ACS Publications. Most Trusted. Most Cited. Most Read
Construction of Training Sets for Valid Calibration of in Vivo Cyclic Voltammetric Data by Principal Component Analysis
My Activity
    Article

    Construction of Training Sets for Valid Calibration of in Vivo Cyclic Voltammetric Data by Principal Component Analysis
    Click to copy article linkArticle link copied!

    View Author Information
    † § Department of Chemistry, Department of Psychology, and §Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
    Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309-0345, United States
    *Phone: 919-962-1472. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Analytical Chemistry

    Cite this: Anal. Chem. 2015, 87, 22, 11484–11491
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.analchem.5b03222
    Published October 18, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Principal component regression, a multivariate calibration technique, is an invaluable tool for the analysis of voltammetric data collected in vivo with acutely implanted microelectrodes. This method utilizes training sets to separate cyclic voltammograms into contributions from multiple electroactive species. The introduction of chronically implanted microelectrodes permits longitudinal measurements at the same electrode and brain location over multiple recordings. The reliability of these measurements depends on a consistent calibration methodology. One published approach has been the use of training sets built with data from separate electrodes and animals to evaluate neurochemical signals in multiple subjects. Alternatively, responses to unpredicted rewards have been used to generate calibration data. This study addresses these approaches using voltammetric data from three different experiments in freely moving rats obtained with acutely implanted microelectrodes. The findings demonstrate critical issues arising from the misuse of principal component regression that result in significant underestimates of concentrations and improper statistical model validation that, in turn, can lead to inaccurate data interpretation. Therefore, the calibration methodology for chronically implanted microelectrodes needs to be revisited and improved before measurements can be considered reliable.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.5b03222.

    • Table of average concentration values for data sets across different training set calibrations, table comparing the K-matrices for sucrose-constructed and electrical stimulation training sets at the same electrode, supplementary experimental methods, and a glossary of important terms in PCA-ILS (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 49 publications.

    1. Cameron S. Movassaghi, Miguel Alcañiz Fillol, Kenneth T. Kishida, Gregory McCarty, Leslie A. Sombers, Kate M. Wassum, Anne Milasincic Andrews. Maximizing Electrochemical Information: A Perspective on Background-Inclusive Fast Voltammetry. Analytical Chemistry 2024, 96 (16) , 6097-6105. https://doi.org/10.1021/acs.analchem.3c04938
    2. Laney C. Kimble, Jack S. Twiddy, Jenna M. Berger, Alexandra G. Forderhase, Gregory S. McCarty, John Meitzen, Leslie A. Sombers. Simultaneous, Real-Time Detection of Glutamate and Dopamine in Rat Striatum Using Fast-Scan Cyclic Voltammetry. ACS Sensors 2023, 8 (11) , 4091-4100. https://doi.org/10.1021/acssensors.3c01267
    3. Yifei Pan, Kailin Zhang, Huan Wei, Tianyi Xiong, Ying Liu, Lanqun Mao, Ping Yu. Double-Barreled Micropipette Enables Neuron-Compatible In Vivo Analysis. Analytical Chemistry 2022, 94 (45) , 15671-15677. https://doi.org/10.1021/acs.analchem.2c02739
    4. Sergio Mena, Marco Visentin, Colby E. Witt, Lauren E. Honan, Nathan Robins, Parastoo Hashemi. Novel, User-Friendly Experimental and Analysis Strategies for Fast Voltammetry: Next Generation FSCAV with Artificial Neural Networks. ACS Measurement Science Au 2022, 2 (3) , 241-250. https://doi.org/10.1021/acsmeasuresciau.1c00060
    5. Leslie R. Wilson, Christie A. Lee, Catherine F. Mason, Sitora Khodjaniyazova, Kevin B. Flores, David C. Muddiman, Leslie A. Sombers. Simultaneous Measurement of Striatal Dopamine and Hydrogen Peroxide Transients Associated with L-DOPA Induced Rotation in Hemiparkinsonian Rats. ACS Measurement Science Au 2022, 2 (2) , 120-131. https://doi.org/10.1021/acsmeasuresciau.1c00030
    6. James R. Siegenthaler, Breanna C. Gushiken, Daniel F. Hill, Stephen L. Cowen, Michael L. Heien. Moving Fast-Scan Cyclic Voltammetry toward FDA Compliance with Capacitive Decoupling Patient Protection. ACS Sensors 2020, 5 (7) , 1890-1899. https://doi.org/10.1021/acssensors.9b02249
    7. Samantha L. Regan, Michael T. Cryan, Michael T. Williams, Charles V. Vorhees, Ashley E. Ross. Enhanced Transient Striatal Dopamine Release and Reuptake in Lphn3 Knockout Rats. ACS Chemical Neuroscience 2020, 11 (8) , 1171-1177. https://doi.org/10.1021/acschemneuro.0c00033
    8. Limin Zhang, Yang Tian. Designing Recognition Molecules and Tailoring Functional Surfaces for In Vivo Monitoring of Small Molecules in the Brain. Accounts of Chemical Research 2018, 51 (3) , 688-696. https://doi.org/10.1021/acs.accounts.7b00543
    9. Carl J. Meunier, Edwin C. Mitchell, James G. Roberts, Jonathan V. Toups, Gregory S. McCarty, and Leslie A. Sombers . Electrochemical Selectivity Achieved Using a Double Voltammetric Waveform and Partial Least Squares Regression: Differentiating Endogenous Hydrogen Peroxide Fluctuations from Shifts in pH. Analytical Chemistry 2018, 90 (3) , 1767-1776. https://doi.org/10.1021/acs.analchem.7b03717
    10. Leslie R. Wilson, Sambit Panda, Andreas C. Schmidt, and Leslie A. Sombers . Selective and Mechanically Robust Sensors for Electrochemical Measurements of Real-Time Hydrogen Peroxide Dynamics in Vivo. Analytical Chemistry 2018, 90 (1) , 888-895. https://doi.org/10.1021/acs.analchem.7b03770
    11. James G. Roberts and Leslie A. Sombers . Fast-Scan Cyclic Voltammetry: Chemical Sensing in the Brain and Beyond. Analytical Chemistry 2018, 90 (1) , 490-504. https://doi.org/10.1021/acs.analchem.7b04732
    12. Justin A. Johnson, Josh H. Gray, Nathan T. Rodeberg, R. Mark Wightman. Multivariate Curve Resolution for Signal Isolation from Fast-Scan Cyclic Voltammetric Data. Analytical Chemistry 2017, 89 (19) , 10547-10555. https://doi.org/10.1021/acs.analchem.7b02771
    13. Justin A. Johnson, Caddy N. Hobbs, R. Mark Wightman. Removal of Differential Capacitive Interferences in Fast-Scan Cyclic Voltammetry. Analytical Chemistry 2017, 89 (11) , 6166-6174. https://doi.org/10.1021/acs.analchem.7b01005
    14. Ryan P. Borman, Ying Wang, Michael D. Nguyen, Mallikarjunarao Ganesana, Scott T. Lee, and B. Jill Venton . Automated Algorithm for Detection of Transient Adenosine Release. ACS Chemical Neuroscience 2017, 8 (2) , 386-393. https://doi.org/10.1021/acschemneuro.6b00262
    15. Carl J. Meunier, James G. Roberts, Gregory S. McCarty, and Leslie A. Sombers . Background Signal as an in Situ Predictor of Dopamine Oxidation Potential: Improving Interpretation of Fast-Scan Cyclic Voltammetry Data. ACS Chemical Neuroscience 2017, 8 (2) , 411-419. https://doi.org/10.1021/acschemneuro.6b00325
    16. Nathan T. Rodeberg, Stefan G. Sandberg, Justin A. Johnson, Paul E. M. Phillips, and R. Mark Wightman . Hitchhiker’s Guide to Voltammetry: Acute and Chronic Electrodes for in Vivo Fast-Scan Cyclic Voltammetry. ACS Chemical Neuroscience 2017, 8 (2) , 221-234. https://doi.org/10.1021/acschemneuro.6b00393
    17. Tongfang Xiao, Fei Wu, Jie Hao, Meining Zhang, Ping Yu, and Lanqun Mao . In Vivo Analysis with Electrochemical Sensors and Biosensors. Analytical Chemistry 2017, 89 (1) , 300-313. https://doi.org/10.1021/acs.analchem.6b04308
    18. Megan E. Fox, Elizabeth S. Bucher, Justin A. Johnson, and R. Mark Wightman . Medullary Norepinephrine Projections Release Norepinephrine into the Contralateral Bed Nucleus of the Stria Terminalis. ACS Chemical Neuroscience 2016, 7 (12) , 1681-1689. https://doi.org/10.1021/acschemneuro.6b00210
    19. Nathan T. Rodeberg, Justin A. Johnson, Elizabeth S. Bucher, and R. Mark Wightman . Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data. ACS Chemical Neuroscience 2016, 7 (11) , 1508-1518. https://doi.org/10.1021/acschemneuro.6b00142
    20. Xiaomeng Liu, Meining Zhang, Tongfang Xiao, Jie Hao, Ruixin Li, and Lanqun Mao . Protein Pretreatment of Microelectrodes Enables in Vivo Electrochemical Measurements with Easy Precalibration and Interference-Free from Proteins. Analytical Chemistry 2016, 88 (14) , 7238-7244. https://doi.org/10.1021/acs.analchem.6b01476
    21. Justin A. Johnson, Nathan T. Rodeberg, and R. Mark Wightman . Failure of Standard Training Sets in the Analysis of Fast-Scan Cyclic Voltammetry Data. ACS Chemical Neuroscience 2016, 7 (3) , 349-359. https://doi.org/10.1021/acschemneuro.5b00302
    22. Mason L. Perillo, Bhavna Gupta, Akash Saxena, Alexandra P. Veltri, Wen Li, James R. Siegenthaler, Erin K. Purcell. Biological and Mechanical Limitations for Chronic Fast‐Scan Cyclic Voltammetry Sensor Design. Advanced Materials Technologies 2025, 51 https://doi.org/10.1002/admt.202401808
    23. Domenic H. Cerri, Daniel L. Albaugh, Lindsay R. Walton, Brittany Katz, Tzu-Wen Wang, Tzu-Hao Harry Chao, Weiting Zhang, Randal J. Nonneman, Jing Jiang, Sung-Ho Lee, Amit Etkin, Catherine N. Hall, Garret D. Stuber, Yen-Yu Ian Shih. Distinct neurochemical influences on fMRI response polarity in the striatum. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-46088-z
    24. Moeid Jamalzadeh, Edoardo Cuniberto, Zhujun Huang, Ryan M. Feeley, Jyoti C. Patel, Margaret E. Rice, Joline Uichanco, Davood Shahrjerdi. Toward robust quantification of dopamine and serotonin in mixtures using nano-graphitic carbon sensors. The Analyst 2024, 149 (8) , 2351-2362. https://doi.org/10.1039/D3AN02086J
    25. Francis Carter, Marie‐Pierre Cossette, Ivan Trujillo‐Pisanty, Vasilios Pallikaras, Yannick‐André Breton, Kent Conover, Jill Caplan, Pavel Solis, Jacques Voisard, Alexandra Yaksich, Peter Shizgal. Does phasic dopamine release cause policy updates?. European Journal of Neuroscience 2024, 59 (6) , 1260-1277. https://doi.org/10.1111/ejn.16199
    26. Mingyi Xia, Busra Nur Agca, Tomoko Yoshida, Jiwon Choi, Usamma Amjad, Kade Bose, Nikol Keren, Shahar Zukerman, Michael J. Cima, Ann M. Graybiel, Helen N. Schwerdt. Scalable, flexible carbon fiber electrode thread arrays for three-dimensional probing of neurochemical activity in deep brain structures of rodents. Biosensors and Bioelectronics 2023, 241 , 115625. https://doi.org/10.1016/j.bios.2023.115625
    27. Michal Kielbinski, Joanna Bernacka, Katarzyna Zajda, Agnieszka Wawrzczak‐Bargieła, Marzena Maćkowiak, Ryszard Przewlocki, Wojciech Solecki. Acute stress modulates noradrenergic signaling in the ventral tegmental area‐amygdalar circuit. Journal of Neurochemistry 2023, 164 (5) , 598-612. https://doi.org/10.1111/jnc.15698
    28. Domenic H. Cerri, Daniel L. Albaugh, Lindsay R. Walton, Brittany Katz, Tzu-Wen Wang, Tzu-Hao Harry Chao, Weiting Zhang, Randal J. Nonneman, Jing Jiang, Sung-Ho Lee, Amit Etkin, Catherine N. Hall, Garret D. Stuber, Yen-Yu Ian Shih. Distinct neurochemical influences on fMRI response polarity in the striatum. 2023https://doi.org/10.1101/2023.02.20.529283
    29. Philip J. Clark, Rodrigo A. España. Fast Scan Cyclic Voltammetry to Assess Dopamine Function: From Circuits to Behavior. 2023, 249-281. https://doi.org/10.1007/978-1-0716-2799-0_11
    30. Joanna Bernacka, Michal Kielbinski, Agnieszka Wawrzczak-Bargieła, Katarzyna Zajda, Marzena Maćkowiak, Ryszard Przewlocki, Wojciech Solecki. Alpha-2A but not 2B/C noradrenergic receptors in ventral tegmental area regulate phasic dopamine release in nucleus accumbens core. Neuropharmacology 2022, 220 , 109258. https://doi.org/10.1016/j.neuropharm.2022.109258
    31. Francis Carter, Marie-Pierre Cossette, Ivan Trujillo-Pisanty, Vasilios Pallikaras, Yannick-André Breton, Kent Conover, Jill Caplan, Pavel Solis, Jacques Voisard, Alexandra Yaksich, Peter Shizgal. Does phasic dopamine release cause policy updates?. 2022https://doi.org/10.1101/2022.08.08.502043
    32. Carl J. Meunier, Leslie A. Sombers. Fast-Scan Voltammetry for In Vivo Measurements of Neurochemical Dynamics. 2021, 93-123. https://doi.org/10.1007/978-1-0716-1146-3_5
    33. B. Jill Venton, Qun Cao. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. The Analyst 2020, 145 (4) , 1158-1168. https://doi.org/10.1039/C9AN01586H
    34. V. N. Mukhin, V. V. Sizov, K. I. Pavlov, V. M. Klimenko. β-Amyloid 25–35 Suppresses the Secretory Activity of the Dopaminergic System in the Rat Brain. Neuroscience and Behavioral Physiology 2019, 49 (7) , 816-821. https://doi.org/10.1007/s11055-019-00807-y
    35. James A. Frank, Marc-Joseph Antonini, Polina Anikeeva. Next-generation interfaces for studying neural function. Nature Biotechnology 2019, 37 (9) , 1013-1023. https://doi.org/10.1038/s41587-019-0198-8
    36. Michał Kielbinski, Joanna Bernacka, Wojciech B. Solecki. Differential regulation of phasic dopamine release in the forebrain by the VTA noradrenergic receptor signaling. Journal of Neurochemistry 2019, 149 (6) , 747-759. https://doi.org/10.1111/jnc.14706
    37. Helen N. Schwerdt, Elizabeth Zhang, Min Jung Kim, Tomoko Yoshida, Lauren Stanwicks, Satoko Amemori, Huseyin E. Dagdeviren, Robert Langer, Michael J. Cima, Ann M. Graybiel. Cellular-scale probes enable stable chronic subsecond monitoring of dopamine neurochemicals in a rodent model. Communications Biology 2018, 1 (1) https://doi.org/10.1038/s42003-018-0147-y
    38. Scott A. Schelp, Katherine J. Pultorak, Dylan R. Rakowski, Devan M. Gomez, Gregory Krzystyniak, Raibatak Das, Erik B. Oleson. A transient dopamine signal encodes subjective value and causally influences demand in an economic context. Proceedings of the National Academy of Sciences 2017, 114 (52) https://doi.org/10.1073/pnas.1706969114
    39. Anna Nix Davis, Adam R. Travis, Dusty R. Miller, David E. Cliffel. Multianalyte Physiological Microanalytical Devices. Annual Review of Analytical Chemistry 2017, 10 (1) , 93-111. https://doi.org/10.1146/annurev-anchem-061516-045334
    40. Deirdre A. Sackett, Michael P. Saddoris, Regina M. Carelli. Nucleus Accumbens Shell Dopamine Preferentially Tracks Information Related to Outcome Value of Reward. eneuro 2017, 4 (3) , ENEURO.0058-17.2017. https://doi.org/10.1523/ENEURO.0058-17.2017
    41. Travis M. Moschak, Regina M. Carelli. Impulsive Rats Exhibit Blunted Dopamine Release Dynamics during a Delay Discounting Task Independent of Cocaine History. eneuro 2017, 4 (2) , ENEURO.0119-17.2017. https://doi.org/10.1523/ENEURO.0119-17.2017
    42. Megan E Fox, Nathan T Rodeberg, R Mark Wightman. Reciprocal Catecholamine Changes during Opiate Exposure and Withdrawal. Neuropsychopharmacology 2017, 42 (3) , 671-681. https://doi.org/10.1038/npp.2016.135
    43. Michael P Saddoris, Jonathan A Sugam, Regina M Carelli. Prior Cocaine Experience Impairs Normal Phasic Dopamine Signals of Reward Value in Accumbens Shell. Neuropsychopharmacology 2017, 42 (3) , 766-773. https://doi.org/10.1038/npp.2016.189
    44. Caddy N. Hobbs, Justin A. Johnson, Matthew D. Verber, R. Mark Wightman. An implantable multimodal sensor for oxygen, neurotransmitters, and electrophysiology during spreading depolarization in the deep brain. The Analyst 2017, 142 (16) , 2912-2920. https://doi.org/10.1039/C7AN00508C
    45. Megan E. Fox, R. Mark Wightman. Contrasting Regulation of Catecholamine Neurotransmission in the Behaving Brain: Pharmacological Insights from an Electrochemical Perspective. Pharmacological Reviews 2017, 69 (1) , 12-32. https://doi.org/10.1124/pr.116.012948
    46. Michael P. Saddoris. Terminal Dopamine Release Kinetics in the Accumbens Core and Shell Are Distinctly Altered after Withdrawal from Cocaine Self-Administration. eneuro 2016, 3 (5) , ENEURO.0274-16.2016. https://doi.org/10.1523/ENEURO.0274-16.2016
    47. Megan E. Fox, Maria A. Mikhailova, Caroline E. Bass, Pavel Takmakov, Raul R. Gainetdinov, Evgeny A. Budygin, R. Mark Wightman. Cross-hemispheric dopamine projections have functional significance. Proceedings of the National Academy of Sciences 2016, 113 (25) , 6985-6990. https://doi.org/10.1073/pnas.1603629113
    48. Catarina Owesson-White, Anna M. Belle, Natalie R. Herr, Jessica L. Peele, Preethi Gowrishankar, Regina M. Carelli, R. Mark Wightman. Cue-Evoked Dopamine Release Rapidly Modulates D2 Neurons in the Nucleus Accumbens During Motivated Behavior. The Journal of Neuroscience 2016, 36 (22) , 6011-6021. https://doi.org/10.1523/JNEUROSCI.0393-16.2016
    49. Michael P. Saddoris, Xuefei Wang, Jonathan A. Sugam, Regina M. Carelli. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats. The Journal of Neuroscience 2016, 36 (1) , 235-250. https://doi.org/10.1523/JNEUROSCI.3468-15.2016
    50. Saidhbhe L. O'Riordan, Kelly Mc Laughlin, John P. Lowry. In vitro physiological performance factors of a catalase-based biosensor for real-time electrochemical detection of brain hydrogen peroxide in freely-moving animals. Analytical Methods 2016, 8 (42) , 7614-7622. https://doi.org/10.1039/C6AY02190E
    51. Wolfram Schultz, Regina M Carelli, R Mark Wightman. Phasic dopamine signals: from subjective reward value to formal economic utility. Current Opinion in Behavioral Sciences 2015, 5 , 147-154. https://doi.org/10.1016/j.cobeha.2015.09.006

    Analytical Chemistry

    Cite this: Anal. Chem. 2015, 87, 22, 11484–11491
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.analchem.5b03222
    Published October 18, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    1339

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.