks in closed rooms. (4)
Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) assays were quickly developed for the detection of SARS-CoV-2. (5) Real-time RT-PCR is highly sensitive and specific. In general, the results can be produced in less than 3 h under optimal conditions. If local diagnostic capacity is not available, samples collected from suspected cases have to be transported to diagnostic laboratories providing suitable test capacities. In most of the cases, the test results can be provided within a timeframe ranging from 24 h up to 3 days. Noteworthy, in the early phase of the epidemic, diagnostic laboratories, e.g., in Germany, were overwhelmed with the number of incoming samples. (6)
RPA is conducted at a single constant temperature (∼42 °C) and results are produced in 15 min or less. The speed of the RPA is achieved via a more-than-exponential amplification based on a mixture of enzymes and proteins (recombinase, single-stranded DNA-binding protein, and strand-displacing polymerase). (7) Polyethylenglycol (Carbowax20M) is used as a crowding agent in the reaction and contributes significantly to the amplification process by concentrating the proteins into smaller reaction volumes. Real-time data acquisition is possible using a fluorescent exo-probe. (8) Recently, mathematical analysis methods have been developed to allow quantification. (9,10)
RPA assays have been successfully evaluated for detection of several emerging and neglected pathogens. (11−19) It has been successfully implemented into a solar-powered mobile suitcase laboratory (Figure S1) and used as a point-of-need molecular diagnostic tool during the Ebola virus outbreak in West Africa. (12)
In this study, we developed and evaluated three real-time reverse transcription-RPA (RT-RPA) assays targeting the RNA-dependent RNA polymerase (RdRP), envelope protein (E), and nucleocapsid protein (N) genes of SARS-CoV-2. The limit of detection, cross-reactivity, and clinical performance were determined and compared with real-time RT-PCR.

Experimental Methods

Click to copy section linkSection link copied!

Molecular RNA Standard and RPA Oligonucleotide

For assay validation, molecular RNA standards based on the RdRP, E, and N genes (accession number: NC_045512, nucleotides: 14977–15975, 26112–26479, and 28280–29536, respectively) were synthesized by GenExpress (Berlin, Germany). The E gene RNA was also used as a positive control for the RT-PCR. Oligonucleotides for the RdRP and E genes were updated from our previous design for SARS-CoV and MERS CoV (unpublished data), whereas the N gene amplicon was modified from a previously published article (20) (Table 1). All oligonucleotides were synthesized by TIB MOLBIOL GmbH (Berlin, Germany).
Table 1. RT-RPA Assay Oligonucleotidesa
geneoligonucleotidesequence 5′-3′
RdRPforwardTATGCCATTAGTGCAAAGAATAGAGCTCGCAC
 reverseCAACCACCATAGAATTTGCTTGTTCCAATTAC
 exo-probeTCCTCTAGTGGCGGCTATTGATTTCAATAAbTXfTTTGATGAAACTGTCTATTG-PH
EforwardGAAGAGACAGGTACGTTAATAGTTAATAGCGTA
 reverseAAAAAGAAGGTTTTACAAGACTCACGTTAACsA
 exo-probeATCGAAGCGCAGTAAGGATGGCTAGbTXfTAACTAGCAAGAATAC-PH
NforwardCCTCTTCTCGTTCCTCATCACGTAGTCGCAAC
 reverseAGTGACAGTTTGGCCTTGTTGTTGTTGGCCTT
 exo-probeTAGAATGGCTGGCAATGGCGGTGATGCTGCbTXfTTGCTTTGCTGCTGCTT-PH
a

BHQ1-dt (bT), tetrahydrofuran (X), Fam-dT (fT), phosphothioate backbone (s), and PH: 3′ phosphate to block elongation.

RT-RPA Analytical Sensitivity and Specificity

Serial dilutions of the molecular standards (106–100 RNA molecules/per reaction) were screened in the respective RT-RPA assays. To determine the minimal number of RNA molecules per reaction detected in 95% of cases, a probit regression analysis of five datasets from the replicate RPA reactions of the complete standard dilution range was performed using STATISTICA software (StatSoft, Hamburg, Germany), and the graph was created by GraphPad Prism version 6.07 software (GraphPad Software, Inc., San Diego, California). The analytical specificity of the RT-RPA assays was tested with genomes of the viruses listed in Table 2. The nucleic acid extracts were provided by Charité Medical University (Berlin, Germany), Robert Koch Institute (Berlin, Germany), Landesgesundheitsamt Niedersachsen (Hannover, Germany), Quality Control for Molecular Diagnostics (Glasgow, Scotland), and the Friedrich-Loeffler-Institute (Greifswald-Insel Riems, Germany).
Table 2. Viral Genomes Analyzed for the Cross-Reactivity by the Three SARS-CoV-2 RT-RPA Assays
viral nucleic acidRdRPEN
SARS-CoV-2+++
SARS-CoV-1++
coronavirus 229E
coronavirus NL63
coronavirus OC43
MERS-Coronavirus
influenza A (H1N1 pdm09)
influenza A (H3N2)
influenza A (H5N1)
influenza A (H1N1 H275Y)
influenza B (Victoria)
influenza B (Yamagata)
parainfluenza virus 1 (patient isolate)
parainfluenza virus 2 (patient isolate)
parainfluenza virus 3 (patient isolate)
parainfluenza virus 4 (patient isolate)
respiratory syncytial virus A and B
human rhinovirus A 16
human rhinovirus B 5
human metapneumovirus A1
human metapneumovirus B2
adenovirus type 1
adenovirus type 4
adenovirus type 34
A/Anhui/1/13 (H7N9)
A/ Chicken/Germany/79 “Taucha“ (H7N7)
A/Chicken/Brescia/19/02 (H7N7)
A/Cygnusolor/Germany/R1377/07 (H5N1)
newcastle disease virus clone 30
infectious laryngotracheitis virus U76
infectious bronchitis M41

RT-RPA Reaction Conditions

For RT-RPA, the TwistAmp exo kit (TwistDx, Cambridge, UK) was used in combination with lyophilized RevertAid reverse transcriptase (Life Technologies, Darmstadt, Germany). Per reaction, 29.5 μL of rehydration buffer, 2.5 μL of RevertAid reverse transcriptase (200 U/μL), 9.7 μL of H2O, 2.1 μL of forward primer (10 pmol/μL), 2.1 μL of reverse primer (20 pmol/μL), 0.6 μL of exo-probe (10 pmol/μL), 2.5 μL of 280 mM magnesium acetate, and 1 μL of the template were added into the lid of the reaction tube containing the freeze-dried pellet. The tube was closed, centrifuged, mixed, centrifuged, and placed immediately into the T8 (Axxin, Fairfield, Australia) isothermal fluorescence reader. The reaction was incubated at 42 °C for 15 min. A mixing step was conducted after 230 s for the RdRP and E RT-RPA assays and after 320 s for the N RT-RPA assay. The threshold time (TT) was calculated as the starting point of the amplification curve above the threshold of the negative control (water as template) in the first derivative analysis in the T8 Desktop software (Axxin, Fairfield, Australia).

Clinical Samples

The three RT-RPA assays were validated with leftover RNA extracts from suspected COVID-19 cases diagnosed at the Leipzig University Hospital by real-time RT-PCR (E based assay as screening test and RdRP as confirmatory test). A total of 18 positive and 18 negative samples (blinded) were tested. Diagnostic sensitivity and specificity, positive predictive value (PPV), and negative predictive value (NPV) for the RT-RPA assays were calculated using standard formulas against the real-time RT-PCR as reference test (Table 3). (21) Preliminary testing of clinical samples was performed at the Institute Pasteur Dakar in Dakar (Senegal), laboratory at the Kumasi Centre for Collaborative Research in Tropical Medicine (Ghana), and Ain Shams and Cairo Universities (Egypt), in comparison to real-time RT-PCR assays used in these laboratories.
Table 3. Retrospective Samples University of Leipziga
      result tables
 RT-RPA  real-time RT-PCR
reference test real-time RT-PCRCTanalyzed test RT-RPA sensitivityspecificityPPVNPVnRT-RPAposneg
<35RdRPestimate:0.93 [0.69; 0.99]1 [0.82; 1.0]1 [0.77; 1.0]0.95 [0.76; 0.99]32pos130
neg118
>3595% CI:1 [0.5; 1.0]1 [0.84; 1.0]1 [0.51; 1.0]1 [0.84; 1.0]22pos40
neg018
<35Eestimate:0.93 [0.69; 0.99]0.5 [0.29; 0.71]0.59 [0.39; 0.77]0.9 [0.60; 0.98]32pos139
neg19
>3595% CI:0.5 [0.15; 0.85]0.5 [0.29; 0.71]0.18 [0.05; 0.48]0.82 [0.52; 0.95]22pos29
neg29
<35Nestimate:0.93 [0.66; 0.99]0.94 [0.74; 0.99]0.93 [0.69; 0.99]0.94 [0.74; 0.99]32pos131
neg117
>3595% CI:0.5 [0.15; 0.85]0.5 [0.29; 0.71]0.18 [0.05; 0.48]0.81 [0.52; 0.95]22pos29
neg29
a

Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of RdRP, E, and N RT-RPA assays in comparison to real-time RT-PCR results (n = 36).

Real-Time RT-PCR

In Germany, the RNA extracts from patient materials were tested with a real-time PCR assay combining commercial SARS-CoV-2-E oligonucleotides (TIB MOLBIOL GmbH, Berlin, Germany) and Superscript III Platinum One-Step qRT-PCR kits (Life Technologies, Darmstadt, Germany) according to the manufacturer’s instructions using the following temperature profile: 50 °C for 15 min, 95 °C for 2 min followed by 40 cycles of 95 °C for 15 s and 60 °C for 30 s on an Agilent Technologies Stratagene Mx 3000p Real-Time PCR system. The same protocol was followed in Egypt but using the LightCycler Multiplex RNA Virus Master kit (Roche, Mannheim, Germany). At the laboratory in Dakar, RNA was extracted from 140 μL of swab VTM using the QIAamp viral RNA mini kit (Qiagen, Heiden, Germany). The samples were tested with the same SARS-CoV-2-E oligonucleotides as above using the Luna Universal One-Step RT-qPCR Kit (New England BioLabs, UK) according to the manufacturer’s instructions using the following temperature profile: 55 °C for 10 min, 95 °C for 1 min followed by 40 cycles of 95 °C for 10 s and 60 °C for 30 s on a CFX96 Real-Time PCR System (Bio-Rad, CA). At the Kumasi Centre for Collaborative Research in Ghana, RNA was extracted from swab VTM using the nucleic acid extraction and purification reagents series C—spin column method (Guangzhou LBP Medical Science & Technology Co. Ltd.). The RT-PCR used was the DA AN Gene PCR kit (Da an Gene Co. Ltd. Sun Yat-Sen University, Guangzhou, China) targeting the SARS-CoV 2 ORF1ab and N genes, according to the manufacturer’s instructions. Three microliters of the RNA extracts were used in the RT-PCR assays.

Results

Click to copy section linkSection link copied!

Analytical Sensitivity and Specificity

To determine the analytical sensitivity of the RdRP, E, and N RT-RPA assays, each assay was tested with a serial dilution of 106–100 RNA molecules/reaction of the respective molecular RNA standard in five replicates. Molecular RNA standards with the concentration from 106 to 102 molecules/reaction were detected in all five RPA runs of the three RT-RPA-assays. The E and N RT-RPA identified 100 RNA molecules in 3/5 RT-RPA runs, while in RdRP RT-RPA, all five runs were positive. Only the RdRP RT-RPA amplified one RNA copy in 2/5 RT-RPA runs. With this dataset, probit regression analysis was performed and revealed a 95% detection limit of two RNA molecules for the RdRP RT-RPA assay, and 15 RNA molecules each for E and N RT-RPA assays (Figure 1).

Figure 1

Figure 1. Probit regression analysis for RdRP, E, and N RT-RPA assays. The limit of detection in 95% of cases is two RNA molecules/reaction for the RdRP RT-RPA assay (red) and 15 RNA molecules per reaction each for E and N RT-RPA assays (black).

RdRP and E RT-RPA assays were able to amplify genomic RNA of both SARS-CoV-1 and -2, whereas the N RT-RPA assay recognizes SARS-CoV-2 RNA only. None of the assays shows cross-reactivity to nucleic acid extracts from other respiratory viruses listed in Table 2.

Clinical Samples

All extracted RNA samples provided by the University of Leipzig, which had been stored at −80 °C were first tested by the three RT-RPA assays and retested by real-time RT-PCR to confirm previous results. The RT-RPA assay targeting the RdRP gene produced the best clinical performance (Table 3). All RT-RPA assays detected samples with a CT > 30 at a maximum of 12 min (Figure 2).

Figure 2

Figure 2. Results of 36 clinical samples analyzed with real-time RT-PCR for the E gene and RT-RPA assays for the RdRP, E, and N genes. CT is the cycle threshold, and TT is the threshold time. The red dot represents the real-time RT-PCR sample not detected by the RdRP RT-RPA, and the horizontal red lines indicate the median of TT or CT values.

In Dakar, Senegal, CT range 19.1–39.1 was scored positive by the RdRP RT-RPA assay, whereas the E and N assays showed poor performance (Table S1(i)). Initially, it was unclear why the RdRP RT-RPA assay performed poorly in the lab in Kumasi (Table S1(ii)), where only 7/11 scored positive (CT range 18.1–36.1) until it emerged that RNA extracts had been stored at −20 °C. In Egypt (Table S1(iii)), the RNA extracts were stored at −80 °C, but were subsequently transported to another laboratory, where they were refrozen (7/16 positive; CT range, 17.0–39.7). The RdRP RT-RPA results from Dakar were confirmed when testing was repeated in Egypt with extracts from fresh swabs (26/26). Similar results were achieved at the lab in Dakar where 16/16 samples albeit in a low CT range (19–39) scored positive by RdRP RT-RPA. We calculated the clinical sensitivity and specificity for all RdRP RT-RPA results from African labs, which resulted in similar values as those observed for the samples from Germany (Table 4); however, the RdRP RT-RPA assay showed 100% concordance with real-time RT-PCR results when the results from fresh extracts only (Table S1(i and iv)) were considered.
Table 4. Retrospective Samples of Four Laboratories in Africa (see Table S1)a
      result tables
RT-RPAreal-time RT-PCR
reference test real-time RT-PCRCTanalyzed test RT-RPAsensitivityspecificityPPVNPVnRT-RPAposneg
<35RdRPestimate: 95% CI:0.93 [0.87; 0.98]1.00 [0.84; 1]1.0 [0.93; 1]0.87 [0.768; 0.96]73pos500
neg320
>35RdRPestimate: 95% CI:0.31 [0.14; 0.55]1.0 [0.84;1]1.0 [0.57; 1]0.64 [0.47; 0.79]36pos50
neg1120
a

All results were used (n = 89 samples) to calculate sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the RdRP RT-RPA assay in comparison to real-time RT-PCR assays.

Suitcase Lab

The assays were performed in the suitcase lab (Figure S1), which is a water- and dust-resistant case and fully equipped to conduct isothermal amplification assay at low-resource settings. The suitcase lab has a size of 62 + 49 + 30 cm. The power source is via a solar-powered battery (Goal Zero South Bluffdale, UT). (19) To protect the lab technician while handling highly infectious samples, glovebox (Bodo Koennecke, Berlin, Germany) was used to achieve the first lysis step. (16)

Discussion

Click to copy section linkSection link copied!

For molecular amplification targets, the CDC, Atlanta, recommends two regions in the N gene, while the WHO recommends two targets, e.g., the E gene followed by a SARS-CoV-2 confirmatory assay targeting RdRP. (22)
To identify a highly sensitive and specific SARS-CoV-2 RPA assay, three RT-RPA assays targeting the RdRP, E, and N genes of the SARS-CoV-2 genome were evaluated. The RdRP RT-RPA assay produced sensitivity and specificity similar to a real-time RT-PCR within less than 15 min. The speed and clinical accuracy of the RT-RPA assay make it an ideal candidate molecular assay at point of need.
Real-time RT-PCR is currently the method of choice for molecular laboratory screening of samples from suspected COVID-19 patients. Satisfactory results have been achieved from swab and saliva samples (23) and also sputum, blood, urine, and stool have been successfully tested. (24) The identification of asymptomatic carriers relies entirely on nasopharyngeal, oropharyngeal swab, or saliva testing. (25)
In general, state and commercial diagnostic laboratories in developed countries have all the infrastructure for real-time RT-PCR. A compilation of SARS-CoV-2 diagnostic kits hosted by Foundation for Innovative New Diagnostics (FIND) currently lists 108 commercial PCR kits and more than 200 in-house real-time RT-PCR kits. (26) In emerging nations, usually only reference laboratories are adequately equipped to perform real-time RT-PCR (16) and alternative testing formats are needed. For direct virus detection, the FIND webpage currently lists only 21 rapid antigen detection tests (RDT) with an IVD license. (27) RDT are easy to use, very fast, and cheap to produce, but less sensitive and can produce a high false-negative rate. (28) Since the pandemic spread to Africa and South America, there is an urgent need for molecular assays with performance and accuracy known from real-time RT-PCR and applicability in low-resource settings. Isothermal amplification assays have the potential to provide rapid direct virus detection in infrastructure limited settings. (19)
Although there has been a flurry of publications on LAMP assays, only two are commercially available with an IVD license. (29) The pH drop occurring during the LAMP amplification reaction has been recently exploited for the detection of SARS-CoV-2 to allow simple phenol red- or cresol red-based colorimetric distinction between positives and negatives just by sight. (30,31) In general, RT-LAMP assays have a run time of about 30 min and need devices to maintain an amplification temperature of 65 °C. The longer run time of this isothermal amplification, however, makes unspecific amplifications more likely and requires to define a cutoff for each LAMP assay. (32) In contrast, RPA is very fast (3–15 min), requires a lower temperature, and has already shown to perform at high clinical sensitivity and specificity during the Ebola virus disease outbreak in Guinea. (12)
The RdRP RT-RPA assay described here shows great accuracy even with samples containing less than 10 target molecules corresponding to real-time RT-PCR CT values > 35 (Figure 2 and Table 3). In this respect, the performance of RdRP RT-RPA is comparable to several real-time RT-PCRs. (33)
The N gene is the main target of the CDC real-time RT-PCR (22) and the reverse transcription recombinase-aided amplification (RT-RAA) assay, (34) and both generated excellent clinical sensitivity and specificity. Both the N and E RT-RPA assays described here produced very good analytical sensitivity (15 copies per reaction); nevertheless, the clinical performances were poor, especially for samples with low viral loads. RPA oligonucleotide design has a great influence on the sensitivity of RPA assays, and RPA amplicons always need to be validated with patient material to come to a final assessment.
The E gene RT-RPA was disqualified because it produced too many false positives in a TT range of 10–12 min (Figure 2), i.e., at a low-target RNA load. Contamination as described for real-time RT-PCR developments was excluded since amplification was not observed in any of the negative controls. (35,36) False-positive real-time RT-PCR results in clinical material with low viral loads have been observed for PCR assays. (37) By comparing three RT-RPA assays and validating them with clinical samples, we were able to pick a highly accurate RPA assay, i.e., RdRP RT-RPA.
Our preliminary result indicates that the developed RdRP RT-RPA assay performs well across several laboratories if RNA is extracted from fresh swab samples (Table 3, S1(i and iv)) and can achieve concordance to real-time RT-PCR results. The observation on the quality of the RNA or sample confirms earlier observations made for the foot and mouth disease virus and for dengue virus RT-RPA assays. (8,11) Therefore, to achieve the best results, RT-RPA should be used directly with RNA extracts and results obtained with stored samples may underestimate the performance of the assay. Moreover, the postextraction contamination with RNase must be avoided.
The limitation of the study is that several different real-time RT-PCR assays were used in the various laboratories; moreover, the sample size is small. Therefore, a larger study is needed to determine reliable clinical sensitivities and specificity in comparison to a real-time RT-PCR used across all participating labs. This has already been shown by a Chinese group, which tested 926 samples by RT-RAA, an RT-RPA equivalent using E.coli SSB instead of GP32 in the enzyme mixture. (38) These results indicate that a good performance of the RPA assays with clinical samples can be expected. Inclusion of an internal positive control will increase the practicability of the developed RPA assay since the effect of inhibitors will be excluded in case of false-negative results. In addition, establishing a duplex RPA assay relaying on both RdRP and N genes will boost the assay clinical specificity.
The ID-Now system (Abbott) combines a simple extraction nonpurification protocol in combination with the isothermal nicking enzyme amplification reaction (NEAR). The total turnaround time is 17 min. The ID-Now showed great efficacy for Influenza A and B testing, (39) but has a limited clinical sensitivity for SARS-CoV-2, especially for samples with CT value > 30, (40) which drove the FDA to release an alert against using the ID-Now. (41)
We introduced few improvements during the development of the RPA assays for SARS-CoV-2. First, the best assay sensitivity was achieved using double concentration of the reverse primer. Coronaviruses have a positive-sense single-stranded RNA genome and more reverse primer produces more cDNA for the following amplification step. (42,43) Second, during the oligonucleotide design, any sequences pairing to the human genome were strictly excluded to avoid problems as reported for some real-time RT-PCR assays. (44) Third, to avoid primer dimer and nonspecific amplification, phosphothioate nucleotides were introduced in selected RPA primers. (45)
In addition to the amplification and detection, the virus inactivation and extraction are crucial steps in the diagnosis of SARS-CoV-2. To assure the safety of the healthcare worker or laboratory technician, sample inactivation is recommended in a BSL-2 cabinet and under field condition in a mobile glovebox. (22) The German committee for biological reagents (ABAS) has, however, recently relaxed its regulations and a BSL-2 bench is now not required if swabs are immersed into an inactivating lysis buffer immediately after sampling while wearing PPE. (46)
For swabs collected from an Ebola-infected patient, we showed that the combination of detergent and heat in the SPEEDXTRACT protocol can be achieved in 10 min. (12) Several rapid and simple extraction procedures that use a mix of detergents and heating have now been published for SARS-CoV-2 samples. (47−49) Most of these methods generate crude extracts, and RPA is very robust in crude samples and works in the presence of agents with an inhibitory effect on PCR including 15 ± 25% of milk, 50 g/L hemoglobin, 4% V/V ethanol, and 0.5 U of heparin. (50) Virus RNA was detectable in preparations containing 1:10 dilutions of crude human serum, urine, and tick pool homogenate. (50−52) We are now investigating such an approach for integration into the suitcase laboratory.

Conclusions

Click to copy section linkSection link copied!

With the current clinical performance of the developed RdRP RT-RPA assay, the test provides a promising approach for the use at point of need. It could be deployed at local hospitals, healthcare centers, and walk-through test centers. The robust suitcase laboratory concept would work in infrastructure limited settings. Currently, the limited commercial availability of RT-RPA reagents is an obstacle for wide implementation of RT-RPA for in vitro diagnostic use. License-free RT-RPA reagents would be a boost for diagnostics in infrastructure-poor settings.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.analchem.0c04779.

  • Mobile suitcase lab (Figure S1) and raw data of screening clinical samples in African settings (Table S1) (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Ahmed Abd El Wahed - Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, GermanyDivision of Microbiology and Animal Hygiene, Georg-August-University, 37077 Goettingen, GermanyOrcidhttp://orcid.org/0000-0003-3347-6075 Email: [email protected]
  • Authors
    • Pranav Patel - Expert Molecular Diagnostics, 82256Fürstenfeldbruck, Germany
    • Melanie Maier - Institute of Medical Microbiology and VirologyLeipzig University Hospital, 04103 Leipzig, Germany
    • Corinna Pietsch - Institute of Medical Microbiology and VirologyLeipzig University Hospital, 04103 Leipzig, Germany
    • Dana Rüster - Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany
    • Susanne Böhlken-Fascher - Division of Microbiology and Animal Hygiene, Georg-August-University, 37077 Goettingen, Germany
    • Jonas Kissenkötter - Division of Microbiology and Animal Hygiene, Georg-August-University, 37077 Goettingen, Germany
    • Ole Behrmann - Institute of Microbiology & Virology, Brandenburg Medical School, 01968 Senftenberg, GermanyOrcidhttp://orcid.org/0000-0002-7846-7917
    • Michael Frimpong - Kumasi Centre for Collaborative Research in Tropical Medicine, Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
    • Moussa Moïse Diagne - Virology Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
    • Martin Faye - Virology Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
    • Ndongo Dia - Virology Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
    • Mohamed A. Shalaby - Virology Department, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
    • Haitham Amer - Virology Department, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
    • Mahmoud Elgamal - Virology Department, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
    • Ali Zaki - Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, 11591 Cairo, Egypt
    • Ghada Ismail - Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, 11591 Cairo, Egypt
    • Marco Kaiser - GenExpress Gesellschaft für Proteindesign, 12103 Berlin, Germany
    • Victor M. Corman - Charité−Universitätsmedizin Berlin, Institute of Virology, Berlin, GermanyGerman Centre for Infection Research (DZIF), 10117 Berlin, Germany
    • Matthias Niedrig - Expert Virus Diagnostics, 12165 Berlin, Germany
    • Olfert Landt - TIB MOLBIOL, 12103 Berlin, Germany
    • Ousmane Faye - Virology Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
    • Amadou A. Sall - Virology Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
    • Frank T. Hufert - Institute of Microbiology & Virology, Brandenburg Medical School, 01968 Senftenberg, Germany
    • Uwe Truyen - Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany
    • Uwe G. Liebert - Institute of Medical Microbiology and VirologyLeipzig University Hospital, 04103 Leipzig, Germany
    • Manfred Weidmann - Institute of Microbiology & Virology, Brandenburg Medical School, 01968 Senftenberg, Germany
  • Author Contributions

    A.A.E.W. and P.P. contributed equally to this work. Conceptualization was performed by A.A.E.W., P.P., F.T.H., and M.W. A.A.E.W., P.P., M.M., C.P., D.R., S.B.-F., J.K., O.B., M.F., M.M.D., M.G., N.D., M.K., M.N., O.L., A.A.S., M.A.S., O.F., U.T., U.G.L., and M.W. contributed to data curation. Formal analysis was conducted by A.A.E.W., P.P., M.M., C.P., D.R., J.K., O.B., M.F., M.M.D., M.G., M.K., H.A., M.E., A.Z., G.I., and M.W. A.A.E.W., P.P., M.M., C.P., D.R., S.B.-F., and M.W. performed the investigation. Methodology was designed by A.A.E.W., P.P., V.M.C., M.F, F.T.H., U.T., U.G.L., and M.W. Resources were obtained by N.D., O.F., A.A.S., M.A.S., V.M.C., O.L., F.T.H., U.T., and U.G.L. A.A.E.W., P.P., D.R., and M.W. contributed to software. A.A.E.W., N.D., O.F., A.A.S., F.T.H., U.T., U.G.L., and M.W. supervised the study. A.A.E.W., P.P., and M.W. contributed to validation, visualization, and writing of the original draft. Review and editing was done by all authors.

  • Notes
    The authors declare the following competing financial interest(s): All authors except Marco Kaiser and Olfert Landt are in the public research sector. Mentioned authors are employed by GenExpress and/or Tib MolBiol, manufacturer of molecular standard or oligonucleotides. This does not alter the authors adherence to all the scientific policies on sharing data and materials.

Acknowledgments

Click to copy section linkSection link copied!

The clinical evaluation in Ghana and Senegal was supported by EDCTP grant RIA2020EF-2937. The reference viral RNA extracts from cell culture used for the cross-detection studies were part of the Bill & Melinda Gates Foundation (grant ID INV-005971) to Charite—Universitätsmedizin Berlin. The findings and conclusions contained within are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation.

References

Click to copy section linkSection link copied!

This article references 52 other publications.

  1. 1
    Coronaviridae Study Group of the International Committee on Taxonomy of, V. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536544,  DOI: 10.1038/s41564-020-0695-z
  2. 2
    WHO. WHO announces COVID-19 outbreak apandemic. https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic (accessed June 25, 2020).
  3. 3
    Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 2020, 368, 489493,  DOI: 10.1126/science.abb3221
  4. 4
    Leung, C. C.; Cheng, K. K.; Lam, T. H.; Migliori, G. B. Mask wearing to complement social distancing and save lives during COVID-19. Int. J. Tuberc. Lung Dis. 2020, 24, 556558,  DOI: 10.5588/ijtld.20.0244
  5. 5
    Corman, V. M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D. K.; Bleicker, T.; Brunink, S.; Schneider, J.; Schmidt, M. L.; Mulders, D. G.; Haagmans, B. L.; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J. L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M. P.; Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045  DOI: 10.2807/1560-7917.ES.2020.25.3.2000045
  6. 6
    Sheridan, C. Coronavirus and the race to distribute reliable diagnostics. Nat. Biotechnol. 2020, 38, 382384,  DOI: 10.1038/d41587-020-00002-2
  7. 7
    Piepenburg, O.; Williams, C. H.; Stemple, D. L.; Armes, N. A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204  DOI: 10.1371/journal.pbio.0040204
  8. 8
    Abd El Wahed, A.; El-Deeb, A.; El-Tholoth, M.; Abd El Kader, H.; Ahmed, A.; Hassan, S.; Hoffmann, B.; Haas, B.; Shalaby, M. A.; Hufert, F. T.; Weidmann, M. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. PLoS One 2013, 8, e71642  DOI: 10.1371/journal.pone.0071642
  9. 9
    Gordon, M. I.; Klemer, D. P.; Fuller, S. L.; Chang, J. H.; Klemer, D. R.; Putnam, M. L. Mathematical modeling of a real-time isothermal amplification assay for Erwinia amylovora. Eng. Rep. 2019, 1, e12047  DOI: 10.1002/eng2.12047
  10. 10
    Moody, C.; Newell, H.; Viljoen, H. A mathematical model of recombinase polymerase amplification under continuously stirred conditions. Biochem. Eng. J. 2016, 112, 193201,  DOI: 10.1016/j.bej.2016.04.017
  11. 11
    Abd El Wahed, A.; Patel, P.; Faye, O.; Thaloengsok, S.; Heidenreich, D.; Matangkasombut, P.; Manopwisedjaroen, K.; Sakuntabhai, A.; Sall, A. A.; Hufert, F. T.; Weidmann, M. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection. PLoS One 2015, 10, e0129682  DOI: 10.1371/journal.pone.0129682
  12. 12
    Faye, O.; Faye, O.; Soropogui, B.; Patel, P.; El Wahed, A. A.; Loucoubar, C.; Fall, G.; Kiory, D.; Magassouba, N.; Keita, S.; Konde, M. K.; Diallo, A. A.; Koivogui, L.; Karlberg, H.; Mirazimi, A.; Nentwich, O.; Piepenburg, O.; Niedrig, M.; Weidmann, M.; Sall, A. A. Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Eurosurveillance 2015, 20, 30053  DOI: 10.2807/1560-7917.ES.2015.20.44.30053.
  13. 13
    Frimpong, M.; Ahor, H. S.; Wahed, A. A. E.; Agbavor, B.; Sarpong, F. N.; Laing, K.; Wansbrough-Jones, M.; Phillips, R. O. Rapid detection of Mycobacterium ulcerans with isothermal recombinase polymerase amplification assay. PLoS Neglected Trop. Dis. 2019, 13, e0007155  DOI: 10.1371/journal.pntd.0007155
  14. 14
    Kissenkötter, J.; Hansen, S.; Bohlken-Fascher, S.; Ademowo, O. G.; Oyinloye, O. E.; Bakarey, A. S.; Dobler, G.; Tappe, D.; Patel, P.; Czerny, C. P.; Abd El Wahed, A. Development of a pan-rickettsial molecular diagnostic test based on recombinase polymerase amplification assay. Anal. Biochem. 2018, 544, 2933,  DOI: 10.1016/j.ab.2017.12.018
  15. 15
    Patel, P.; Abd El Wahed, A.; Faye, O.; Pruger, P.; Kaiser, M.; Thaloengsok, S.; Ubol, S.; Sakuntabhai, A.; Leparc-Goffart, I.; Hufert, F. T.; Sall, A. A.; Weidmann, M.; Niedrig, M. Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of the Chikungunya Virus. PLoS Neglected Trop. Dis. 2016, 10, e0004953  DOI: 10.1371/journal.pntd.0004953
  16. 16
    Weidmann, M.; Faye, O.; Faye, O.; Abd El Wahed, A.; Patel, P.; Batejat, C.; Manugerra, J. C.; Adjami, A.; Niedrig, M.; Hufert, F. T.; Sall, A. A. Development of Mobile Laboratory for Viral Hemorrhagic Fever Detection in Africa. J. Infect. Dis. 2018, 218, 16221630,  DOI: 10.1093/infdis/jiy362
  17. 17
    Abd El Wahed, A.; Patel, P.; Heidenreich, D.; Hufert, F. T.; Weidmann, M. Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus. PLoS Curr. 2013, 5  DOI: 10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364
  18. 18
    Mondal, D.; Ghosh, P.; Khan, M. A.; Hossain, F.; Bohlken-Fascher, S.; Matlashewski, G.; Kroeger, A.; Olliaro, P.; Abd El Wahed, A. Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay. Parasites Vectors 2016, 9, 281  DOI: 10.1186/s13071-016-1572-8
  19. 19
    Abd El Wahed, A.; Weidmann, M.; Hufert, F. T. Diagnostics-in-a-Suitcase: Development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J. Clin. Virol. 2015, 69, 1621,  DOI: 10.1016/j.jcv.2015.05.004
  20. 20
    Behrmann, O.; Bachmann, I.; Spiegel, M.; Schramm, M.; El Wahed, A. A.; Dobler, G.; Dame, G.; Hufert, F. T. Rapid detection of SARS-CoV-2 by low volume real-time single tube reverse transcription recombinase polymerase amplification using an exo probe with an internally linked quencher (exo-IQ). Clin Chem. 2020, hvaa116  DOI: 10.1093/clinchem/hvaa116
  21. 21
    Altman, D. G.; Bland, J. M. Diagnostic tests 2: Predictive values. BMJ 1994, 309, 102  DOI: 10.1136/bmj.309.6947.102
  22. 22
    Tang, Y. W.; Schmitz, J. E.; Persing, D. H.; Stratton, C. W. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J. Clin. Microbiol. 2020, 58, e00512-20  DOI: 10.1128/JCM.00512-20
  23. 23
    Xu, R.; Cui, B.; Duan, X.; Zhang, P.; Zhou, X.; Yuan, Q. Saliva: potential diagnostic value and transmission of 2019-nCoV. Int. J. Oral Sci. 2020, 12, 11  DOI: 10.1038/s41368-020-0080-z
  24. 24
    Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 18431844,  DOI: 10.1001/jama.2020.3786
  25. 25
    Gandhi, M.; Yokoe, D. S.; Havlir, D. V. Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control Covid-19. N. Engl. J. Med. 2020, 382, 21582160,  DOI: 10.1056/NEJMe2009758
  26. 26
    FIND WHO Find Evaluation Update: SARSCOV-2 Molecular Diagnostics. https://www.finddx.org/covid-19/sarscov2-eval-molecular/ (accessed June 25, 2020).
  27. 27
    FIND-WHO FIND Evaluation Update: SARSCOV-2 Immunoassays. https://www.finddx.org/covid-19/sarscov2-eval-immuno/ (accessed June 25, 2020).
  28. 28
    FDA Coronavirus (COVID-19) Update: FDA AuthorizesFirst Antigen Test to Help in the Rapid Detection of the Virus thatCauses COVID-19 in Patients. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-antigen-test-help-rapid-detection-virus-causes (accessed June 25, 2020).
  29. 29
    FIND-WHO SARS-COV-2 Diagnostic Pipeline. https://www.finddx.org/covid-19/pipeline/?avance=all&type=Manual+NAT&test_target=RNA&status=all§ion=molecular-assays&action=default#diag_tab (accessed June 25, 2020).
  30. 30
    Huang, W. E.; Lim, B.; Hsu, C. C.; Xiong, D.; Wu, W.; Yu, Y.; Jia, H.; Wang, Y.; Zeng, Y.; Ji, M.; Chang, H.; Zhang, X.; Wang, H.; Cui, Z. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb. Biotechnol. 2020, 13, 950961,  DOI: 10.1111/1751-7915.13586
  31. 31
    Lu, R.; Wu, X.; Wan, Z.; Li, Y.; Jin, X.; Zhang, C. A Novel Reverse Transcription Loop-Mediated Isothermal Amplification Method for Rapid Detection of SARS-CoV-2. Int. J. Mol. Sci. 2020, 21, 2826  DOI: 10.3390/ijms21082826
  32. 32
    Hin, S.; Lopez-Jimena, B.; Bakheit, M.; Klein, V.; Stack, S.; Fall, C.; Sall, A. A.; Enan, K.; Mustafa, M.; Gillies, L.; Rusu, V.; Goethel, S.; Paust, N.; Zengerle, R.; Frischmann, S.; Weidmann, M. Fully automated point-of-care differential diagnosis of acute febrile illness. Submitted 2020.
  33. 33
    van Kasteren, P. B.; van der Veer, B.; van den Brink, S.; Wijsman, L.; de Jonge, J.; van den Brandt, A.; Molenkamp, R.; Reusken, C.; Meijer, A. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J. Clin. Virol. 2020, 128, 104412  DOI: 10.1016/j.jcv.2020.104412
  34. 34
    Wu, T.; Ge, Y.; Zhao, K.; Zhu, X.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. A reverse-transcription recombinase-aided amplification assay for the rapid detection of N gene of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2). Virology 2020, 549, 14,  DOI: 10.1016/j.virol.2020.07.006
  35. 35
    Cohen, A. N.; Kessel, B. False positives in reverse transcription PCR testing for SARS-CoV-2. medRxiv 2020, 20080911  DOI: 10.1101/2020.04.26.20080911
  36. 36
    Bustin, S. A.; Nolan, T. RT-qPCR Testing of SARS-CoV-2: A Primer. Int. J. Mol. Sci. 2020, 21, 3004  DOI: 10.3390/ijms21083004
  37. 37
    Falasca, F.; Sciandra, I.; Di Carlo, D.; Gentile, M.; Deales, A.; Antonelli, G.; Turriziani, O. Detection of SARS-COV N2 Gene: Very low amounts of viral RNA or false positive?. J. Clin. Virol. 2020, 133, 104660  DOI: 10.1016/j.jcv.2020.104660
  38. 38
    Wang, J.; Cai, K.; He, X.; Shen, X.; Wang, J.; Liu, J.; Xu, J.; Qiu, F.; Lei, W.; Cui, L.; Ge, Y.; Wu, T.; Zhang, Y.; Yan, H.; Chen, Y.; Yu, J.; Ma, X.; Shi, H.; Zhang, R.; Li, X.; Gao, Y.; Niu, P.; Tan, W.; Wu, G.; Jiang, Y.; Xu, W.; Ma, X. Multiple-centre clinical evaluation of an ultrafast single-tube assay for SARS-CoV-2 RNA. Clin. Microbiol. Infect. 2020, 26, 10761081,  DOI: 10.1016/j.cmi.2020.05.007
  39. 39
    Kanwar, N.; Michael, J.; Doran, K.; Montgomery, E.; Selvarangan, R. Comparison of the ID Now Influenza A & B 2, Cobas Influenza A/B, and Xpert Xpress Flu Point-of-Care Nucleic Acid Amplification Tests for Influenza A/B Virus Detection in Children. J. Clin. Microbiol. 2020, 58, e01611-19  DOI: 10.1128/JCM.01611-19
  40. 40
    Zhen, W.; Smith, E.; Manji, R.; Schron, D.; Berry, G. J. Clinical Evaluation of Three Sample-To-Answer Platforms for the Detection of SARS-CoV-2. J. Clin. Microbiol. 2020, 58, 17,  DOI: 10.1128/JCM.00783-20
  41. 41
    FDA Coronavirus (COVID-19) Update: FDA Informs Public About Possible Accuracy Concerns with Abbott ID NOW Point-of-Care Test. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-informs-public-about-possible-accuracy-concerns-abbott-id-now-point (accessed June 25, 2020).
  42. 42
    Barratt, K.; Mackay, J. F. Improving real-time PCR genotyping assays by asymmetric amplification. J. Clin. Microbiol. 2002, 40, 15711572,  DOI: 10.1128/JCM.40.4.1571-1572.2002
  43. 43
    Mackay, I. M.; Jacob, K. C.; Woolhouse, D.; Waller, K.; Syrmis, M. W.; Whiley, D. M.; Siebert, D. J.; Nissen, M.; Sloots, T. P. Molecular assays for detection of human metapneumovirus. J. Clin. Microbiol. 2003, 41, 100105,  DOI: 10.1128/JCM.41.1.100-105.2003
  44. 44
    Pillonel, T.; Scherz, V.; Jaton, K.; Greub, G.; Bertelli, C. Letter to the editor: SARS-CoV-2 detection by real-time RT-PCR. Eurosurveillance 2020, 25, 2000880  DOI: 10.2807/1560-7917.ES.2020.25.21.2000880
  45. 45
    Skerra, A. Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity. Nucleic Acids Res. 1992, 20, 35513554,  DOI: 10.1093/nar/20.14.3551
  46. 46
    (BAuA), B. f. A. u. A. Empfehlungen zu Arbeitsschutzmaßnahmen bei der Point-Of-Care-SARS-CoV-2 Diagnostik. (accessed Nov 8, 2020).
  47. 47
    Fomsgaard, A. S.; Rosenstierne, M. W. An alternative workflow for molecular detection of SARS-CoV-2 - escape from the NA extraction kit-shortage, Copenhagen, Denmark, March 2020. Eurosurveillance 2020, 25, 2000398  DOI: 10.2807/1560-7917.es.2020.25.14.2000398
  48. 48
    Lista, mJ.; Page, R.; Sertkaya, H.; Matos, P.; Ortiz-Zapater, E.; Maguire, T. J. A.; Poulton, K.; O’Byrne, A.; Bouton, C.; Dickenson, R. E.; Ficarelli, M.; Howard, M.; Betancor, G.; Galao, R. P.; Pickering, S.; Signell, A. W.; Wilson, H.; Cliff, P.; Ik, M. T. K.; Patel, A.; MacMahon, E.; Cunningham, E.; Doores, K.; Agromayor, M.; Martin-Serrano, J. M.; Perucha, E.; Mischo, H. E.; Shankar-Hari, M.; Batra, R.; Edgeworth, J.; Malim, M. H.; Neil, S.; Martinez-Nunez, R. T. Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation medRxiv 2020,  DOI: 10.1101/2020.04.22.20074351 .
  49. 49
    Kuiper, J. W. P.; Baade, T.; Kremer, M.; Kranaster, R.; Irmisch, L.; Schuchmann, M.; Zander, J.; Marx, A.; Hauck, C. R. Detection of SARS-CoV-2 from raw patient samples by coupled high temperature reverse transcription and amplification. PLoS One 2020, 15, e0241740  DOI: 10.1371/journal.pone.0241740
  50. 50
    Bonney, L. C.; Watson, R. J.; Afrough, B.; Mullojonova, M.; Dzhuraeva, V.; Tishkova, F.; Hewson, R. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection. PLoS Neglected Trop. Dis. 2017, 11, e0006013  DOI: 10.1371/journal.pntd.0006013
  51. 51
    Daher, R. K.; Stewart, G.; Boissinot, M.; Bergeron, M. G. Recombinase Polymerase Amplification for Diagnostic Applications. Clin. Chem. 2016, 62, 94758,  DOI: 10.1373/clinchem.2015.245829
  52. 52
    Daher, R. K.; Stewart, G.; Boissinot, M.; Bergeron, M. G. Isothermal recombinase polymerase amplification assay applied to the detection of group B streptococci in vaginal/anal samples. Clin. Chem. 2014, 60, 660666,  DOI: 10.1373/clinchem.2013.213504

Cited By

Click to copy section linkSection link copied!

This article is cited by 86 publications.

  1. Jaeyoung K. Jung, Kathleen S. Dreyer, Kate E. Dray, Joseph J. Muldoon, Jithin George, Sasha Shirman, Maria D. Cabezas, Anne E. d’Aquino, Matthew S. Verosloff, Kosuke Seki, Grant A. Rybnicky, Khalid K. Alam, Neda Bagheri, Michael C. Jewett, Joshua N. Leonard, Niall M. Mangan, Julius B. Lucks. Developing, Characterizing, and Modeling CRISPR-Based Point-of-Use Pathogen Diagnostics. ACS Synthetic Biology 2025, 14 (1) , 129-147. https://doi.org/10.1021/acssynbio.4c00469
  2. Juhee Lee, Taegu Lee, Ha Neul Lee, Hyoungsoo Kim, Yoo Kyung Kang, Seunghwa Ryu, Hyun Jung Chung. Simple and Multiplexed Detection of Nucleic Acid Targets Based on Fluorescent Ring Patterns and Deep Learning Analysis. ACS Applied Materials & Interfaces 2023, 15 (47) , 54335-54345. https://doi.org/10.1021/acsami.3c14112
  3. Ou Hu, Zeyu Li, Jinghao Wu, Yaoju Tan, Zuanguang Chen, Yanli Tong. A Multicomponent Nucleic Acid Enzyme-Cleavable Quantum Dot Nanobeacon for Highly Sensitive Diagnosis of Tuberculosis with the Naked Eye. ACS Sensors 2023, 8 (1) , 254-262. https://doi.org/10.1021/acssensors.2c02114
  4. Rongxin Fu, Wenli Du, Xiangyu Jin, Ruliang Wang, Xue Lin, Ya Su, Han Yang, Xiaohui Shan, Wenqi Lv, Zhi Zheng, Guoliang Huang. Microfluidic Biosensor for Rapid Nucleic Acid Quantitation Based on Hyperspectral Interferometric Amplicon-Complex Analysis. ACS Sensors 2021, 6 (11) , 4057-4066. https://doi.org/10.1021/acssensors.1c01491
  5. Carlos Manzanas, Md. Mahbubul Alam, Julia C. Loeb, John A. Lednicky, Chang-Yu Wu, Z. Hugh Fan. A Valve-Enabled Sample Preparation Device with Isothermal Amplification for Multiplexed Virus Detection at the Point-of-Care. ACS Sensors 2021, 6 (11) , 4176-4184. https://doi.org/10.1021/acssensors.1c01718
  6. Ji-Ho Park, Kihyeun Kim, Bobin Lee, Hyungjun Jang, Min-Gon Kim. A portable, rapid isothermal amplification kit enabling naked eye detection of SARS-CoV-2 RNAs. Talanta 2025, 285 , 127327. https://doi.org/10.1016/j.talanta.2024.127327
  7. Dayong Li, Yanheng Yao, Wenting Cheng, Feifan Yin, Miao He, Yang Xiang. Amplification-free detection method for pathogen nucleic acid based on manganese ion enhanced CRISPR system and magnetic enrichment. Sensors and Actuators B: Chemical 2025, 426 , 137154. https://doi.org/10.1016/j.snb.2024.137154
  8. Md. Safiul Alam Bhuiyan, Suman Das Gupta, Juplikely James Silip, Saranika Talukder, Md. Hakimul Haque, Jade K. Forwood, Subir Sarker. Current trends and future potential in the detection of avian coronaviruses: An emphasis on sensors-based technologies.. Virology 2025, 12 , 110399. https://doi.org/10.1016/j.virol.2025.110399
  9. Hooman Hanifehpour, Fatemeh Ashrafi, Elham Siasi, Shirzad Fallahi. Evaluation and comparison of one-step real-time PCR and one-step RT-LAMP methods for detection of SARS-CoV-2. BMC Infectious Diseases 2024, 24 (1) https://doi.org/10.1186/s12879-024-09574-9
  10. José Guadalupe Ávila-Hernández, Alejandro Coreño-Alonso, Mario Alberto Pantoja-Alonso, Francisco Javier Córdoba-Andrade, Rogelio González-González, Corina E. Díaz-Quezada, Alberto Camas-Reyes, Agustino Martínez-Antonio. Step-by-Step Development of a Recombinase Polymerase Amplification (RPA) Assay for Sex Identification in Papaya. Applied Biosciences 2024, 3 (4) , 426-437. https://doi.org/10.3390/applbiosci3040027
  11. Jingwei Chen, Tingting Liu, Yule Zhang, Mengnan Duan, Zhijin Yang, Mengya Chen, Yiran Wang, Lulu Zheng, Songlin Zhuang, Dawei Zhang. One-step time-resolved cascade logic gate microfluidic chip for home testing of SARS-CoV-2 and flu B. Biosensors and Bioelectronics 2024, 263 , 116564. https://doi.org/10.1016/j.bios.2024.116564
  12. João M. Vindeirinho, Eva Pinho, Licínia Gomes, Raquel Guiomar, Rea Maja Kobialka, Ahmed Abd El Wahed, Nuno F. Azevedo, Carina Almeida. RT-RAA with a lateral flow assay readout based on ssDNA hybridization for detection of RNA viruses – the case of SARS-CoV-2. Sensors and Actuators B: Chemical 2024, 9 , 136864. https://doi.org/10.1016/j.snb.2024.136864
  13. Yiwan Song, Yiqi Fang, Shuaiqi Zhu, Weijun Wang, Lianxiang Wang, Wenxian Chen, Yintao He, Lin Yi, Hongxing Ding, Mingqiu Zhao, Shuangqi Fan, Zhaoyao Li, Jinding Chen. A rapid and visual detection assay for Senecavirus A based on recombinase-aided amplification and lateral flow dipstick. Frontiers in Cellular and Infection Microbiology 2024, 14 https://doi.org/10.3389/fcimb.2024.1474676
  14. Jingsong Xu, Li Cao, Shuang Yang, Ying Jian, Yu Liu, Zhen Shen, Qian Liu, Xiang Chen, Min Li, Shun Li, Xiaolei Zuo, Min Li, Hua Wang. Droplets Cas13a‐RPA measurement delineates potential role for plasma circWDR37 in colorectal cancer. Aggregate 2024, 8 https://doi.org/10.1002/agt2.663
  15. Shuai Sun, Yuanyuan Zhao, Yuxuan Hao, Pan Xue, Xiaoyang Guo, Wei Zhang, Chunxiang Zhang, Qiongdi Zhang, Wenhua Zhou, Hock Chun Ong, Xuefeng Yu, Zeren Li, Jia Li, Jianquan Yao. Rapid, sensitive and multiplexed detection of SARS-CoV-2 viral nucleic acids enabled by phase-based surface plasmon resonance of metallic gratings. Biomedical Optics Express 2024, 15 (9) , 5215. https://doi.org/10.1364/BOE.535051
  16. Weidong Qian, Xuefei Wang, Ting Wang, Jie Huang, Qian Zhang, Yongdong Li, Si Chen. Development of RPA‐Cas12a ‐fluorescence assay for rapid and reliable detection of human bocavirus 1. Animal Models and Experimental Medicine 2024, 7 (2) , 179-188. https://doi.org/10.1002/ame2.12298
  17. Sahil Syed, Alisha Rahaman, Abhijit Mondal, Shraddha Shaligram, Shrikant P. Pawar. Diagnosis of infectious diseases: complexity to convenience. Sensors & Diagnostics 2024, 3 (3) , 354-380. https://doi.org/10.1039/D3SD00236E
  18. Juan R. Tejedor, Annalisa Roberti, Cristina Mangas, Marta E. Álvarez-Argüelles, Susana Rojo-Alba, José A. Boga, Agustín F. Fernández, Santiago Melón, Mercedes Rodríguez, Mario F. Fraga. A FokI-driven signal amplification platform for the simultaneous detection of multiple viral RNA pathogens. Sensors & Diagnostics 2024, 3 (3) , 468-478. https://doi.org/10.1039/D3SD00316G
  19. Xiaojuan Nie, Dandan Wang, Ye Pan, Ye Hua, Peng Lü, Yanhua Yang. Discovery, classification and application of the CPISPR-Cas13 system. Technology and Health Care 2024, 32 (2) , 525-544. https://doi.org/10.3233/THC-230258
  20. Ya-Nan Tang, Dingding Jiang, Xuejun Wang, Yunqi Liu, Dacheng Wei. Recent progress on rapid diagnosis of COVID-19 by point-of-care testing platforms. Chinese Chemical Letters 2024, 35 (3) , 108688. https://doi.org/10.1016/j.cclet.2023.108688
  21. 娟 卢. Research Progress in the Point-of-Care Testing of Five Infectious Diseases. Journal of Sensor Technology and Application 2024, 12 (04) , 579-590. https://doi.org/10.12677/jsta.2024.124063
  22. Liying Jiang, Xianghao Lan, Linjiao Ren, Zhiyuan Jin, Xuchen Shan, Mingzhu Yang, Lingqian Chang. Single-molecule RNA capture-assisted droplet digital loop-mediated isothermal amplification for ultrasensitive and rapid detection of infectious pathogens. Microsystems & Nanoengineering 2023, 9 (1) https://doi.org/10.1038/s41378-023-00576-2
  23. Wisarut Khamcharoen, Weena Siangproh, Charles S. Henry, Nattapong Sreamsukcharoenchai, Panan Ratthawongjirakul, Orawon Chailapakul. Capillary-driven microfluidic device integrating recombinase polymerase amplification for human papillomavirus detection. Sensors and Actuators B: Chemical 2023, 11 , 135016. https://doi.org/10.1016/j.snb.2023.135016
  24. Yuhao Cao, Haitao Weng, Shaofei Rao, Junmin Li, Fei Yan, Xuemei Song. Rapid and visual field diagnosis of tomato brown rugose fruit virus using reverse transcription recombinase aided amplification (RT RAA) combined with lateral flow strips (LFS). Crop Protection 2023, 173 , 106355. https://doi.org/10.1016/j.cropro.2023.106355
  25. Rochelle H Holm, Ruth Nyirenda, Ted Smith, Petros Chigwechokha. Addressing the challenges of establishing quality wastewater or non-sewered sanitation-based surveillance, including laboratory and epidemiological considerations, in Malawi. BMJ Global Health 2023, 8 (11) , e013307. https://doi.org/10.1136/bmjgh-2023-013307
  26. Islam Seder, Rodrigo Coronel-Tellez, Seyed Hossein Helalat, Yi Sun. Fully integrated sample-in-answer-out platform for viral detection using digital reverse transcription recombinase polymerase amplification (dRT-RPA). Biosensors and Bioelectronics 2023, 237 , 115487. https://doi.org/10.1016/j.bios.2023.115487
  27. Eunhye Park, So Young Choi, Jieun Kim, Niko Hildebrandt, Jin Seok Lee, Jwa‐Min Nam. Nanotechnologies for the Diagnosis and Treatment of SARS‐CoV‐2 and Its Variants. Small Methods 2023, 7 (7) https://doi.org/10.1002/smtd.202300034
  28. Tao Dong, Mingyang Wang, Junchong Liu, Pengxin Ma, Shuang Pang, Wanjian Liu, Aihua Liu. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chemical Science 2023, 14 (23) , 6149-6206. https://doi.org/10.1039/D2SC06665C
  29. Kenji O. Mfuh, Ngu Njei Abanda, Boghuma K. Titanji, . Strengthening diagnostic capacity in Africa as a key pillar of public health and pandemic preparedness. PLOS Global Public Health 2023, 3 (6) , e0001998. https://doi.org/10.1371/journal.pgph.0001998
  30. Wanqiu Huang, Zhaoqi Zhang, Dachuan Lin, Yuliang Deng, Xinchun Chen, Jian Huang. RT-nestRPA is a new technology for the rapid and sensitive detection of nucleic acid detection of pathogens used for a variety of medical application scenarios. Analytica Chimica Acta 2023, 1262 , 341263. https://doi.org/10.1016/j.aca.2023.341263
  31. Jose L. Malaga, Monica J. Pajuelo, Michiko Okamoto, Emmanuel Kagning Tsinda, Kanako Otani, Pablo Tsukayama, Lucero Mascaro, Diego Cuicapuza, Masamichi Katsumi, Kazuhisa Kawamura, Hidekazu Nishimura, Akie Sakagami, Yo Ueki, Suguru Omiya, Satoshi Okamoto, Asami Nakayama, Shin-ichi Fujimaki, Chuyao Yu, Sikandar Azam, Eiichi Kodama, Clyde Dapat, Hitoshi Oshitani, Mayuko Saito. Rapid Detection of SARS-CoV-2 RNA Using Reverse Transcription Recombinase Polymerase Amplification (RT-RPA) with Lateral Flow for N-Protein Gene and Variant-Specific Deletion–Insertion Mutation in S-Protein Gene. Viruses 2023, 15 (6) , 1254. https://doi.org/10.3390/v15061254
  32. Beibei Yu, Changping Xu, Shiwang Huang, Jun Ni, Jiancang Zhou, Yuting Zhang, Maomao Wu, Jun Zhang, Lei Fang. Development of a universal real-time RT-PCR assay for detection of pan-SARS-coronaviruses with an RNA-based internal control. Frontiers in Microbiology 2023, 14 https://doi.org/10.3389/fmicb.2023.1181097
  33. Sumon Pratihar, Mohamed Nabeel Mattath, Thimmaiah Govindaraju. Coronavirus genomic cDNA derived G-quadruplex as a selective target for fluorometric detection. Chemical Communications 2023, 59 (38) , 5717-5720. https://doi.org/10.1039/D3CC00740E
  34. Razieh Salahandish, Jae Eun Hyun, Fatemeh Haghayegh, Hamed Osouli Tabrizi, Shirin Moossavi, Sultan Khetani, Giancarlo Ayala‐Charca, Byron M. Berenger, Yan Dong Niu, Ebrahim Ghafar‐Zadeh, Amir Sanati Nezhad. CoVSense: Ultrasensitive Nucleocapsid Antigen Immunosensor for Rapid Clinical Detection of Wildtype and Variant SARS‐CoV‐2. Advanced Science 2023, 10 (15) https://doi.org/10.1002/advs.202206615
  35. Mengya He, Xican Xu, Hongyu Wang, Qingyuan Wu, Linghao Zhang, Dongsheng Zhou, Yigang Tong, Xin Su, Huiyu Liu. Nanozyme‐Based Colorimetric SARS‐CoV‐2 Nucleic Acid Detection by Naked Eye. Small 2023, 19 (20) https://doi.org/10.1002/smll.202208167
  36. Yiting Zhang, Setrice Patricia Clarke, Huanwu Wu, Wenli Li, Chang Zhou, Kang Lin, Jiawen Wang, Jinzhi Wang, Ying Liang, Xin Wang, Linding Wang. A comprehensive overview on the transmission, pathogenesis, diagnosis, treatment, and prevention of SARS‐CoV‐2. Journal of Medical Virology 2023, 95 (5) https://doi.org/10.1002/jmv.28776
  37. Arianna Ceruti, Ndongo Dia, Adeleye Solomon Bakarey, Judah Ssekitoleko, Soa Fy Andriamandimby, Padra Malwengo-Kasongo, Rasheeda H.A. Ahmed, Rea Maja Kobialka, Jean Michel Heraud, Moussa Moise Diagne, Marie Henriette Dior Dione, Idrissa Dieng, Martin Faye, Ousmane Faye, Jean Théophile Rafisandratantsoa, Jean-Pierre Ravalohery, Claudio Raharinandrasana, Tsiry H. Randriambolamanantsoa, Norosoa Razanajatovo, Iony Razanatovo, Joelinotahina H. Rabarison, Phillipe Dussart, Louis Kyei-Tuffuor, Abigail Agbanyo, Olubusuyi Moses Adewumi, Adeola Fowotade, Muideen Kolawole Raifu, Patient Okitale-Talunda, Gracia Kashitu-Mujinga, Christelle Mbelu-Kabongo, Steve Ahuka-Mundeke, Anguy Makaka-Mutondo, Enas M. Abdalla, Sanaa M. Idris, Wisal A. Elmagzoub, Rahma H. Ali, Eman O.M. Nour, Rasha S.M. Ebraheem, Huda H.H. Ahmed, Hamadelniel E. Abdalla, Musab Elnegoumi, Izdihar Mukhtar, Muatsim A.M. Adam, Nuha Y.I. Mohamed, Shahinaz A. Bedri, Hamdan Mustafa Hamdan, Magid Kisekka, Monica Mpumwiire, Sharley Melissa Aloyo, Joanita Nabwire Wandera, Andrew Agaba, Rogers Kamulegeya, Hosea Kiprotich, David Patrick Kateete, Paul Kadetz, Uwe Truyen, Kamal H. Eltom, Anavaj Sakuntabhai, Julius Boniface Okuni, Sheila Makiala-Mandanda, Vincent Lacoste, George Olusegun Ademowo, Michael Frimpong, Amadou Alpha Sall, Manfred Weidmann, Ahmed Abd El Wahed. A multi-country phase 2 study to evaluate the suitcase lab for rapid detection of SARS-CoV-2 in seven Sub-Saharan African countries: Lessons from the field. Journal of Clinical Virology 2023, 162 , 105422. https://doi.org/10.1016/j.jcv.2023.105422
  38. Ralf Junker, Peter B. Luppa. Congress report: 5th Munich POCT Symposium, September 27–29, 2022, Klinikum rechts der Isar der TU München. Journal of Laboratory Medicine 2023, 47 (2) , 87-95. https://doi.org/10.1515/labmed-2023-0025
  39. Chunying Jiang, Xihui Mu, Shuai Liu, Zhiwei Liu, Bing Liu, Bin Du, Zhaoyang Tong. A Study of the Detection of SARS-CoV-2 by the Use of Electrochemiluminescent Biosensor Based on Asymmetric Polymerase Chain Reaction Amplification Strategy. IEEE Sensors Journal 2023, 23 (8) , 8094-8100. https://doi.org/10.1109/JSEN.2022.3201507
  40. Sarah Schurig, Rea Kobialka, Andy Wende, Md Anik Ashfaq Khan, Phillip Lübcke, Elias Eger, Katharina Schaufler, Arwid Daugschies, Uwe Truyen, Ahmed Abd El Wahed. Rapid Reverse Purification DNA Extraction Approaches to Identify Microbial Pathogens in Wastewater. Microorganisms 2023, 11 (3) , 813. https://doi.org/10.3390/microorganisms11030813
  41. Ruoxu Li, Ning Su, Xiaodong Ren, Xiange Sun, Wenman Li, Yuwei Li, Jin Li, Chen Chen, Hong Wang, Weiping Lu, Shaoli Deng, Qing Huang. Centrifugal microfluidic-based multiplex recombinase polymerase amplification assay for rapid detection of SARS-CoV-2. iScience 2023, 26 (3) , 106245. https://doi.org/10.1016/j.isci.2023.106245
  42. Yuanshou Zhu, Meng Zhang, Zhijun Jie, Shengce Tao. Nucleic acid testing of SARS-CoV-2: A review of current methods, challenges, and prospects. Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.1074289
  43. Josephine Wambani, Patrick Okoth. SARS-CoV-2 origin, myths and diagnostic technology developments. Egyptian Journal of Medical Human Genetics 2022, 23 (1) https://doi.org/10.1186/s43042-022-00255-3
  44. Cen Chen, Zhen Huang. Tellurium-Modified Nucleosides, Nucleotides, and Nucleic Acids with Potential Applications. Molecules 2022, 27 (23) , 8379. https://doi.org/10.3390/molecules27238379
  45. Meiying Tan, Chuan Liao, Lina Liang, Xueli Yi, Zihan Zhou, Guijiang Wei. Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Frontiers in Cellular and Infection Microbiology 2022, 12 https://doi.org/10.3389/fcimb.2022.1019071
  46. Silvia Gonçalves Mesquita, Elena Birgitta Lugli, Giovanni Matera, Cristina Toscano Fonseca, Roberta Lima Caldeira, Bonnie Webster. Development of real-time and lateral flow recombinase polymerase amplification assays for rapid detection of Schistosoma mansoni. Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.1043596
  47. Matthew Higgins, Oliver W. Stringer, Daniel Ward, Jennifer M. Andrews, Matthew S. Forrest, Susana Campino, Taane G. Clark. Characterizing the Impact of Primer-Template Mismatches on Recombinase Polymerase Amplification. The Journal of Molecular Diagnostics 2022, 24 (11) , 1207-1216. https://doi.org/10.1016/j.jmoldx.2022.08.005
  48. Apoorva Saxena, Pawankumar Rai, Srishti Mehrotra, Samiya Baby, Suman Singh, Vikas Srivastava, Smriti Priya, Sandeep K. Sharma. Development and Clinical Validation of RT-LAMP-Based Lateral-Flow Devices and Electrochemical Sensor for Detecting Multigene Targets in SARS-CoV-2. International Journal of Molecular Sciences 2022, 23 (21) , 13105. https://doi.org/10.3390/ijms232113105
  49. Catherine T. Chia, Andrew T. Bender, Lorraine Lillis, Benjamin P. Sullivan, Coleman D. Martin, Wynn Burke, Charles Landis, David S. Boyle, Jonathan D. Posner, . Rapid detection of hepatitis C virus using recombinase polymerase amplification. PLOS ONE 2022, 17 (10) , e0276582. https://doi.org/10.1371/journal.pone.0276582
  50. Xiaowei Ma, Jingsong Xu, Fei Zhou, Jing Ye, Donglei Yang, Hua Wang, Pengfei Wang, Min Li. Recent advances in PCR-free nucleic acid detection for SARS-COV-2. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.999358
  51. Xin Peng, Jiao Yang, Wenbin Liang, Yudong Sun, Xuecui Mei, Guanghui Zhang, Ruo Yuan, Yingchun Li. Double loop-stem hairpins mediated hybridization chain reaction: A multifunctional DNA molecular tool to produce the intact aptamer for label-free biosensing. Sensors and Actuators B: Chemical 2022, 369 , 132327. https://doi.org/10.1016/j.snb.2022.132327
  52. Michelle Melgarejo da Rosa, Michelly Cristiny Pereira, Vanessa Mylenna Florêncio de Carvalho, Ana Paula da Fonseca Arcoverde Cabral de Mello, Crislaine Xavier da Silva, Bárbara de Oliveira Silva, Anderson Félix dos Santos, Rayssa Evelyn Valentim de Moraes Souza, Maira Galdino da Rocha Pitta. Unveiling Distinguished Methodologies for the Diagnosis of COVID-19. 2022, 99-120. https://doi.org/10.2174/9789815050509122010008
  53. Xingyu Ye, Haiwei Zhou, Xiang Guo, Donglai Liu, Zhonglei Li, Junwei Sun, Jun Huang, Tao Liu, Pengshu Zhao, Heshan Xu, Kai Li, Hanming Wang, Jihua Wang, Li Wang, Weili Zhao, Qian Liu, Sihong Xu, Yan Feng. Argonaute-integrated isothermal amplification for rapid, portable, multiplex detection of SARS-CoV-2 and influenza viruses. Biosensors and Bioelectronics 2022, 207 , 114169. https://doi.org/10.1016/j.bios.2022.114169
  54. Olena Filchakova, Dina Dossym, Aisha Ilyas, Tamila Kuanysheva, Altynay Abdizhamil, Rostislav Bukasov. Review of COVID-19 testing and diagnostic methods. Talanta 2022, 244 , 123409. https://doi.org/10.1016/j.talanta.2022.123409
  55. Mariarita De Felice, Mariarosaria De Falco, Daniele Zappi, Amina Antonacci, Viviana Scognamiglio. Isothermal amplification-assisted diagnostics for COVID-19. Biosensors and Bioelectronics 2022, 205 , 114101. https://doi.org/10.1016/j.bios.2022.114101
  56. D.S. Mota, J.M. Guimarães, A.M.D. Gandarilla, J.C.B.S. Filho, W.R. Brito, L.A.M. Mariúba. Recombinase polymerase amplification in the molecular diagnosis of microbiological targets and its applications. Canadian Journal of Microbiology 2022, 68 (6) , 383-402. https://doi.org/10.1139/cjm-2021-0329
  57. Moon Hyeok Choi, Jaehyeon Lee, Young Jun Seo. Dual-site ligation-assisted loop-mediated isothermal amplification (dLig-LAMP) for colorimetric and point-of-care determination of real SARS-CoV-2. Microchimica Acta 2022, 189 (5) https://doi.org/10.1007/s00604-022-05293-7
  58. Md Mamunul Islam, Dipak Koirala. Toward a next-generation diagnostic tool: A review on emerging isothermal nucleic acid amplification techniques for the detection of SARS-CoV-2 and other infectious viruses. Analytica Chimica Acta 2022, 1209 , 339338. https://doi.org/10.1016/j.aca.2021.339338
  59. Dounia Cherkaoui, Judith Heaney, Da Huang, Matthew Byott, Benjamin S. Miller, Eleni Nastouli, Rachel A. McKendry. Clinical Validation of a Rapid Variant-Proof RT-RPA Assay for the Detection of SARS-CoV-2. Diagnostics 2022, 12 (5) , 1263. https://doi.org/10.3390/diagnostics12051263
  60. Dayong Li, Chengjie Duan, Wenting Cheng, Youjing gong, Yanheng Yao, Xiaoping Wang, Zhongyun Wang, Yang Xiang. A simple and rapid method to assay SARS-CoV-2 RNA based on a primer exchange reaction. Chemical Communications 2022, 58 (28) , 4484-4487. https://doi.org/10.1039/D2CC00488G
  61. Tingting Jiang, Yacui Wang, Weiwei Jiao, Yiqin Song, Qing Zhao, Tianyi Wang, Jing Bi, Adong Shen. Recombinase Polymerase Amplification Combined with Real-Time Fluorescent Probe for Mycoplasma pneumoniae Detection. Journal of Clinical Medicine 2022, 11 (7) , 1780. https://doi.org/10.3390/jcm11071780
  62. Oliver W. Stringer, Yanwen Li, Janine T. Bossé, Matthew S. Forrest, Juan Hernandez-Garcia, Alexander W. Tucker, Tiago Nunes, Francisco Costa, Preben Mortensen, Eduardo Velazquez, Paul Penny, Jesus Rodriguez-Manzano, Pantelis Georgiou, Paul R. Langford. Rapid Detection of Actinobacillus pleuropneumoniae From Clinical Samples Using Recombinase Polymerase Amplification. Frontiers in Veterinary Science 2022, 9 https://doi.org/10.3389/fvets.2022.805382
  63. Manfred Weidmann, Elena Graf, Daniel Lichterfeld, Ahmed Abd El Wahed, Michaël Bekaert. Efficient Screening of Long Oligonucleotides Against Hundred Thousands of SARS-CoV-2 Genome Sequences. Frontiers in Virology 2022, 2 https://doi.org/10.3389/fviro.2022.835707
  64. João M. Vindeirinho, Eva Pinho, Nuno F. Azevedo, Carina Almeida. SARS-CoV-2 Diagnostics Based on Nucleic Acids Amplification: From Fundamental Concepts to Applications and Beyond. Frontiers in Cellular and Infection Microbiology 2022, 12 https://doi.org/10.3389/fcimb.2022.799678
  65. Feng Chen, Guodong Li, Chun Wu, Wanhe Wang, Dik-Lung Ma, Chung-Hang Leung. A rapid and label-free DNA-based interference reduction nucleic acid amplification strategy for viral RNA detection. Biosensors and Bioelectronics 2022, 198 , 113829. https://doi.org/10.1016/j.bios.2021.113829
  66. Xiaowu Jiang, Lexin Zhu, Dongbo Zhan. Development of a recombinase polymerase amplification assay for rapid detection of Streptococcus suis type 2 in nasopharyngeal swab samples. Diagnostic Microbiology and Infectious Disease 2022, 102 (2) , 115594. https://doi.org/10.1016/j.diagmicrobio.2021.115594
  67. Ruichen Lv, Nianhong Lu, Junhu Wang, Yuexi Li, Yong Qi. Recombinase Polymerase Amplification for Rapid Detection of Zoonotic Pathogens: An Overview. Zoonoses 2022, 2 (1) https://doi.org/10.15212/ZOONOSES-2022-0002
  68. Jin Li, Qiu Zhong, Mei-Yun Shang, Min Li, Yuan-Su Jiang, Jia-Jun Zou, Shan-Shan Ma, Qing Huang, Wei-Ping Lu. Preliminary Evaluation of Rapid Visual Identification of Burkholderia pseudomallei Using a Newly Developed Lateral Flow Strip-Based Recombinase Polymerase Amplification (LF-RPA) System. Frontiers in Cellular and Infection Microbiology 2022, 11 https://doi.org/10.3389/fcimb.2021.804737
  69. Zhaowei Zhang, Peng Ma, Rajib Ahmed, Jie Wang, Demir Akin, Fernando Soto, Bi‐Feng Liu, Peiwu Li, Utkan Demirci. Advanced Point‐of‐Care Testing Technologies for Human Acute Respiratory Virus Detection. Advanced Materials 2022, 34 (1) https://doi.org/10.1002/adma.202103646
  70. Xi Chen, Simin Xia. Sensitive methods for detection of SARS-CoV-2 RNA. 2022, 1-26. https://doi.org/10.1016/bs.mim.2021.06.001
  71. Emmanuel Edwar Siddig, Annelies Verbon, Sahar Bakhiet, Ahmed Hassan Fahal, Wendy W.J. van de Sande. The developed molecular biological identification tools for mycetoma causative agents: An update. Acta Tropica 2022, 225 , 106205. https://doi.org/10.1016/j.actatropica.2021.106205
  72. Prakash Ghosh, Rajashree Chowdhury, Mohammad Enayet Hossain, Faria Hossain, Mojnu Miah, Md. Utba Rashid, James Baker, Mohammed Ziaur Rahman, Mustafizur Rahman, Xuejun Ma, Malcolm S. Duthie, Ahmed Abd El Wahed, Dinesh Mondal. Evaluation of recombinase-based isothermal amplification assays for point-of-need detection of SARS-CoV-2 in resource-limited settings. International Journal of Infectious Diseases 2022, 114 , 105-111. https://doi.org/10.1016/j.ijid.2021.11.007
  73. Xin Peng, Jiao Yang, Wenbin Liang, Yudong Sun, Xuecui Mei, Guanghui Zhang, Ruo Yuan, Yingchun Li. Double Loop-Stem Hairpins Mediated Hybridization Chain Reaction:A Multifunctional DNA Molecular Tool to Produce the Intact Aptamer for Label-Free Biosensing. SSRN Electronic Journal 2022, 60 https://doi.org/10.2139/ssrn.4117474
  74. Maryia Drobysh, Almira Ramanaviciene, Roman Viter, Chien-Fu Chen, Urte Samukaite-Bubniene, Vilma Ratautaite, Arunas Ramanavicius. Biosensors for the Determination of SARS-CoV-2 Virus and Diagnosis of COVID-19 Infection. International Journal of Molecular Sciences 2022, 23 (2) , 666. https://doi.org/10.3390/ijms23020666
  75. Yuyue Xu, Tao Wang, Zhu Chen, Lian Jin, Zuozhong Wu, Jinqu Yan, Xiaoni Zhao, Lei Cai, Yan Deng, Yuan Guo, Song Li, Nongyue He. The point-of-care-testing of nucleic acids by chip, cartridge and paper sensors. Chinese Chemical Letters 2021, 32 (12) , 3675-3686. https://doi.org/10.1016/j.cclet.2021.06.025
  76. Lukman Yusuf, Mark Appeaning, Taiwo Gboluwaga Amole, Baba Maiyaki Musa, Hadiza Shehu Galadanci, Peter Kojo Quashie, Isah Abubakar Aliyu. Rapid, Cheap, and Effective COVID-19 Diagnostics for Africa. Diagnostics 2021, 11 (11) , 2105. https://doi.org/10.3390/diagnostics11112105
  77. Dounia Cherkaoui, Da Huang, Benjamin S. Miller, Valérian Turbé, Rachel A. McKendry. Harnessing recombinase polymerase amplification for rapid multi-gene detection of SARS-CoV-2 in resource-limited settings. Biosensors and Bioelectronics 2021, 189 , 113328. https://doi.org/10.1016/j.bios.2021.113328
  78. Rea Maja Kobialka, Arianna Ceruti, Michelle Bergmann, Katrin Hartmann, Uwe Truyen, Ahmed Abd El Wahed. Molecular Detection of Feline Coronavirus Based on Recombinase Polymerase Amplification Assay. Pathogens 2021, 10 (10) , 1237. https://doi.org/10.3390/pathogens10101237
  79. Yida Zhai, Runqi Li, Fuguo Liu, Chunyun Zhang, Yuanyuan Wang, Guofu Chen. Recombinase polymerase amplification combined with lateral flow dipstick for the rapid detection of Prorocentrum donghaiense. Marine Biology Research 2021, 17 (7-8) , 646-657. https://doi.org/10.1080/17451000.2021.2010279
  80. Arianna Ceruti, Rea Maja Kobialka, Judah Ssekitoleko, Julius Boniface Okuni, Sandra Blome, Ahmed Abd El Wahed, Uwe Truyen. Rapid Extraction and Detection of African Swine Fever Virus DNA Based on Isothermal Recombinase Polymerase Amplification Assay. Viruses 2021, 13 (9) , 1731. https://doi.org/10.3390/v13091731
  81. Zhi Xiong Chong, Winnie Pui Pui Liew, Hui Kian Ong, Chean Yeah Yong, Chong Seng Shit, Wan Yong Ho, Stephanie Y.L. Ng, Swee Keong Yeap. Current diagnostic approaches to detect two important betacoronaviruses: Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathology - Research and Practice 2021, 225 , 153565. https://doi.org/10.1016/j.prp.2021.153565
  82. Nahed Yehia, Fatma Eldemery, Abdel-Satar Arafa, Ahmed Abd El Wahed, Ahmed El Sanousi, Manfred Weidmann, Mohamed Shalaby. Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Avian Influenza Virus H9N2 HA Gene. Veterinary Sciences 2021, 8 (7) , 134. https://doi.org/10.3390/vetsci8070134
  83. Jafar Ali, Saira Elahi, Asghar Ali, Hassan Waseem, Rameesha Abid, Mohamed Mohamed. Unveiling the Potential Role of Nanozymes in Combating the COVID-19 Outbreak. Nanomaterials 2021, 11 (5) , 1328. https://doi.org/10.3390/nano11051328
  84. Eliza Leusmann. Tests auf Coronaviren und andere Plagegeister. Nachrichten aus der Chemie 2021, 69 (4) , 78-78. https://doi.org/10.1002/nadc.20214106939
  85. Prakash Ghosh, Abhijit Sharma, Narayan Raj Bhattarai, Kumar Abhishek, Thilini Nisansala, Amresh Kumar, Susanne Böhlken-Fascher, Rajashree Chowdhury, Md Anik Ashfaq Khan, Khaledul Faisal, Faria Hossain, Md. Rasel Uddin, Md. Utba Rashid, Shomik Maruf, Keshav Rai, Monica Sooriyaarachchi, Withanage Lakma Kumari Abhayarathna, Prahlad Karki, Shiril Kumar, Shalindra Ranasinghe, Basudha Khanal, Satyabrata Routray, Pradeep Das, Dinesh Mondal, Ahmed Abd El Wahed. A Multi-Country, Single-Blinded, Phase 2 Study to Evaluate a Point-of-Need System for Rapid Detection of Leishmaniasis and Its Implementation in Endemic Settings. Microorganisms 2021, 9 (3) , 588. https://doi.org/10.3390/microorganisms9030588
  86. Susanne Modrow, Uwe Truyen, Hermann Schätzl. Labormethoden zum Nachweis von Virusinfektionen. 2021, 145-159. https://doi.org/10.1007/978-3-662-61781-6_13

Analytical Chemistry

Cite this: Anal. Chem. 2021, 93, 4, 2627–2634
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.analchem.0c04779
Published January 20, 2021

Copyright © 2021 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY.

Article Views

9423

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Probit regression analysis for RdRP, E, and N RT-RPA assays. The limit of detection in 95% of cases is two RNA molecules/reaction for the RdRP RT-RPA assay (red) and 15 RNA molecules per reaction each for E and N RT-RPA assays (black).

    Figure 2

    Figure 2. Results of 36 clinical samples analyzed with real-time RT-PCR for the E gene and RT-RPA assays for the RdRP, E, and N genes. CT is the cycle threshold, and TT is the threshold time. The red dot represents the real-time RT-PCR sample not detected by the RdRP RT-RPA, and the horizontal red lines indicate the median of TT or CT values.

  • References


    This article references 52 other publications.

    1. 1
      Coronaviridae Study Group of the International Committee on Taxonomy of, V. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536544,  DOI: 10.1038/s41564-020-0695-z
    2. 2
      WHO. WHO announces COVID-19 outbreak apandemic. https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic (accessed June 25, 2020).
    3. 3
      Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 2020, 368, 489493,  DOI: 10.1126/science.abb3221
    4. 4
      Leung, C. C.; Cheng, K. K.; Lam, T. H.; Migliori, G. B. Mask wearing to complement social distancing and save lives during COVID-19. Int. J. Tuberc. Lung Dis. 2020, 24, 556558,  DOI: 10.5588/ijtld.20.0244
    5. 5
      Corman, V. M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D. K.; Bleicker, T.; Brunink, S.; Schneider, J.; Schmidt, M. L.; Mulders, D. G.; Haagmans, B. L.; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J. L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M. P.; Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045  DOI: 10.2807/1560-7917.ES.2020.25.3.2000045
    6. 6
      Sheridan, C. Coronavirus and the race to distribute reliable diagnostics. Nat. Biotechnol. 2020, 38, 382384,  DOI: 10.1038/d41587-020-00002-2
    7. 7
      Piepenburg, O.; Williams, C. H.; Stemple, D. L.; Armes, N. A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204  DOI: 10.1371/journal.pbio.0040204
    8. 8
      Abd El Wahed, A.; El-Deeb, A.; El-Tholoth, M.; Abd El Kader, H.; Ahmed, A.; Hassan, S.; Hoffmann, B.; Haas, B.; Shalaby, M. A.; Hufert, F. T.; Weidmann, M. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. PLoS One 2013, 8, e71642  DOI: 10.1371/journal.pone.0071642
    9. 9
      Gordon, M. I.; Klemer, D. P.; Fuller, S. L.; Chang, J. H.; Klemer, D. R.; Putnam, M. L. Mathematical modeling of a real-time isothermal amplification assay for Erwinia amylovora. Eng. Rep. 2019, 1, e12047  DOI: 10.1002/eng2.12047
    10. 10
      Moody, C.; Newell, H.; Viljoen, H. A mathematical model of recombinase polymerase amplification under continuously stirred conditions. Biochem. Eng. J. 2016, 112, 193201,  DOI: 10.1016/j.bej.2016.04.017
    11. 11
      Abd El Wahed, A.; Patel, P.; Faye, O.; Thaloengsok, S.; Heidenreich, D.; Matangkasombut, P.; Manopwisedjaroen, K.; Sakuntabhai, A.; Sall, A. A.; Hufert, F. T.; Weidmann, M. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection. PLoS One 2015, 10, e0129682  DOI: 10.1371/journal.pone.0129682
    12. 12
      Faye, O.; Faye, O.; Soropogui, B.; Patel, P.; El Wahed, A. A.; Loucoubar, C.; Fall, G.; Kiory, D.; Magassouba, N.; Keita, S.; Konde, M. K.; Diallo, A. A.; Koivogui, L.; Karlberg, H.; Mirazimi, A.; Nentwich, O.; Piepenburg, O.; Niedrig, M.; Weidmann, M.; Sall, A. A. Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Eurosurveillance 2015, 20, 30053  DOI: 10.2807/1560-7917.ES.2015.20.44.30053.
    13. 13
      Frimpong, M.; Ahor, H. S.; Wahed, A. A. E.; Agbavor, B.; Sarpong, F. N.; Laing, K.; Wansbrough-Jones, M.; Phillips, R. O. Rapid detection of Mycobacterium ulcerans with isothermal recombinase polymerase amplification assay. PLoS Neglected Trop. Dis. 2019, 13, e0007155  DOI: 10.1371/journal.pntd.0007155
    14. 14
      Kissenkötter, J.; Hansen, S.; Bohlken-Fascher, S.; Ademowo, O. G.; Oyinloye, O. E.; Bakarey, A. S.; Dobler, G.; Tappe, D.; Patel, P.; Czerny, C. P.; Abd El Wahed, A. Development of a pan-rickettsial molecular diagnostic test based on recombinase polymerase amplification assay. Anal. Biochem. 2018, 544, 2933,  DOI: 10.1016/j.ab.2017.12.018
    15. 15
      Patel, P.; Abd El Wahed, A.; Faye, O.; Pruger, P.; Kaiser, M.; Thaloengsok, S.; Ubol, S.; Sakuntabhai, A.; Leparc-Goffart, I.; Hufert, F. T.; Sall, A. A.; Weidmann, M.; Niedrig, M. Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of the Chikungunya Virus. PLoS Neglected Trop. Dis. 2016, 10, e0004953  DOI: 10.1371/journal.pntd.0004953
    16. 16
      Weidmann, M.; Faye, O.; Faye, O.; Abd El Wahed, A.; Patel, P.; Batejat, C.; Manugerra, J. C.; Adjami, A.; Niedrig, M.; Hufert, F. T.; Sall, A. A. Development of Mobile Laboratory for Viral Hemorrhagic Fever Detection in Africa. J. Infect. Dis. 2018, 218, 16221630,  DOI: 10.1093/infdis/jiy362
    17. 17
      Abd El Wahed, A.; Patel, P.; Heidenreich, D.; Hufert, F. T.; Weidmann, M. Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus. PLoS Curr. 2013, 5  DOI: 10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364
    18. 18
      Mondal, D.; Ghosh, P.; Khan, M. A.; Hossain, F.; Bohlken-Fascher, S.; Matlashewski, G.; Kroeger, A.; Olliaro, P.; Abd El Wahed, A. Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay. Parasites Vectors 2016, 9, 281  DOI: 10.1186/s13071-016-1572-8
    19. 19
      Abd El Wahed, A.; Weidmann, M.; Hufert, F. T. Diagnostics-in-a-Suitcase: Development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J. Clin. Virol. 2015, 69, 1621,  DOI: 10.1016/j.jcv.2015.05.004
    20. 20
      Behrmann, O.; Bachmann, I.; Spiegel, M.; Schramm, M.; El Wahed, A. A.; Dobler, G.; Dame, G.; Hufert, F. T. Rapid detection of SARS-CoV-2 by low volume real-time single tube reverse transcription recombinase polymerase amplification using an exo probe with an internally linked quencher (exo-IQ). Clin Chem. 2020, hvaa116  DOI: 10.1093/clinchem/hvaa116
    21. 21
      Altman, D. G.; Bland, J. M. Diagnostic tests 2: Predictive values. BMJ 1994, 309, 102  DOI: 10.1136/bmj.309.6947.102
    22. 22
      Tang, Y. W.; Schmitz, J. E.; Persing, D. H.; Stratton, C. W. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J. Clin. Microbiol. 2020, 58, e00512-20  DOI: 10.1128/JCM.00512-20
    23. 23
      Xu, R.; Cui, B.; Duan, X.; Zhang, P.; Zhou, X.; Yuan, Q. Saliva: potential diagnostic value and transmission of 2019-nCoV. Int. J. Oral Sci. 2020, 12, 11  DOI: 10.1038/s41368-020-0080-z
    24. 24
      Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 18431844,  DOI: 10.1001/jama.2020.3786
    25. 25
      Gandhi, M.; Yokoe, D. S.; Havlir, D. V. Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control Covid-19. N. Engl. J. Med. 2020, 382, 21582160,  DOI: 10.1056/NEJMe2009758
    26. 26
      FIND WHO Find Evaluation Update: SARSCOV-2 Molecular Diagnostics. https://www.finddx.org/covid-19/sarscov2-eval-molecular/ (accessed June 25, 2020).
    27. 27
      FIND-WHO FIND Evaluation Update: SARSCOV-2 Immunoassays. https://www.finddx.org/covid-19/sarscov2-eval-immuno/ (accessed June 25, 2020).
    28. 28
      FDA Coronavirus (COVID-19) Update: FDA AuthorizesFirst Antigen Test to Help in the Rapid Detection of the Virus thatCauses COVID-19 in Patients. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-antigen-test-help-rapid-detection-virus-causes (accessed June 25, 2020).
    29. 29
      FIND-WHO SARS-COV-2 Diagnostic Pipeline. https://www.finddx.org/covid-19/pipeline/?avance=all&type=Manual+NAT&test_target=RNA&status=all§ion=molecular-assays&action=default#diag_tab (accessed June 25, 2020).
    30. 30
      Huang, W. E.; Lim, B.; Hsu, C. C.; Xiong, D.; Wu, W.; Yu, Y.; Jia, H.; Wang, Y.; Zeng, Y.; Ji, M.; Chang, H.; Zhang, X.; Wang, H.; Cui, Z. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb. Biotechnol. 2020, 13, 950961,  DOI: 10.1111/1751-7915.13586
    31. 31
      Lu, R.; Wu, X.; Wan, Z.; Li, Y.; Jin, X.; Zhang, C. A Novel Reverse Transcription Loop-Mediated Isothermal Amplification Method for Rapid Detection of SARS-CoV-2. Int. J. Mol. Sci. 2020, 21, 2826  DOI: 10.3390/ijms21082826
    32. 32
      Hin, S.; Lopez-Jimena, B.; Bakheit, M.; Klein, V.; Stack, S.; Fall, C.; Sall, A. A.; Enan, K.; Mustafa, M.; Gillies, L.; Rusu, V.; Goethel, S.; Paust, N.; Zengerle, R.; Frischmann, S.; Weidmann, M. Fully automated point-of-care differential diagnosis of acute febrile illness. Submitted 2020.
    33. 33
      van Kasteren, P. B.; van der Veer, B.; van den Brink, S.; Wijsman, L.; de Jonge, J.; van den Brandt, A.; Molenkamp, R.; Reusken, C.; Meijer, A. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J. Clin. Virol. 2020, 128, 104412  DOI: 10.1016/j.jcv.2020.104412
    34. 34
      Wu, T.; Ge, Y.; Zhao, K.; Zhu, X.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. A reverse-transcription recombinase-aided amplification assay for the rapid detection of N gene of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2). Virology 2020, 549, 14,  DOI: 10.1016/j.virol.2020.07.006
    35. 35
      Cohen, A. N.; Kessel, B. False positives in reverse transcription PCR testing for SARS-CoV-2. medRxiv 2020, 20080911  DOI: 10.1101/2020.04.26.20080911
    36. 36
      Bustin, S. A.; Nolan, T. RT-qPCR Testing of SARS-CoV-2: A Primer. Int. J. Mol. Sci. 2020, 21, 3004  DOI: 10.3390/ijms21083004
    37. 37
      Falasca, F.; Sciandra, I.; Di Carlo, D.; Gentile, M.; Deales, A.; Antonelli, G.; Turriziani, O. Detection of SARS-COV N2 Gene: Very low amounts of viral RNA or false positive?. J. Clin. Virol. 2020, 133, 104660  DOI: 10.1016/j.jcv.2020.104660
    38. 38
      Wang, J.; Cai, K.; He, X.; Shen, X.; Wang, J.; Liu, J.; Xu, J.; Qiu, F.; Lei, W.; Cui, L.; Ge, Y.; Wu, T.; Zhang, Y.; Yan, H.; Chen, Y.; Yu, J.; Ma, X.; Shi, H.; Zhang, R.; Li, X.; Gao, Y.; Niu, P.; Tan, W.; Wu, G.; Jiang, Y.; Xu, W.; Ma, X. Multiple-centre clinical evaluation of an ultrafast single-tube assay for SARS-CoV-2 RNA. Clin. Microbiol. Infect. 2020, 26, 10761081,  DOI: 10.1016/j.cmi.2020.05.007
    39. 39
      Kanwar, N.; Michael, J.; Doran, K.; Montgomery, E.; Selvarangan, R. Comparison of the ID Now Influenza A & B 2, Cobas Influenza A/B, and Xpert Xpress Flu Point-of-Care Nucleic Acid Amplification Tests for Influenza A/B Virus Detection in Children. J. Clin. Microbiol. 2020, 58, e01611-19  DOI: 10.1128/JCM.01611-19
    40. 40
      Zhen, W.; Smith, E.; Manji, R.; Schron, D.; Berry, G. J. Clinical Evaluation of Three Sample-To-Answer Platforms for the Detection of SARS-CoV-2. J. Clin. Microbiol. 2020, 58, 17,  DOI: 10.1128/JCM.00783-20
    41. 41
      FDA Coronavirus (COVID-19) Update: FDA Informs Public About Possible Accuracy Concerns with Abbott ID NOW Point-of-Care Test. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-informs-public-about-possible-accuracy-concerns-abbott-id-now-point (accessed June 25, 2020).
    42. 42
      Barratt, K.; Mackay, J. F. Improving real-time PCR genotyping assays by asymmetric amplification. J. Clin. Microbiol. 2002, 40, 15711572,  DOI: 10.1128/JCM.40.4.1571-1572.2002
    43. 43
      Mackay, I. M.; Jacob, K. C.; Woolhouse, D.; Waller, K.; Syrmis, M. W.; Whiley, D. M.; Siebert, D. J.; Nissen, M.; Sloots, T. P. Molecular assays for detection of human metapneumovirus. J. Clin. Microbiol. 2003, 41, 100105,  DOI: 10.1128/JCM.41.1.100-105.2003
    44. 44
      Pillonel, T.; Scherz, V.; Jaton, K.; Greub, G.; Bertelli, C. Letter to the editor: SARS-CoV-2 detection by real-time RT-PCR. Eurosurveillance 2020, 25, 2000880  DOI: 10.2807/1560-7917.ES.2020.25.21.2000880
    45. 45
      Skerra, A. Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity. Nucleic Acids Res. 1992, 20, 35513554,  DOI: 10.1093/nar/20.14.3551
    46. 46
      (BAuA), B. f. A. u. A. Empfehlungen zu Arbeitsschutzmaßnahmen bei der Point-Of-Care-SARS-CoV-2 Diagnostik. (accessed Nov 8, 2020).
    47. 47
      Fomsgaard, A. S.; Rosenstierne, M. W. An alternative workflow for molecular detection of SARS-CoV-2 - escape from the NA extraction kit-shortage, Copenhagen, Denmark, March 2020. Eurosurveillance 2020, 25, 2000398  DOI: 10.2807/1560-7917.es.2020.25.14.2000398
    48. 48
      Lista, mJ.; Page, R.; Sertkaya, H.; Matos, P.; Ortiz-Zapater, E.; Maguire, T. J. A.; Poulton, K.; O’Byrne, A.; Bouton, C.; Dickenson, R. E.; Ficarelli, M.; Howard, M.; Betancor, G.; Galao, R. P.; Pickering, S.; Signell, A. W.; Wilson, H.; Cliff, P.; Ik, M. T. K.; Patel, A.; MacMahon, E.; Cunningham, E.; Doores, K.; Agromayor, M.; Martin-Serrano, J. M.; Perucha, E.; Mischo, H. E.; Shankar-Hari, M.; Batra, R.; Edgeworth, J.; Malim, M. H.; Neil, S.; Martinez-Nunez, R. T. Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation medRxiv 2020,  DOI: 10.1101/2020.04.22.20074351 .
    49. 49
      Kuiper, J. W. P.; Baade, T.; Kremer, M.; Kranaster, R.; Irmisch, L.; Schuchmann, M.; Zander, J.; Marx, A.; Hauck, C. R. Detection of SARS-CoV-2 from raw patient samples by coupled high temperature reverse transcription and amplification. PLoS One 2020, 15, e0241740  DOI: 10.1371/journal.pone.0241740
    50. 50
      Bonney, L. C.; Watson, R. J.; Afrough, B.; Mullojonova, M.; Dzhuraeva, V.; Tishkova, F.; Hewson, R. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection. PLoS Neglected Trop. Dis. 2017, 11, e0006013  DOI: 10.1371/journal.pntd.0006013
    51. 51
      Daher, R. K.; Stewart, G.; Boissinot, M.; Bergeron, M. G. Recombinase Polymerase Amplification for Diagnostic Applications. Clin. Chem. 2016, 62, 94758,  DOI: 10.1373/clinchem.2015.245829
    52. 52
      Daher, R. K.; Stewart, G.; Boissinot, M.; Bergeron, M. G. Isothermal recombinase polymerase amplification assay applied to the detection of group B streptococci in vaginal/anal samples. Clin. Chem. 2014, 60, 660666,  DOI: 10.1373/clinchem.2013.213504
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.analchem.0c04779.

    • Mobile suitcase lab (Figure S1) and raw data of screening clinical samples in African settings (Table S1) (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.