ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Miniaturized Carbon Fiber Paper Electrodes for In Situ High Resolution NMR Analyses

Cite this: Anal. Chem. 2022, 94, 44, 15223–15230
Publication Date (Web):October 27, 2022
https://doi.org/10.1021/acs.analchem.2c02058
Copyright © 2022 American Chemical Society

    Article Views

    590

    Altmetric

    -

    Citations

    -
    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Combining spectroscopic techniques with electrochemistry is a promising strategy, as it allows the detailed investigation of the species that are consumed and produced by the reaction in real time. However, as with any in situ coupling technique, the junction between NMR and electrochemistry presents some challenges, notably the distortion of NMR signals due to the placement of electrodes close to or within the detection region. In this work, miniaturized electrodes made of carbon fiber paper were developed and later modified with platinum. Platinum decoration by cathodic deposition was chosen, as platinum is a prominent element in electrocatalysis, able to catalyze a large variety of reactions. To evaluate the efficiency of this electrochemical system, the oxidation of ascorbic acid was used as a model reaction. It was observed that the electrodes caused substantial signal distortion when placed within the detection region (full width at half-maximum equal to 1.46 Hz), whereas no distortion was observed when the electrodes were placed 1 mm above the detection region (full width at half-maximum equal to 0.95 Hz). With this system, it was also possible to monitor the magnetoelectrolysis effect, caused by the interaction of the magnetic field with the flowing ions, leading to a doubling of the ascorbic acid oxidation rate, compared to the reaction performed without a magnetic field. In addition to its low cost and simplicity in preparation, the developed electrode system allows the electrode surface to be easily modified with other suitable catalysts.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.analchem.2c02058.

    • Magnetohydrodynamic effect on voltammograms and chronoamperograms; Considerations about carbon paper electrode stability (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article has not yet been cited by other publications.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect