logo
CONTENT TYPES

Accelerated Isotope Fine Structure Calculation Using Pruned Transition Trees

View Author Information
Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
§ Department of Information and Computer Science, Aalto University, 02150 Espoo, Finland
Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Ceará 60020-181, Brazil
Cite this: Anal. Chem. 2015, 87, 11, 5738–5744
Publication Date (Web):April 30, 2015
https://doi.org/10.1021/acs.analchem.5b00941
Copyright © 2015 American Chemical Society
Article Views
1184
Altmetric
-
Citations
LEARN ABOUT THESE METRICS

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

Read OnlinePDF (1 MB)

Abstract

Abstract Image

A fast and memory-efficient calculation of theoretical isotope patterns is crucial for the routine interpretation of mass spectrometric data. For high-resolution experiments, calculations must procure the exact masses and probabilities of relevant isotopologues over a wide range of polyisotopic compounds, while pruning low-probable ones. Here, a novel albeit simple treelike structure is introduced to swiftly derive sets of relevant subisotopologues for each element in a molecule, which are then combined to the isotopologues of the full molecule. In contrast to existing approaches, transitions via single replacements of the most abundant isotope per element are used in separable tree branches to derive subisotopologues from each other. Moreover, the underlying transition trees prevent redundant replacements and permit the detection of the most probable isotopologue in a first phase. A relative threshold can then be exploited in a second parallelized phase for a precise prepruning of large fractions of the remaining subisotopologues. The gain in performance from such early pruning and the lower variation in the distortion of simulated data with use of relative rather than absolute thresholds were validated in a large-scale benchmark simulation, unprecedentedly comprising several thousand molecular formulas. Both the algorithm and a wealth of related features are freely available as R-package enviPat and as a user-friendly Web interface.

Cited By


This article is cited by 60 publications.

  1. Konstantin O. Nagornov, Anton N. Kozhinov, Natalia Gasilova, Laure Menin, Yury O. Tsybin. Transient-Mediated Simulations of FTMS Isotopic Distributions and Mass Spectra to Guide Experiment Design and Data Analysis. Journal of the American Society for Mass Spectrometry 2020, 31 (9) , 1927-1942. https://doi.org/10.1021/jasms.0c00190
  2. Patrick Kreitzberg, Jake Pennington, Kyle Lucke, Oliver Serang. Fast Exact Computation of the k Most Abundant Isotope Peaks with Layer-Ordered Heaps. Analytical Chemistry 2020, 92 (15) , 10613-10619. https://doi.org/10.1021/acs.analchem.0c01670
  3. Mateusz K. Łącki, Dirk Valkenborg, Michał P. Startek. IsoSpec2: Ultrafast Fine Structure Calculator. Analytical Chemistry 2020, 92 (14) , 9472-9475. https://doi.org/10.1021/acs.analchem.0c00959
  4. Erik D. Reinhart, Richard F. Jordan. Synthesis and Ethylene Reactivity of Dinuclear Iron and Cobalt Complexes Supported by Macrocyclic Bis(pyridine-diimine) Ligands Containing o-Terphenyl Linkers. Organometallics 2020, 39 (13) , 2392-2404. https://doi.org/10.1021/acs.organomet.0c00211
  5. Ye Peng, Limeng Wang, Ying Zhang, Huimin Bao, Haojie Lu. Stable Isotope Sequential Derivatization for Linkage-Specific Analysis of Sialylated N-Glycan Isomers by MS. Analytical Chemistry 2019, 91 (24) , 15993-16001. https://doi.org/10.1021/acs.analchem.9b04727
  6. D. Lorenzo, A. Romero, L. Del-Arco, A. Santos. Transformation of Cyclic Ketones as Impurities in Cyclohexanone in the Caprolactam Production Process. Industrial & Engineering Chemistry Research 2019, 58 (48) , 21983-21995. https://doi.org/10.1021/acs.iecr.9b04982
  7. Erik D. Reinhart, Richard F. Jordan. Template-Free Synthesis of a Macrocyclic Bis(pyridine-dienamine) Proligand and Metal Complexes of Its Bis(pyridine-diimine) and Bis(pyridine-dienamido) Forms. Inorganic Chemistry 2019, 58 (22) , 15466-15478. https://doi.org/10.1021/acs.inorgchem.9b02539
  8. Francesco Del Carratore, Kamila Schmidt, Maria Vinaixa, Katherine A. Hollywood, Caitlin Greenland-Bews, Eriko Takano, Simon Rogers, Rainer Breitling. Integrated Probabilistic Annotation: A Bayesian-Based Annotation Method for Metabolomic Profiles Integrating Biochemical Connections, Isotope Patterns, and Adduct Relationships. Analytical Chemistry 2019, 91 (20) , 12799-12807. https://doi.org/10.1021/acs.analchem.9b02354
  9. Elly Crighton, Jason Weisenseel, Michael Bunce, Ian F. Musgrave, Robert Trengove, Garth Maker. Exploring the Application of the DSA-TOF, a Direct, High-resolution Time-of-Flight Mass Spectrometry Technique for the Screening of Potential Adulterated and Contaminated Herbal Medicines. Journal of the American Society for Mass Spectrometry 2019, 30 (9) , 1713-1719. https://doi.org/10.1021/jasms.8b06092
  10. D. Lorenzo, A. Romero, L. Del-Arco, A. Santos. Linear Amides in Caprolactam from Linear Ketone Impurities in Cyclohexanone Obtained from Cyclohexane: Kinetics and Identification. Industrial & Engineering Chemistry Research 2019, 58 (27) , 11878-11890. https://doi.org/10.1021/acs.iecr.9b01997
  11. Alexis Léon, Ronan Cariou, Sébastien Hutinet, Julie Hurel, Yann Guitton, Céline Tixier, Catherine Munschy, Jean-Philippe Antignac, Gaud Dervilly-Pinel, Bruno Le Bizec. HaloSeeker 1.0: A User-Friendly Software to Highlight Halogenated Chemicals in Nontargeted High-Resolution Mass Spectrometry Data Sets. Analytical Chemistry 2019, 91 (5) , 3500-3507. https://doi.org/10.1021/acs.analchem.8b05103
  12. Yuri E.M. van der Burgt, David P. A. Kilgour, Yury O. Tsybin, Kristina Srzentić, Luca Fornelli, Alain Beck, Manfred Wuhrer, Simone Nicolardi. Structural Analysis of Monoclonal Antibodies by Ultrahigh Resolution MALDI In-Source Decay FT-ICR Mass Spectrometry. Analytical Chemistry 2019, 91 (3) , 2079-2085. https://doi.org/10.1021/acs.analchem.8b04515
  13. Margaret L. Aulsebrook, Matthieu Starck, Michael R. Grace, Bim Graham, Pall Thordarson, Robert Pal, Kellie L. Tuck. Interaction of Nucleotides with a Trinuclear Terbium(III)–Dizinc(II) Complex: Efficient Sensitization of Terbium Luminescence by Guanosine Monophosphate and Application to Real-Time Monitoring of Phosphodiesterase Activity. Inorganic Chemistry 2019, 58 (1) , 495-505. https://doi.org/10.1021/acs.inorgchem.8b02731
  14. Kevin De Bruycker, Tim Krappitz, Christopher Barner-Kowollik. High Performance Quantification of Complex High Resolution Polymer Mass Spectra. ACS Macro Letters 2018, 7 (12) , 1443-1447. https://doi.org/10.1021/acsmacrolett.8b00804
  15. Kelsey A. Morrison, Brad K. Bendiak, Brian H. Clowers. Assessment of Dimeric Metal-Glycan Adducts via Isotopic Labeling and Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2018, 29 (8) , 1638-1649. https://doi.org/10.1021/jasms.8b05883
  16. Rovshan G. Sadygov . Poisson Model To Generate Isotope Distribution for Biomolecules. Journal of Proteome Research 2018, 17 (1) , 751-758. https://doi.org/10.1021/acs.jproteome.7b00807
  17. Mateusz K. Łącki, Michał Startek, Dirk Valkenborg, and Anna Gambin . IsoSpec: Hyperfast Fine Structure Calculator. Analytical Chemistry 2017, 89 (6) , 3272-3277. https://doi.org/10.1021/acs.analchem.6b01459
  18. Jakub Přichystal, Kevin A. Schug, Karel Lemr, Jiří Novák, and Vladimír Havlíček . Structural Analysis of Natural Products. Analytical Chemistry 2016, 88 (21) , 10338-10346. https://doi.org/10.1021/acs.analchem.6b02386
  19. Marvin Meusel, Franziska Hufsky, Fabian Panter, Daniel Krug, Rolf Müller, and Sebastian Böcker . Predicting the Presence of Uncommon Elements in Unknown Biomolecules from Isotope Patterns. Analytical Chemistry 2016, 88 (15) , 7556-7566. https://doi.org/10.1021/acs.analchem.6b01015
  20. Heinz P. Singer, Annika E. Wössner, Christa S. McArdell, and Kathrin Fenner . Rapid Screening for Exposure to “Non-Target” Pharmaceuticals from Wastewater Effluents by Combining HRMS-Based Suspect Screening and Exposure Modeling. Environmental Science & Technology 2016, 50 (13) , 6698-6707. https://doi.org/10.1021/acs.est.5b03332
  21. Jennifer E. Schollée, Emma L. Schymanski, Sven E. Avak, Martin Loos, and Juliane Hollender . Prioritizing Unknown Transformation Products from Biologically-Treated Wastewater Using High-Resolution Mass Spectrometry, Multivariate Statistics, and Metabolic Logic. Analytical Chemistry 2015, 87 (24) , 12121-12129. https://doi.org/10.1021/acs.analchem.5b02905
  22. Teresa Mairinger, Matthias Steiger, Justyna Nocon, Diethard Mattanovich, Gunda Koellensperger, and Stephan Hann . Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based Determination of Isotopologue and Tandem Mass Isotopomer Fractions of Primary Metabolites for 13C-Metabolic Flux Analysis. Analytical Chemistry 2015, 87 (23) , 11792-11802. https://doi.org/10.1021/acs.analchem.5b03173
  23. Ingus Perkons, Janis Rusko, Dzintars Zacs, Vadims Bartkevics. Rapid determination of pharmaceuticals in wastewater by direct infusion HRMS using target and suspect screening analysis. Science of The Total Environment 2021, 755 , 142688. https://doi.org/10.1016/j.scitotenv.2020.142688
  24. Gerard Baquer, Lluc Sementé, María García-Altares, Young Jin Lee, Pierre Chaurand, Xavier Correig, Pere Ràfols. rMSIcleanup: an open-source tool for matrix-related peak annotation in mass spectrometry imaging and its application to silver-assisted laser desorption/ionization. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00449-0
  25. Jaclyn Gowen Kalmar, Karen E. Butler, Erin S. Baker, David C. Muddiman. Enhanced protocol for quantitative N-linked glycomics analysis using Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT)™. Analytical and Bioanalytical Chemistry 2020, 412 (27) , 7569-7579. https://doi.org/10.1007/s00216-020-02892-2
  26. Marcus Ludwig, Louis-Félix Nothias, Kai Dührkop, Irina Koester, Markus Fleischauer, Martin A. Hoffmann, Daniel Petras, Fernando Vargas, Mustafa Morsy, Lihini Aluwihare, Pieter C. Dorrestein, Sebastian Böcker. Database-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nature Machine Intelligence 2020, 2 (10) , 629-641. https://doi.org/10.1038/s42256-020-00234-6
  27. Weichao Wu, Paul Dijkstra, Michaela A. Dippold. 13C analysis of fatty acid fragments by gas chromatography mass spectrometry for metabolic flux analysis. Geochimica et Cosmochimica Acta 2020, 284 , 92-106. https://doi.org/10.1016/j.gca.2020.05.032
  28. Lisa Panzenboeck, Nina Troppmair, Sara Schlachter, Gunda Koellensperger, Jürgen Hartler, Evelyn Rampler. Chasing the Major Sphingolipids on Earth: Automated Annotation of Plant Glycosyl Inositol Phospho Ceramides by Glycolipidomics. Metabolites 2020, 10 (9) , 375. https://doi.org/10.3390/metabo10090375
  29. Marco C. Knobloch, Lena Schinkel, Iris Schilling, Hans-Peter E. Kohler, Peter Lienemann, Davide Bleiner, Norbert V. Heeb. Transformation of short-chain chlorinated paraffins by the bacterial haloalkane dehalogenase LinB – Formation of mono- and di-hydroxylated metabolites. Chemosphere 2020, , 128288. https://doi.org/10.1016/j.chemosphere.2020.128288
  30. Natasa P. Kalogiouri, Reza Aalizadeh, Marilena E. Dasenaki, Nikolaos S. Thomaidis. Authentication of Greek PDO Kalamata Table Olives: A Novel Non-Target High Resolution Mass Spectrometric Approach. Molecules 2020, 25 (12) , 2919. https://doi.org/10.3390/molecules25122919
  31. Parvathy Mini, Maximilian A. Springer, Michael R. Grace, Genevieve H. Dennison, Kellie L. Tuck. A highly efficient red-emitting luminescent paper-based chemosensor for hydrogen sulfide. Chemical Communications 2020, 56 (42) , 5605-5608. https://doi.org/10.1039/D0CC00745E
  32. Luke T. Richardson, Matthew R. Brantley, Touradj Solouki. Using isotopic envelopes and neural decision tree-based in silico fractionation for biomolecule classification. Analytica Chimica Acta 2020, 1112 , 34-45. https://doi.org/10.1016/j.aca.2020.02.036
  33. Marie Mézière, Ronan Cariou, Frédéric Larvor, Emmanuelle Bichon, Yann Guitton, Philippe Marchand, Gaud Dervilly, Bruno Le Bizec. Optimized characterization of short-, medium, and long-chain chlorinated paraffins in liquid chromatography-high resolution mass spectrometry. Journal of Chromatography A 2020, 1619 , 460927. https://doi.org/10.1016/j.chroma.2020.460927
  34. Xianming Zhang, Alicia Mell, Frederick Li, Clara Thaysen, Brian Musselman, Joseph Tice, Dragan Vukovic, Chelsea Rochman, Paul A. Helm, Karl J. Jobst. Rapid fingerprinting of source and environmental microplastics using direct analysis in real time-high resolution mass spectrometry. Analytica Chimica Acta 2020, 1100 , 107-117. https://doi.org/10.1016/j.aca.2019.12.005
  35. Veronika Paluchova, Marina Oseeva, Marie Brezinova, Tomas Cajka, Kristina Bardova, Katerina Adamcova, Petr Zacek, Kristyna Brejchova, Laurence Balas, Hana Chodounska, Eva Kudova, Renate Schreiber, Rudolf Zechner, Thierry Durand, Martin Rossmeisl, Nada A. Abumrad, Jan Kopecky, Ondrej Kuda. Lipokine 5-PAHSA Is Regulated by Adipose Triglyceride Lipase and Primes Adipocytes for De Novo Lipogenesis in Mice. Diabetes 2020, 69 (3) , 300-312. https://doi.org/10.2337/db19-0494
  36. Kiwon Ok, Wenjing Li, Heather M. Neu, Sharon Batelu, Timothy L. Stemmler, Maureen A. Kane, Sarah L. J. Michel. Role of Gold in Inflammation and Tristetraprolin Activity. Chemistry – A European Journal 2020, 26 (7) , 1535-1547. https://doi.org/10.1002/chem.201904837
  37. Rune Matthiesen. LC-MS Spectra Processing. 2020,,, 59-77. https://doi.org/10.1007/978-1-4939-9744-2_2
  38. Christoph Gstöttner, Dietmar Reusch, Markus Haberger, Irina Dragan, Peter Van Veelen, David P. A. Kilgour, Yury O. Tsybin, Yuri E. M. van der Burgt, Manfred Wuhrer, Simone Nicolardi. Monitoring glycation levels of a bispecific monoclonal antibody at subunit level by ultrahigh-resolution MALDI FT-ICR mass spectrometry. mAbs 2020, 12 (1) , 1682403. https://doi.org/10.1080/19420862.2019.1682403
  39. Alexander Triebl, Bo Burla, Jayashree Selvalatchmanan, Jeongah Oh, Sock Hwee Tan, Mark Y. Chan, Natalie A. Mellet, Peter J. Meikle, Federico Torta, Markus R. Wenk. Shared reference materials harmonize lipidomics across MS-based detection platforms and laboratories. Journal of Lipid Research 2020, 61 (1) , 105-115. https://doi.org/10.1194/jlr.D119000393
  40. Maroula G. Kokotou, Christiana Mantzourani, Rodalia Babaiti, George Kokotos. Study of the Royal Jelly Free Fatty Acids by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS). Metabolites 2020, 10 (1) , 40. https://doi.org/10.3390/metabo10010040
  41. P. Mews, G. Egervari, R. Nativio, S. Sidoli, G. Donahue, S. I. Lombroso, D. C. Alexander, S. L. Riesche, E. A. Heller, E. J. Nestler, B. A. Garcia, S. L. Berger. Alcohol metabolism contributes to brain histone acetylation. Nature 2019, 574 (7780) , 717-721. https://doi.org/10.1038/s41586-019-1700-7
  42. Jan Stanstrup, Corey Broeckling, Rick Helmus, Nils Hoffmann, Ewy Mathé, Thomas Naake, Luca Nicolotti, Kristian Peters, Johannes Rainer, Reza Salek, Tobias Schulze, Emma Schymanski, Michael Stravs, Etienne Thévenot, Hendrik Treutler, Ralf Weber, Egon Willighagen, Michael Witting, Steffen Neumann. The metaRbolomics Toolbox in Bioconductor and beyond. Metabolites 2019, 9 (10) , 200. https://doi.org/10.3390/metabo9100200
  43. Ze Wang, Xiangfeng Chen, Juan Ren, Guang Hu. Efficient simulation of isotope aggregated and fine structure by vector manipulation and change-making strategy. International Journal of Mass Spectrometry 2019, 443 , 70-76. https://doi.org/10.1016/j.ijms.2019.05.012
  44. Michaela Schwaiger-Haber, Gerrit Hermann, Yasin El Abiead, Evelyn Rampler, Stefanie Wernisch, Kelli Sas, Subramaniam Pennathur, Gunda Koellensperger. Proposing a validation scheme for 13C metabolite tracer studies in high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry 2019, 411 (14) , 3103-3113. https://doi.org/10.1007/s00216-019-01773-7
  45. Tim J. Causon, Violeta Ivanova-Petropulos, Dragana Petrusheva, Elena Bogeva, Stephan Hann. Fingerprinting of traditionally produced red wines using liquid chromatography combined with drift tube ion mobility-mass spectrometry. Analytica Chimica Acta 2019, 1052 , 179-189. https://doi.org/10.1016/j.aca.2018.11.040
  46. Maximilian J. Helf, Michael F. Freeman, Jörn Piel. Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis. Journal of Industrial Microbiology & Biotechnology 2019, 46 (3-4) , 551-563. https://doi.org/10.1007/s10295-018-02129-3
  47. Cajetan Neubauer, Alex L. Sessions, Ian R. Booth, Benjamin P. Bowen, Sebastian H. Kopf, Dianne K. Newman, Nathan F. Dalleska. Towards measuring growth rates of pathogens during infections by D 2 O-labeling lipidomics. Rapid Communications in Mass Spectrometry 2018, 32 (24) , 2129-2140. https://doi.org/10.1002/rcm.8288
  48. Jiří Novák, Anton Škríba, Jakub Zápal, Marek Kuzma, Vladimír Havlíček. CycloBranch: An open tool for fine isotope structures in conventional and product ion mass spectra. Journal of Mass Spectrometry 2018, 53 (11) , 1097-1103. https://doi.org/10.1002/jms.4285
  49. A. Santos, J. Fernández, J. Guadaño, D. Lorenzo, A. Romero. Chlorinated organic compounds in liquid wastes (DNAPL) from lindane production dumped in landfills in Sabiñanigo (Spain). Environmental Pollution 2018, 242 , 1616-1624. https://doi.org/10.1016/j.envpol.2018.07.117
  50. Edward S. Hems, Ben A. Wagstaff, Gerhard Saalbach, Robert A. Field. CuAAC click chemistry for the enhanced detection of novel alkyne-based natural product toxins. Chemical Communications 2018, 54 (86) , 12234-12237. https://doi.org/10.1039/C8CC05113E
  51. Petra Cuřínová, Alena Krupková, Lucie Červenková Šťastná, Monika Müllerová, Jan Čermák, Tomáš Strašák. ESI-TOF mass spectrometry of cationic carbosilane dendrimers: A potent tool for characterization of structural defects. Journal of Mass Spectrometry 2018, 53 (10) , 986-996. https://doi.org/10.1002/jms.4269
  52. Hongchao Ji, Zhimin Zhang, Hongmei Lu. TarMet: a reactive GUI tool for efficient and confident quantification of MS based targeted metabolic and stable isotope tracer analysis. Metabolomics 2018, 14 (5) https://doi.org/10.1007/s11306-018-1363-7
  53. Sarah G. Pati, William A. Arnold. Reaction rates and product formation during advanced oxidation of ionic liquid cations by UV/peroxide, UV/persulfate, and UV/chlorine. Environmental Science: Water Research & Technology 2018, 4 (9) , 1310-1320. https://doi.org/10.1039/C8EW00254A
  54. Zuzana Baranová, Hashem Amini, Madhav Neupane, Sydney C. Garrett, Andreas Ehnbom, Nattamai Bhuvanesh, Joseph H. Reibenspies, John A. Gladysz. Syntheses, Structural Studies, and Copper Iodide Complexes of Macrocycles Derived from Williamson Ether Syntheses Involving 2,9-Bis(4-hydroxyphenyl)-1,10-phenanthroline, α,ω-Dibromides, and Resorcinol or 2,7-Dihydroxynaphthalene. Australian Journal of Chemistry 2017, 70 (4) , 373. https://doi.org/10.1071/CH16587
  55. Sebastian Böcker, Kai Dührkop. Fragmentation trees reloaded. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0116-8
  56. Hendrik Treutler, Steffen Neumann. Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data. Metabolites 2016, 6 (4) , 37. https://doi.org/10.3390/metabo6040037
  57. Rozanna Avagyan, Magnus Åberg, Roger Westerholm. Suspect screening of OH-PAHs and non-target screening of other organic compounds in wood smoke particles using HR-Orbitrap-MS. Chemosphere 2016, 163 , 313-321. https://doi.org/10.1016/j.chemosphere.2016.08.039
  58. Eric Block, Squire J. Booker, Sonia Flores-Penalba, Graham N. George, Sivaji Gundala, Bradley J. Landgraf, Jun Liu, Stephene N. Lodge, M. Jake Pushie, Sharon Rozovsky, Abith Vattekkatte, Rama Yaghi, Huawei Zeng. Trifluoroselenomethionine: A New Unnatural Amino Acid. ChemBioChem 2016, 17 (18) , 1738-1751. https://doi.org/10.1002/cbic.201600266
  59. Árpád Somogyi, Roland Thissen, Francois-Régis Orthous-Daunay, Véronique Vuitton. The Role of Ultrahigh Resolution Fourier Transform Mass Spectrometry (FT-MS) in Astrobiology-Related Research: Analysis of Meteorites and Tholins. International Journal of Molecular Sciences 2016, 17 (4) , 439. https://doi.org/10.3390/ijms17040439
  60. Matthias Ruff, Miriam S. Mueller, Martin Loos, Heinz P. Singer. Quantitative target and systematic non-target analysis of polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry – Identification of unknown sources and compounds. Water Research 2015, 87 , 145-154. https://doi.org/10.1016/j.watres.2015.09.017

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

OOPS

You have to login with your ACS ID befor you can login with your Mendeley account.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE