ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Comprehensive Two-Dimensional Liquid Chromatography with Stationary-Phase-Assisted Modulation Coupled to High-Resolution Mass Spectrometry Applied to Proteome Analysis of Saccharomyces cerevisiae

View Author Information
University of Amsterdam, van’t Hoff Institute for Molecular Sci, Analytical-Chemistry Group, and §Swammerdam Institute for Life Sciences, Mass Spectrometry of Biomacromolecules, Science Park 904, 1098 XH Amsterdam, The Netherlands
TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium
*Tel.: +31 (0)20 525 6424. Fax: +31 (0)20 525 5604. E-mail: [email protected]
Cite this: Anal. Chem. 2015, 87, 10, 5387–5394
Publication Date (Web):April 20, 2015
https://doi.org/10.1021/acs.analchem.5b00708
Copyright © 2015 American Chemical Society

    Article Views

    1701

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Stationary-phase-assisted modulation is used to overcome one of the limitations of contemporary comprehensive two-dimensional liquid chromatography, which arises from the combination of a first-dimension column that is typically narrow and long and a second-dimension column that is wide and short. Shallow gradients at low flow rates are applied in the first dimension, whereas fast analyses (at high flow rates) are required in the second dimension. Limitations of this approach include a low sample capacity of the first-dimension column and a high dilution of the sample in the complete system. Moreover, the relatively high flow rates used for the second dimension make direct (splitless) hyphenation to mass spectrometry difficult. In the present study we demonstrate that stationary-phase-assisted modulation can be implemented in an online comprehensive two-dimensional LC (LC × LC) setup to shift this paradigm. The proposed active modulation makes it possible to choose virtually any combination of first- and second-dimension column diameters without loss in system performance. In the current setup, a 0.30 mm internal diameter first-dimension column with a relatively high loadability is coupled to a 0.075 mm internal diameter second-dimension column. This actively modulated system is coupled to a nanoelectrospray high-resolution mass spectrometer and applied for the separation of the tryptic peptides of a six-protein mixture and for the proteome-wide analyses of yeast from Saccharomyces cerevisiae. In the latter application, about 20000 MS/MS spectra are generated within 24 h analysis time, resulting in the identification of 701 proteins.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 78 publications.

    1. Kristina Wicht, Mathijs Baert, Sonja Schipperges, Norwin von Doehren, Gert Desmet, Kevin M. Van Geem, André de Villiers, Frédéric Lynen. Enhanced Sensitivity in Comprehensive Liquid Chromatography: Overcoming the Dilution Problem in LC × LC via Temperature-Responsive Liquid Chromatography. Analytical Chemistry 2022, 94 (48) , 16728-16737. https://doi.org/10.1021/acs.analchem.2c03300
    2. Shijia Tang, Cadapakam J. Venkatramani. Resolving Solvent Incompatibility in Two-Dimensional Liquid Chromatography with In-Line Mixing Modulation. Analytical Chemistry 2022, 94 (46) , 16142-16150. https://doi.org/10.1021/acs.analchem.2c03572
    3. Ruipeng Mu, Yue Huang, Jerome Bouquet, Jiaqi Yuan, Robert J. Kubiak, Eric Ma, Sami Naser, William R. Mylott, Jr., Omnia A. Ismaiel, Aaron M. Wheeler, Rebecca Burkart, Diego F. Cortes, James Bruton, Rosalinda H. Arends, Meina Liang, Anton I. Rosenbaum. Multiplex Hybrid Antigen-Capture LC-MRM Quantification in Sera and Nasal Lining Fluid of AZD7442, a SARS-CoV-2-Targeting Antibody Combination. Analytical Chemistry 2022, 94 (43) , 14835-14845. https://doi.org/10.1021/acs.analchem.2c01320
    4. Runsheng Zheng, Natalia Govorukhina, Tabiwang N. Arrey, Christopher Pynn, Ate van der Zee, György Marko-Varga, Rainer Bischoff, Alexander Boychenko. Online-2D NanoLC-MS for Crude Serum Proteome Profiling: Assessing Sample Preparation Impact on Proteome Composition. Analytical Chemistry 2021, 93 (28) , 9663-9668. https://doi.org/10.1021/acs.analchem.1c01291
    5. Jelle De Vos, Magali Dams, Ken Broeckhoven, Gert Desmet, Burkhard Horstkotte, Sebastiaan Eeltink. Prototyping of a Microfluidic Modulator Chip and Its Application in Heart-Cut Strong-Cation-Exchange-Reversed-Phase Liquid Chromatography Coupled to Nanoelectrospray Mass Spectrometry for Targeted Proteomics. Analytical Chemistry 2020, 92 (3) , 2388-2392. https://doi.org/10.1021/acs.analchem.9b05141
    6. Yingzhuang Chen, Junjie Li, Oliver J. Schmitz. Development of an At-Column Dilution Modulator for Flexible and Precise Control of Dilution Factors to Overcome Mobile Phase Incompatibility in Comprehensive Two-Dimensional Liquid Chromatography. Analytical Chemistry 2019, 91 (15) , 10251-10257. https://doi.org/10.1021/acs.analchem.9b02391
    7. Bob W. J. Pirok, Dwight R. Stoll, Peter J. Schoenmakers. Recent Developments in Two-Dimensional Liquid Chromatography: Fundamental Improvements for Practical Applications. Analytical Chemistry 2019, 91 (1) , 240-263. https://doi.org/10.1021/acs.analchem.8b04841
    8. Andrea F. G. Gargano, Jared B. Shaw, Mowei Zhou, Christopher S. Wilkins, Thomas L. Fillmore, Ronald J. Moore, Govert W. Somsen, Ljiljana Paša-Tolić. Increasing the Separation Capacity of Intact Histone Proteoforms Chromatography Coupling Online Weak Cation Exchange-HILIC to Reversed Phase LC UVPD-HRMS. Journal of Proteome Research 2018, 17 (11) , 3791-3800. https://doi.org/10.1021/acs.jproteome.8b00458
    9. Ulrich Woiwode, Roland Johann Reischl, Stephan Buckenmaier, Wolfgang Lindner, Michael Lämmerhofer. Imaging Peptide and Protein Chirality via Amino Acid Analysis by Chiral × Chiral Two-Dimensional Correlation Liquid Chromatography. Analytical Chemistry 2018, 90 (13) , 7963-7971. https://doi.org/10.1021/acs.analchem.8b00676
    10. Simon S. Jakobsen, Jan H. Christensen, Sylvain Verdier, Claude R. Mallet, and Nikoline J. Nielsen . Increasing Flexibility in Two-Dimensional Liquid Chromatography by Pulsed Elution of the First Dimension: A Proof of Concept. Analytical Chemistry 2017, 89 (17) , 8723-8730. https://doi.org/10.1021/acs.analchem.7b00758
    11. Peng Yu, Svenja Petzoldt, Mathias Wilhelm, Daniel Paul Zolg, Runsheng Zheng, Xuefei Sun, Xiaodong Liu, Günter Schneider, Andreas Huhmer, and Bernhard Kuster . Trimodal Mixed Mode Chromatography That Enables Efficient Offline Two-Dimensional Peptide Fractionation for Proteome Analysis. Analytical Chemistry 2017, 89 (17) , 8884-8891. https://doi.org/10.1021/acs.analchem.7b01356
    12. Dwight R. Stoll, Konstantin Shoykhet, Patrik Petersson, and Stephan Buckenmaier . Active Solvent Modulation: A Valve-Based Approach To Improve Separation Compatibility in Two-Dimensional Liquid Chromatography. Analytical Chemistry 2017, 89 (17) , 9260-9267. https://doi.org/10.1021/acs.analchem.7b02046
    13. Ming-Zhi Zhu, Na Li, Yi-Tong Wang, Ning Liu, Ming-Quan Guo, Bao-qing Sun, Hua Zhou, Liang Liu, and Jian-Lin Wu . Acid/Salt/pH Gradient Improved Resolution and Sensitivity in Proteomics Study Using 2D SCX-RP LC–MS. Journal of Proteome Research 2017, 16 (9) , 3470-3475. https://doi.org/10.1021/acs.jproteome.7b00443
    14. Meritxell Navarro-Reig, Joaquim Jaumot, Anna Baglai, Gabriel Vivó-Truyols, Peter J. Schoenmakers, and Romà Tauler . Untargeted Comprehensive Two-Dimensional Liquid Chromatography Coupled with High-Resolution Mass Spectrometry Analysis of Rice Metabolome Using Multivariate Curve Resolution. Analytical Chemistry 2017, 89 (14) , 7675-7683. https://doi.org/10.1021/acs.analchem.7b01648
    15. Chandan L. Barhate, Erik L. Regalado, Nathan D. Contrella, Joon Lee, Junyong Jo, Alexey A. Makarov, Daniel W. Armstrong, and Christopher J. Welch . Ultrafast Chiral Chromatography as the Second Dimension in Two-Dimensional Liquid Chromatography Experiments. Analytical Chemistry 2017, 89 (6) , 3545-3553. https://doi.org/10.1021/acs.analchem.6b04834
    16. Shuangyuan Wang, Xianzhe Shi, and Guowang Xu . Online Three Dimensional Liquid Chromatography/Mass Spectrometry Method for the Separation of Complex Samples. Analytical Chemistry 2017, 89 (3) , 1433-1438. https://doi.org/10.1021/acs.analchem.6b04401
    17. Francesco Cacciola, Paola Donato, Danilo Sciarrone, Paola Dugo, and Luigi Mondello . Comprehensive Liquid Chromatography and Other Liquid-Based Comprehensive Techniques Coupled to Mass Spectrometry in Food Analysis. Analytical Chemistry 2017, 89 (1) , 414-429. https://doi.org/10.1021/acs.analchem.6b04370
    18. Matthew Geiger and Michael T. Bowser . Effect of Fluorescent Labels on Peptide and Amino Acid Sample Dimensionality in Two Dimensional nLC × μFFE Separations. Analytical Chemistry 2016, 88 (4) , 2177-2187. https://doi.org/10.1021/acs.analchem.5b03811
    19. Andrea F. G. Gargano, Mike Duffin, Pablo Navarro, and Peter J. Schoenmakers . Reducing Dilution and Analysis Time in Online Comprehensive Two-Dimensional Liquid Chromatography by Active Modulation. Analytical Chemistry 2016, 88 (3) , 1785-1793. https://doi.org/10.1021/acs.analchem.5b04051
    20. Rick S. van den Hurk, Matthias Pursch, Dwight R. Stoll, Bob W.J. Pirok. Recent trends in two-dimensional liquid chromatography. TrAC Trends in Analytical Chemistry 2023, 166 , 117166. https://doi.org/10.1016/j.trac.2023.117166
    21. Leon E. Niezen, Tijmen S. Bos, Peter J. Schoenmakers, Govert W. Somsen, Bob W.J. Pirok. Capacitively coupled contactless conductivity detection to account for system-induced gradient deformation in liquid chromatography. Analytica Chimica Acta 2023, 1271 , 341466. https://doi.org/10.1016/j.aca.2023.341466
    22. Liping Zhang, Lingling Shen, Qisheng Zhong, Ting Zhou. Diluting modulation-based two dimensional-liquid chromatography coupled with mass spectrometry for simultaneously determining multiclass prohibited substances in cosmetics. Journal of Chromatography A 2023, 1695 , 463954. https://doi.org/10.1016/j.chroma.2023.463954
    23. Kateřina Hrůzová, Martina Nechvátalová, Jiří Urban. Segmented two-dimensional liquid chromatography. Proof of concept study. Journal of Chromatography A 2023, 1691 , 463811. https://doi.org/10.1016/j.chroma.2023.463811
    24. Francesco Cacciola, Katia Arena, Paola Dugo, Luigi Mondello. Multidimensional liquid chromatography. 2023, 563-575. https://doi.org/10.1016/B978-0-323-99968-7.00014-X
    25. Haiping Xiang, Ping Xu, Huiyun Qiu, Weiyi Wen, Ailian Zhang, Shengqiang Tong. Two‐dimensional chromatography in screening of bioactive components from natural products. Phytochemical Analysis 2022, 33 (8) , 1161-1176. https://doi.org/10.1002/pca.3168
    26. Lapo Renai, Massimo Del Bubba, Saer Samanipour, Rebecca Stafford, Andrea F.G. Gargano. Development of a comprehensive two-dimensional liquid chromatographic mass spectrometric method for the non-targeted identification of poly- and perfluoroalkyl substances in aqueous film-forming foams. Analytica Chimica Acta 2022, 1232 , 340485. https://doi.org/10.1016/j.aca.2022.340485
    27. Mimi J. den Uijl, Tim Roeland, Tijmen S. Bos, Peter J. Schoenmakers, Maarten R. van Bommel, Bob W.J. Pirok. Assessing the feasibility of stationary-phase-assisted modulation for two-dimensional liquid-chromatography separations. Journal of Chromatography A 2022, 1679 , 463388. https://doi.org/10.1016/j.chroma.2022.463388
    28. Rick S. van den Hurk, Noor Abdulhussain, Anouk S.A. van Beurden, Mabel E. Dekker, Annemieke Hulsbergen, Ron A.H. Peters, Bob W.J. Pirok, Arian C. van Asten. Characterization and comparison of smokeless powders by on-line two-dimensional liquid chromatography. Journal of Chromatography A 2022, 1672 , 463072. https://doi.org/10.1016/j.chroma.2022.463072
    29. Isabelle Kohler, Michel Verhoeven, Rob Haselberg, Andrea F.G. Gargano. Hydrophilic interaction chromatography – mass spectrometry for metabolomics and proteomics: state-of-the-art and current trends. Microchemical Journal 2022, 175 , 106986. https://doi.org/10.1016/j.microc.2021.106986
    30. Peilin Yang, WeiGao Gao, Matthias Pursch, Jim Luong. Gaining New Insights in Advanced Polymeric Materials Using Comprehensive Two-Dimensional Liquid Chromatography. LCGC North America 2022, , 186-189. https://doi.org/10.56530/lcgc.na.xh1183h9
    31. Soraya Chapel, Sabine Heinisch. Strategies to circumvent the solvent strength mismatch problem in online comprehensive two‐dimensional liquid chromatography. Journal of Separation Science 2022, 45 (1) , 7-26. https://doi.org/10.1002/jssc.202100534
    32. Jim Boelrijk, Bob Pirok, Bernd Ensing, Patrick Forré. Bayesian Optimization of Comprehensive Two-dimensional Liquid Chromatography Separations. Journal of Chromatography A 2021, 1262 , 462628. https://doi.org/10.1016/j.chroma.2021.462628
    33. Leon E. Niezen, Bastiaan B.P. Staal, Christiane Lang, Bob W.J. Pirok, Peter J. Schoenmakers. Thermal modulation to enhance two-dimensional liquid chromatography separations of polymers. Journal of Chromatography A 2021, 1653 , 462429. https://doi.org/10.1016/j.chroma.2021.462429
    34. Mariosimone Zoccali, Francesco Cacciola, Katia Arena, Paola Dugo, Luigi Mondello. Comprehensive Two‐dimensional Chromatography: An Insight into the Analysis of Food and Food Products. 2021, 1-32. https://doi.org/10.1002/9780470027318.a9763
    35. Liana S. Roca, Andrea F.G. Gargano, Peter J. Schoenmakers. Development of comprehensive two-dimensional low-flow liquid-chromatography setup coupled to high-resolution mass spectrometry for shotgun proteomics. Analytica Chimica Acta 2021, 1156 , 338349. https://doi.org/10.1016/j.aca.2021.338349
    36. Vincent Pepermans, Soraya Chapel, Sabine Heinisch, Gert Desmet. Detailed numerical study of the peak shapes of neutral analytes injected at high solvent strength in short reversed-phase liquid chromatography columns and comparison with experimental observations. Journal of Chromatography A 2021, 1643 , 462078. https://doi.org/10.1016/j.chroma.2021.462078
    37. Miriam Pérez-Cova, Joaquim Jaumot, Romà Tauler. Untangling comprehensive two-dimensional liquid chromatography data sets using regions of interest and multivariate curve resolution approaches. TrAC Trends in Analytical Chemistry 2021, 137 , 116207. https://doi.org/10.1016/j.trac.2021.116207
    38. Julien Camperi, Alexandre Goyon, Davy Guillarme, Kelly Zhang, Cinzia Stella. Multi-dimensional LC-MS: the next generation characterization of antibody-based therapeutics by unified online bottom-up, middle-up and intact approaches. The Analyst 2021, 146 (3) , 747-769. https://doi.org/10.1039/D0AN01963A
    39. Miriam Pérez-Cova, Romà Tauler, Joaquim Jaumot. Two-Dimensional Liquid Chromatography in Metabolomics and Lipidomics. 2021, 25-47. https://doi.org/10.1007/978-1-0716-0864-7_3
    40. Raffaella Pascale, Alberto Onzo, Rosanna Ciriello, Laura Scrano, Sabino A. Bufo, Giuliana Bianco. LC/MS Based Food Metabolomics. 2021, 39-53. https://doi.org/10.1016/B978-0-08-100596-5.22774-1
    41. H.C. van de Ven, J. Purmova, G. Groeneveld, Tijmen S. Bos, A.F.G. Gargano, Sj. van der Wal, Y. Mengerink, Peter J. Schoenmakers. Living with Breakthrough: Two-Dimensional Liquid-Chromatography Separations of a Water-Soluble Synthetically Grafted Bio-Polymer. Separations 2020, 7 (3) , 41. https://doi.org/10.3390/separations7030041
    42. Wolfgang Esser-Skala, Marius Segl, Therese Wohlschlager, Veronika Reisinger, Johann Holzmann, Christian G. Huber. Exploring sample preparation and data evaluation strategies for enhanced identification of host cell proteins in drug products of therapeutic antibodies and Fc-fusion proteins. Analytical and Bioanalytical Chemistry 2020, 412 (24) , 6583-6593. https://doi.org/10.1007/s00216-020-02796-1
    43. Francesco Cacciola, Francesca Rigano, Paola Dugo, Luigi Mondello. Comprehensive two-dimensional liquid chromatography as a powerful tool for the analysis of food and food products. TrAC Trends in Analytical Chemistry 2020, 127 , 115894. https://doi.org/10.1016/j.trac.2020.115894
    44. Marco Beccaria, Deirdre Cabooter. Current developments in LC-MS for pharmaceutical analysis. The Analyst 2020, 145 (4) , 1129-1157. https://doi.org/10.1039/C9AN02145K
    45. Theodora Adamopoulou, Sander Deridder, Tijmen S. Bos, Suhas Nawada, Gert Desmet, Peter J. Schoenmakers. Optimizing design and employing permeability differences to achieve flow confinement in devices for spatial multidimensional liquid chromatography. Journal of Chromatography A 2020, 1612 , 460665. https://doi.org/10.1016/j.chroma.2019.460665
    46. Van-An Duong, Jong-Moon Park, Hookeun Lee. Review of Three-Dimensional Liquid Chromatography Platforms for Bottom-Up Proteomics. International Journal of Molecular Sciences 2020, 21 (4) , 1524. https://doi.org/10.3390/ijms21041524
    47. Francesco Cacciola, Domenica Mangraviti, Luigi Mondello, Paola Dugo. Hyphenations of 2D capillary-based LC with mass spectrometry. 2020, 369-412. https://doi.org/10.1016/B978-0-12-809638-3.00010-7
    48. Zachary D. Dunn, Jayesh Desai, Gabriel M. Leme, Dwight R. Stoll, Douglas D. Richardson. Rapid two-dimensional Protein-A size exclusion chromatography of monoclonal antibodies for titer and aggregation measurements from harvested cell culture fluid samples. mAbs 2020, 12 (1) https://doi.org/10.1080/19420862.2019.1702263
    49. Yingzhuang Chen, Lidia Montero, Oliver J. Schmitz. Advance in on-line two-dimensional liquid chromatography modulation technology. TrAC Trends in Analytical Chemistry 2019, 120 , 115647. https://doi.org/10.1016/j.trac.2019.115647
    50. Peilin Yang, Wei Gao, Tianlan Zhang, Matthias Pursch, Jim Luong, Wesley Sattler, Anurima Singh, Scott Backer. Two‐dimensional liquid chromatography with active solvent modulation for studying monomer incorporation in copolymer dispersants. Journal of Separation Science 2019, 42 (17) , 2805-2815. https://doi.org/10.1002/jssc.201900283
    51. Gino Groeneveld, Bob W. J. Pirok, Peter J. Schoenmakers. Perspectives on the future of multi-dimensional platforms. Faraday Discussions 2019, 218 , 72-100. https://doi.org/10.1039/C8FD00233A
    52. Bob W.J. Pirok, Noor Abdulhussain, Ton Brooijmans, Tijs Nabuurs, Jens de Bont, Mike A.J. Schellekens, Ron A.H. Peters, Peter J. Schoenmakers. Analysis of charged acrylic particles by on-line comprehensive two-dimensional liquid chromatography and automated data-processing. Analytica Chimica Acta 2019, 1054 , 184-192. https://doi.org/10.1016/j.aca.2018.12.059
    53. Yingzhuang Chen, Yajun Wu, Xiaoming Liu, Bowen Li, Deping Hu, Si Huang, Ming Ma, Bo Chen. Pulsed elution modulation for on-line comprehensive two-dimensional liquid chromatography coupling reversed phase liquid chromatography and hydrophilic interaction chromatography. Journal of Chromatography A 2019, 1583 , 98-107. https://doi.org/10.1016/j.chroma.2018.11.023
    54. Praveen Kallamvalliillam Sankaran, Pradeep G. Kabadi, Chethan Gejjalagere Honnappa, Malini Subbarao, Harish V. Pai, Laxmi Adhikary, Dinesh V. Palanivelu. Identification and quantification of product-related quality attributes in bio-therapeutic monoclonal antibody via a simple, and robust cation-exchange HPLC method compatible with direct online detection of UV and native ESI-QTOF-MS analysis. Journal of Chromatography B 2018, 1102-1103 , 83-95. https://doi.org/10.1016/j.jchromb.2018.10.019
    55. Anna Baglai, Marco H. Blokland, Hans G.J. Mol, Andrea F.G. Gargano, Sjoerd van der Wal, Peter J. Schoenmakers. Enhancing detectability of anabolic-steroid residues in bovine urine by actively modulated online comprehensive two-dimensional liquid chromatography – high-resolution mass spectrometry. Analytica Chimica Acta 2018, 1013 , 87-97. https://doi.org/10.1016/j.aca.2017.12.043
    56. Elisenda Fornells, Brett Barnett, Mike Bailey, Emily F. Hilder, Robert A. Shellie, Michael C. Breadmore. Evaporative membrane modulation for comprehensive two-dimensional liquid chromatography. Analytica Chimica Acta 2018, 1000 , 303-309. https://doi.org/10.1016/j.aca.2017.11.053
    57. Cong-Yu Ke, Guo-Min Lu, Wu-Juan Sun, Xun-Li Zhang. High efficiency and fast separation of active proteins by HIC chromatographic pie with sub-2 μm polymer packings. Journal of Chromatography B 2018, 1076 , 110-116. https://doi.org/10.1016/j.jchromb.2017.12.027
    58. Francesco Cacciola, Marina Russo, Luigi Mondello, Paola Dugo. Comprehensive Two-Dimensional Liquid Chromatography Coupled to Mass Spectrometry. 2018, 81-123. https://doi.org/10.1016/bs.coac.2017.08.010
    59. Valentina D'Atri, Tim Causon, Oscar Hernandez‐Alba, Aline Mutabazi, Jean‐Luc Veuthey, Sarah Cianferani, Davy Guillarme. Adding a new separation dimension to MS and LC–MS: What is the utility of ion mobility spectrometry?. Journal of Separation Science 2018, 41 (1) , 20-67. https://doi.org/10.1002/jssc.201700919
    60. Bob W.J. Pirok, Andrea F.G. Gargano, Peter J. Schoenmakers. Optimizing separations in online comprehensive two‐dimensional liquid chromatography. Journal of Separation Science 2018, 41 (1) , 68-98. https://doi.org/10.1002/jssc.201700863
    61. Anna Baglai, Andrea F.G. Gargano, Jan Jordens, Ynze Mengerink, Maarten Honing, Sjoerd van der Wal, Peter J. Schoenmakers. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography–mass spectrometry vs. liquid chromatography–trapped-ion-mobility–mass spectrometry. Journal of Chromatography A 2017, 1530 , 90-103. https://doi.org/10.1016/j.chroma.2017.11.014
    62. Lidia Montero, Elena Ibáñez, Mariateresa Russo, Luca Rastrelli, Alejandro Cifuentes, Miguel Herrero. Focusing and non-focusing modulation strategies for the improvement of on-line two-dimensional hydrophilic interaction chromatography × reversed phase profiling of complex food samples. Analytica Chimica Acta 2017, 985 , 202-212. https://doi.org/10.1016/j.aca.2017.07.013
    63. Eduardo Sommella, Omar H. Ismail, Francesco Pagano, Giacomo Pepe, Carmine Ostacolo, Giulia Mazzoccanti, Mariateresa Russo, Ettore Novellino, Francesco Gasparrini, Pietro Campiglia. Development of an improved online comprehensive hydrophilic interaction chromatography × reversed-phase ultra-high-pressure liquid chromatography platform for complex multiclass polyphenolic sample analysis. Journal of Separation Science 2017, 40 (10) , 2188-2197. https://doi.org/10.1002/jssc.201700134
    64. Sam Wouters, Paul R. Haddad, Sebastiaan Eeltink. System Design and Emerging Hardware Technology for Ion Chromatography. Chromatographia 2017, 80 (5) , 689-704. https://doi.org/10.1007/s10337-016-3184-z
    65. Anna Laura Capriotti, Chiara Cavaliere, Alberto Cavazzini, Francesco Gasparrini, Giuseppe Pierri, Susy Piovesana, Aldo Laganà. A multidimensional liquid chromatography–tandem mass spectrometry platform to improve protein identification in high-throughput shotgun proteomics. Journal of Chromatography A 2017, 1498 , 176-182. https://doi.org/10.1016/j.chroma.2017.03.032
    66. Francesco Cacciola, Marina Russo, Luigi Mondello, Paola Dugo. Comprehensive two-dimensional liquid chromatography. 2017, 403-415. https://doi.org/10.1016/B978-0-12-805393-5.00016-6
    67. Dwight R. Stoll. Introduction to Two-Dimensional Liquid Chromatography—Theory and Practice. 2017, 227-286. https://doi.org/10.1016/B978-0-12-811732-3.00007-8
    68. J. A. Navarro-Huerta, T. Alvarez-Segura, J. R. Torres-Lapasió, M. C. García-Alvarez-Coque. Study of the performance of a resolution criterion to characterise complex chromatograms with unknowns or without standards. Analytical Methods 2017, 9 (29) , 4293-4303. https://doi.org/10.1039/C7AY00399D
    69. Petr Česla, Jana Křenková. Fraction transfer process in on-line comprehensive two-dimensional liquid-phase separations. Journal of Separation Science 2017, 40 (1) , 109-123. https://doi.org/10.1002/jssc.201600921
    70. Luke M. Andrighetto, Niki K. Burns, Paul G. Stevenson, James R. Pearson, Luke C. Henderson, Christopher J. Bowen, Xavier A. Conlan. In-silico optimisation of two-dimensional high performance liquid chromatography for the determination of Australian methamphetamine seizure samples. Forensic Science International 2016, 266 , 511-516. https://doi.org/10.1016/j.forsciint.2016.07.016
    71. Jelle De Vos, Gert Desmet, Sebastiaan Eeltink. Enhancing detection sensitivity in gradient liquid chromatography via post-column refocusing and strong-solvent remobilization. Journal of Chromatography A 2016, 1455 , 86-92. https://doi.org/10.1016/j.chroma.2016.05.046
    72. Bob W.J. Pirok, Sandra Pous-Torres, Cassandra Ortiz-Bolsico, Gabriel Vivó-Truyols, Peter J. Schoenmakers. Program for the interpretive optimization of two-dimensional resolution. Journal of Chromatography A 2016, 1450 , 29-37. https://doi.org/10.1016/j.chroma.2016.04.061
    73. Christian Lanshoeft, Olivier Heudi, Sarah Cianférani, Andrew P Warren, Franck Picard, Olivier Kretz. Quantitative analysis of hIgG1 in monkey serum by LC–MS/MS using mass spectrometric immunoassay. Bioanalysis 2016, 8 (10) , 1035-1049. https://doi.org/10.4155/bio.16.32
    74. Jackson Champer, James Ito, Karl Clemons, David Stevens, Markus Kalkum. Proteomic Analysis of Pathogenic Fungi Reveals Highly Expressed Conserved Cell Wall Proteins. Journal of Fungi 2016, 2 (1) , 6. https://doi.org/10.3390/jof2010006
    75. H.C. van de Ven, A.F.G. Gargano, Sj. van der Wal, P.J. Schoenmakers. Switching solvent and enhancing analyte concentrations in small effluent fractions using in-column focusing. Journal of Chromatography A 2016, 1427 , 90-95. https://doi.org/10.1016/j.chroma.2015.11.082
    76. Lan Luo, Yan Ren, Jie Liu, Xiaodong Wen. Investigation of a rapid and sensitive non-aqueous reaction system for the determination of acrylamide in processed foods by gas chromatography-mass spectrometry. Analytical Methods 2016, 8 (30) , 5970-5977. https://doi.org/10.1039/C6AY00673F
    77. Dwight R Stoll. Recent advances in 2D-LC for bioanalysis. Bioanalysis 2015, 7 (24) , 3125-3142. https://doi.org/10.4155/bio.15.223
    78. Ronald de Vries, Valerie Koppen. HPLC 2015. Bioanalysis 2015, 7 (20) , 2681-2684. https://doi.org/10.4155/bio.15.169

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect