ACS Publications. Most Trusted. Most Cited. Most Read
Improved Identification and Analysis of Small Open Reading Frame Encoded Polypeptides
My Activity
    Article

    Improved Identification and Analysis of Small Open Reading Frame Encoded Polypeptides
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
    Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
    § Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
    MIT Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, Massachusetts 02139, United States
    The Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02139, United States
    *E-mail: [email protected] (A.S.).
    Other Access OptionsSupporting Information (2)

    Analytical Chemistry

    Cite this: Anal. Chem. 2016, 88, 7, 3967–3975
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.analchem.6b00191
    Published March 24, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Computational, genomic, and proteomic approaches have been used to discover nonannotated protein-coding small open reading frames (smORFs). Some novel smORFs have crucial biological roles in cells and organisms, which motivates the search for additional smORFs. Proteomic smORF discovery methods are advantageous because they detect smORF-encoded polypeptides (SEPs) to validate smORF translation and SEP stability. Because SEPs are shorter and less abundant than average proteins, SEP detection using proteomics faces unique challenges. Here, we optimize several steps in the SEP discovery workflow to improve SEP isolation and identification. These changes have led to the detection of several new human SEPs (novel human genes), improved confidence in the SEP assignments, and enabled quantification of SEPs under different cellular conditions. These improvements will allow faster detection and characterization of new SEPs and smORFs.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.6b00191.

    • (Figure S1) Acid precipitation and C8 solid phase extraction; (Figure S2) total number of SEPs; (Figure S3) SEP length distribution; (Figure S4) hydropathy score; (Figure S5) pairwise comparison of the extraction methods; (Figure S6) HCD; (Figure S7) MS/MS spectra of three SEP peptides; (Figure S8) peak areas of the detected peptides; (Figure S9) label-free quantitative analysis using Skyline software; (Figure S9) label-free quantitative analysis using Skyline software; (Figure S10) Western blot; (Figure S11) RNA-Seq transcript; (Table S1) full list of 37 non-UNIPROT SEPs (PDF)

    • (XLSX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 102 publications.

    1. Valeriia Vasylieva, Ihor Arefiev, Francis Bourassa, Félix-Antoine Trifiro, Marie A. Brunet. Proteomics Can Rise to the Challenge of Pseudogenes’ Coding Nature. Journal of Proteome Research 2024, 23 (12) , 5233-5249. https://doi.org/10.1021/acs.jproteome.4c00116
    2. Mingbo Peng, Yutian Zhou, Yi Wang, Zi Yi, Shenglan Li, Cuihong Wan. Identified Small Open Reading Frame-Encoded Peptides in Human Serum with Nanoparticle Protein Coronas. Journal of Proteome Research 2024, 23 (1) , 368-376. https://doi.org/10.1021/acs.jproteome.3c00608
    3. Yan Sun, Jiangmei Huang, Zhiwei Wang, Ni Pan, Cuihong Wan. Identification of Microproteins in Saccharomyces cerevisiae under Different Stress Conditions. Journal of Proteome Research 2022, 21 (8) , 1939-1947. https://doi.org/10.1021/acs.jproteome.2c00212
    4. Bing Li, Zheng Zhang, Cuihong Wan. Identification of Microproteins in Hep3B Cells at Different Cell Cycle Stages. Journal of Proteome Research 2022, 21 (4) , 1052-1060. https://doi.org/10.1021/acs.jproteome.1c00926
    5. Zhiwei Wang, Ni Pan, Jiahao Yan, Jian Wan, Cuihong Wan. Systematic Identification of Microproteins during the Development of Drosophila melanogaster. Journal of Proteome Research 2022, 21 (4) , 1114-1123. https://doi.org/10.1021/acs.jproteome.2c00004
    6. Lorenzo Lafranchi, Dörte Schlesinger, Kyle J. Kimler, Simon J. Elsässer. Universal Single-Residue Terminal Labels for Fluorescent Live Cell Imaging of Microproteins. Journal of the American Chemical Society 2020, 142 (47) , 20080-20087. https://doi.org/10.1021/jacs.0c09574
    7. Xiongwen Cao, Alexandra Khitun, Zhenkun Na, Daniel G. Dumitrescu, Marcelina Kubica, Elizabeth Olatunji, Sarah A. Slavoff. Comparative Proteomic Profiling of Unannotated Microproteins and Alternative Proteins in Human Cell Lines. Journal of Proteome Research 2020, 19 (8) , 3418-3426. https://doi.org/10.1021/acs.jproteome.0c00254
    8. Tristan Cardon, Flore Hervé, Vivian Delcourt, Xavier Roucou, Michel Salzet, Julien Franck, Isabelle Fournier. Optimized Sample Preparation Workflow for Improved Identification of Ghost Proteins. Analytical Chemistry 2020, 92 (1) , 1122-1129. https://doi.org/10.1021/acs.analchem.9b04188
    9. Annie Rathore, Qian Chu, Dan Tan, Thomas F. Martinez, Cynthia J. Donaldson, Jolene K. Diedrich, John R. Yates, III, Alan Saghatelian. MIEF1 Microprotein Regulates Mitochondrial Translation. Biochemistry 2018, 57 (38) , 5564-5575. https://doi.org/10.1021/acs.biochem.8b00726
    10. Cuitong He, Chenxi Jia, Yao Zhang, Ping Xu. Enrichment-Based Proteogenomics Identifies Microproteins, Missing Proteins, and Novel smORFs in Saccharomyces cerevisiae. Journal of Proteome Research 2018, 17 (7) , 2335-2344. https://doi.org/10.1021/acs.jproteome.8b00032
    11. Peijia Yuan, Nadia G. D’Lima, Sarah A. Slavoff. Comparative Membrane Proteomics Reveals a Nonannotated E. coli Heat Shock Protein. Biochemistry 2018, 57 (1) , 56-60. https://doi.org/10.1021/acs.biochem.7b00864
    12. Nadia G. D’Lima, Alexandra Khitun, Aaron D. Rosenbloom, Peijia Yuan, Brandon M. Gassaway, Karl W. Barber, Jesse Rinehart, Sarah A. Slavoff. Comparative Proteomics Enables Identification of Nonannotated Cold Shock Proteins in E. coli. Journal of Proteome Research 2017, 16 (10) , 3722-3731. https://doi.org/10.1021/acs.jproteome.7b00419
    13. Anna Lucia Tornesello, Andrea Cerasuolo, Noemy Starita, Sara Amiranda, Tiziana Pecchillo Cimmino, Patrizia Bonelli, Franca Maria Tuccillo, Franco Maria Buonaguro, Luigi Buonaguro, Maria Lina Tornesello. Emerging role of endogenous peptides encoded by non-coding RNAs in cancer biology. Non-coding RNA Research 2025, 10 , 231-241. https://doi.org/10.1016/j.ncrna.2024.10.006
    14. A. M. Ryskina, A. A. Kudriaeva, A. A. Belogurov. Microproteins Tracking: When Size Does Really Matter. Reviews and Advances in Chemistry 2025, 12 https://doi.org/10.1134/S2634827624600324
    15. Belen Aparicio, Patrick Theunissen, Sandra Hervas-Stubbs, Puri Fortes, Pablo Sarobe. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Human Vaccines & Immunotherapeutics 2024, 20 (1) https://doi.org/10.1080/21645515.2024.2303799
    16. Kang Wen, Xin Chen, Jingyao Gu, Zhenyao Chen, Zhaoxia Wang. Beyond traditional translation: ncRNA derived peptides as modulators of tumor behaviors. Journal of Biomedical Science 2024, 31 (1) https://doi.org/10.1186/s12929-024-01047-0
    17. Praveena Naidu, Mandë Holford. Microscopic marvels: Decoding the role of micropeptides in innate immunity. Immunology 2024, 173 (4) , 605-621. https://doi.org/10.1111/imm.13850
    18. Kelvin Yen, Brendan Miller, Hiroshi Kumagai, Ana Silverstein, Pinchas Cohen. Mitochondrial-derived microproteins: from discovery to function. Trends in Genetics 2024, 24 https://doi.org/10.1016/j.tig.2024.11.010
    19. Katarina Vrbnjak, Raj Nayan Sewduth. Multi-Omic Approaches in Cancer-Related Micropeptide Identification. Proteomes 2024, 12 (3) , 26. https://doi.org/10.3390/proteomes12030026
    20. A.M. Whited, Irwin Jungreis, Jeffre Allen, Christina L. Cleveland, Jonathan M. Mudge, Manolis Kellis, John L. Rinn, Loren E. Hough. Biophysical characterization of high-confidence, small human proteins. Biophysical Reports 2024, 4 (3) , 100167. https://doi.org/10.1016/j.bpr.2024.100167
    21. Mingbo Peng, Yutian Zhou, Cuihong Wan. Identification of phosphorylated small ORF-encoded peptides in Hep3B cells by LC/MS/MS. Journal of Proteomics 2024, 303 , 105214. https://doi.org/10.1016/j.jprot.2024.105214
    22. Qin Wang, Baijun Qin, Haichun Yu, Yueqiang Hu, Han Yu, Jie Zhong, Jinwen Liu, Chunyuan Yao, Jiawei Zeng, Jingjing Fan, Limei Diao. Advances in Circular RNA in the Pathogenesis of Epilepsy. Neuroscience 2024, 551 , 246-253. https://doi.org/10.1016/j.neuroscience.2024.05.036
    23. Joshua Beals, Haiyan Hu, Xiaoman Li. A survey of experimental and computational identification of small proteins. Briefings in Bioinformatics 2024, 25 (4) https://doi.org/10.1093/bib/bbae345
    24. Satadeepa Kal, Sumana Mahata, Suborno Jati, Sushil K. Mahata. Mitochondrial-derived peptides: Antidiabetic functions and evolutionary perspectives. Peptides 2024, 172 , 171147. https://doi.org/10.1016/j.peptides.2023.171147
    25. Su-Jeong Kim, Brendan Miller, Nicolas G. Hartel, Ricardo Ramirez, Regina Gonzalez Braniff, Naphada Leelaprachakul, Amy Huang, Yuzhu Wang, Thalida Em Arpawong, Eileen M. Crimmins, Penglong Wang, Xianbang Sun, Chunyu Liu, Daniel Levy, Kelvin Yen, Giselle M. Petzinger, Nicholas A. Graham, Michael W. Jakowec, Pinchas Cohen. A naturally occurring variant of SHLP2 is a protective factor in Parkinson’s disease. Molecular Psychiatry 2024, 29 (2) , 505-517. https://doi.org/10.1038/s41380-023-02344-0
    26. Fabiola Valdivia-Francia, Ataman Sendoel. No country for old methods: New tools for studying microproteins. iScience 2024, 27 (2) , 108972. https://doi.org/10.1016/j.isci.2024.108972
    27. Urbani Daniele, Marianna Penzo, Martina Evangelisti, Marco Daniele Parenti, Alberto Del Rio. Reference: OC/EFSA/GMO/2021/01: Refinement of the Risk Assessment Methodology for Open Reading Frames in GMO Applications. EFSA Supporting Publications 2024, 21 (1) https://doi.org/10.2903/sp.efsa.2024.EN-8561
    28. Amanda L. Wiggenhorn, Hind Z. Abuzaid, Laetitia Coassolo, Veronica L. Li, Julia T. Tanzo, Wei Wei, Xuchao Lyu, Katrin J. Svensson, Jonathan Z. Long. A class of secreted mammalian peptides with potential to expand cell-cell communication. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43857-0
    29. Yirui Lu, Yutong Ran, Hong Li, Jiao Wen, Xiaodong Cui, Xiaoyun Zhang, Xiumei Guan, Min Cheng. Micropeptides: origins, identification, and potential role in metabolism-related diseases. Journal of Zhejiang University-SCIENCE B 2023, 24 (12) , 1106-1122. https://doi.org/10.1631/jzus.B2300128
    30. Jessica J. Mohsen, Alina A. Martel, Sarah A. Slavoff. Microproteins—Discovery, structure, and function. PROTEOMICS 2023, 23 (23-24) https://doi.org/10.1002/pmic.202100211
    31. John R. Prensner, Jennifer G. Abelin, Leron W. Kok, Karl R. Clauser, Jonathan M. Mudge, Jorge Ruiz-Orera, Michal Bassani-Sternberg, Robert L. Moritz, Eric W. Deutsch, Sebastiaan van Heesch. What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome?. Molecular & Cellular Proteomics 2023, 22 (9) , 100631. https://doi.org/10.1016/j.mcpro.2023.100631
    32. Zoe Posner, Ian Yannuzzi, John R. Prensner. Shining a light on the dark proteome: Non‐canonical open reading frames and their encoded miniproteins as a new frontier in cancer biology. Protein Science 2023, 32 (8) https://doi.org/10.1002/pro.4708
    33. Xiaoping Dong, Kun Zhang, Chengfeng Xun, Tianqi Chu, Songping Liang, Yong Zeng, Zhonghua Liu. Small Open Reading Frame-Encoded Micro-Peptides: An Emerging Protein World. International Journal of Molecular Sciences 2023, 24 (13) , 10562. https://doi.org/10.3390/ijms241310562
    34. Yanran Chen, Xiongwen Cao, Ken H. Loh, Sarah A. Slavoff. Chemical labeling and proteomics for characterization of unannotated small and alternative open reading frame-encoded polypeptides. Biochemical Society Transactions 2023, 51 (3) , 1071-1082. https://doi.org/10.1042/BST20221074
    35. Keira R. Hassel, Omar Brito-Estrada, Catherine A. Makarewich. Microproteins: Overlooked regulators of physiology and disease. iScience 2023, 26 (6) , 106781. https://doi.org/10.1016/j.isci.2023.106781
    36. Daniel Oreper, Susan Klaeger, Suchit Jhunjhunwala, Lélia Delamarre. The peptide woods are lovely, dark and deep: Hunting for novel cancer antigens. Seminars in Immunology 2023, 67 , 101758. https://doi.org/10.1016/j.smim.2023.101758
    37. Shengjie Li, Die Peng, Ni Pan, Shaohui Wang, Zheng Zhang, Cuihong Wan. Identification and analysis of short open reading frame-encoded peptides in different regions of mouse brain. iScience 2023, 26 (4) , 106427. https://doi.org/10.1016/j.isci.2023.106427
    38. Peng Wang, Xiao Wu, Zebin Shi, Shutian Tao, Zhe Liu, Kaijie Qi, Zhihua Xie, Xin Qiao, Chao Gu, Hao Yin, Mengyu Cheng, Xiaoyu Gu, Xueying Liu, Chao Tang, Peng Cao, Shaohang Xu, Baojin Zhou, Tingting Gu, Yangyang Bian, Juyou Wu, Shaoling Zhang. A large-scale proteogenomic atlas of pear. Molecular Plant 2023, 16 (3) , 599-615. https://doi.org/10.1016/j.molp.2023.01.011
    39. Ying Yang, Hongwei Wang, Yuanliang Zhang, Lei Chen, Gennong Chen, Zhaoshi Bao, Yang Yang, Zhi Xie, Qian Zhao. An Optimized Proteomics Approach Reveals Novel Alternative Proteins in Mouse Liver Development. Molecular & Cellular Proteomics 2023, 22 (1) , 100480. https://doi.org/10.1016/j.mcpro.2022.100480
    40. Thomas F. Martinez, Sally Lyons-Abbott, Angie L. Bookout, Eduardo V. De Souza, Cynthia Donaldson, Joan M. Vaughan, Calvin Lau, Ariel Abramov, Arian F. Baquero, Karalee Baquero, Dave Friedrich, Justin Huard, Ray Davis, Bong Kim, Ty Koch, Aaron J. Mercer, Ayesha Misquith, Sara A. Murray, Sakara Perry, Lindsay K. Pino, Christina Sanford, Alex Simon, Yu Zhang, Garrett Zipp, Cristiano V. Bizarro, Maxim N. Shokhirev, Andrew J. Whittle, Brian C. Searle, Michael J. MacCoss, Alan Saghatelian, Christopher A. Barnes. Profiling mouse brown and white adipocytes to identify metabolically relevant small ORFs and functional microproteins. Cell Metabolism 2023, 35 (1) , 166-183.e11. https://doi.org/10.1016/j.cmet.2022.12.004
    41. Shrestha Dutta, Swatilekha Ghosh, Abhishek Mishra, Rajgourab Ghosh. Oncoproteomics: insight into current proteomic technologies in cancer biomarker discovery and treatment. Journal of Proteins and Proteomics 2022, 35 https://doi.org/10.1007/s42485-022-00100-6
    42. Alyssa Zi-Xin Leong, Pey Yee Lee, M. Aiman Mohtar, Saiful Effendi Syafruddin, Yuh-Fen Pung, Teck Yew Low. Short open reading frames (sORFs) and microproteins: an update on their identification and validation measures. Journal of Biomedical Science 2022, 29 (1) https://doi.org/10.1186/s12929-022-00802-5
    43. Lara Jürgens, Klaus Wethmar. The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology. Cancers 2022, 14 (24) , 6031. https://doi.org/10.3390/cancers14246031
    44. Zheng Zhang, Yujie Li, Wenqian Yuan, Zhiwei Wang, Cuihong Wan. Proteomics‐driven identification of short open reading frame‐encoded peptides. PROTEOMICS 2022, 22 (15-16) , 2100312. https://doi.org/10.1002/pmic.202100312
    45. Sonia P. Chothani, Eleonora Adami, Anissa A. Widjaja, Sarah R. Langley, Sivakumar Viswanathan, Chee Jian Pua, Nevin Tham Zhihao, Nathan Harmston, Giuseppe D’Agostino, Nicola Whiffin, Wang Mao, John F. Ouyang, Wei Wen Lim, Shiqi Lim, Cheryl Q.E. Lee, Alexandra Grubman, Joseph Chen, J.P. Kovalik, Karl Tryggvason, Jose M. Polo, Lena Ho, Stuart A. Cook, Owen J.L. Rackham, Sebastian Schafer. A high-resolution map of human RNA translation. Molecular Cell 2022, 82 (15) , 2885-2899.e8. https://doi.org/10.1016/j.molcel.2022.06.023
    46. Yihan Liu, Shan Zeng, Minghua Wu. Novel insights into noncanonical open reading frames in cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022, 1877 (4) , 188755. https://doi.org/10.1016/j.bbcan.2022.188755
    47. Krishna D.B. Anapindi, Elena V. Romanova, James W. Checco, Jonathan V. Sweedler. Mass Spectrometry Approaches Empowering Neuropeptide Discovery and Therapeutics. Pharmacological Reviews 2022, 74 (3) , 662-679. https://doi.org/10.1124/pharmrev.121.000423
    48. Xiongwen Cao, Alexandra Khitun, Cecelia M. Harold, Carson J. Bryant, Shu-Jian Zheng, Susan J. Baserga, Sarah A. Slavoff. Nascent alt-protein chemoproteomics reveals a pre-60S assembly checkpoint inhibitor. Nature Chemical Biology 2022, 18 (6) , 643-651. https://doi.org/10.1038/s41589-022-01003-9
    49. Bertrand Fabre, Sebastien A. Choteau, Carine Duboé, Carole Pichereaux, Audrey Montigny, Dagmara Korona, Michael J. Deery, Mylène Camus, Christine Brun, Odile Burlet-Schiltz, Steven Russell, Jean-Philippe Combier, Kathryn S. Lilley, Serge Plaza. In Depth Exploration of the Alternative Proteome of Drosophila melanogaster. Frontiers in Cell and Developmental Biology 2022, 10 https://doi.org/10.3389/fcell.2022.901351
    50. Paige E. Erpf, Sheena M.H. Chua, Toan K. Phung, Edward D. Kerr, Joseph A. Rothnagel, Benjamin L. Schulz, James A. Fraser. Identification and characterisation of sPEPs in Cryptococcus neoformans. Fungal Genetics and Biology 2022, 160 , 103688. https://doi.org/10.1016/j.fgb.2022.103688
    51. Eduardo Vieira de Souza, Pedro Ferrari Dalberto, Vinicius Pellisoli Machado, Adriana Canedo, Alan Saghatelian, Pablo Machado, Luiz Augusto Basso, Cristiano Valim Bizarro, . µProteInS—a proteogenomics pipeline for finding novel bacterial microproteins encoded by small ORFs. Bioinformatics 2022, 38 (9) , 2612-2614. https://doi.org/10.1093/bioinformatics/btac115
    52. Lei Chen, Ying Yang, Yuanliang Zhang, Kecheng Li, Hongmin Cai, Hongwei Wang, Qian Zhao. The Small Open Reading Frame‐Encoded Peptides: Advances in Methodologies and Functional Studies. ChemBioChem 2022, 23 (8) https://doi.org/10.1002/cbic.202100534
    53. Qingqing Wu, Shangwei Zhong, Hui Shi. MicroProteins: Dynamic and accurate regulation of protein activity. Journal of Integrative Plant Biology 2022, 64 (4) , 812-820. https://doi.org/10.1111/jipb.13229
    54. Sylvain Tollis, Jaspal Singh, Roger Palou, Yogitha Thattikota, Ghada Ghazal, Jasmin Coulombe-Huntington, Xiaojing Tang, Susan Moore, Deborah Blake, Eric Bonneil, Catherine A. Royer, Pierre Thibault, Mike Tyers, . The microprotein Nrs1 rewires the G1/S transcriptional machinery during nitrogen limitation in budding yeast. PLOS Biology 2022, 20 (3) , e3001548. https://doi.org/10.1371/journal.pbio.3001548
    55. Preeti Madhav Kute, Omar Soukarieh, Håkon Tjeldnes, David-Alexandre Trégouët, Eivind Valen. Small Open Reading Frames, How to Find Them and Determine Their Function. Frontiers in Genetics 2022, 12 https://doi.org/10.3389/fgene.2021.796060
    56. Dörte Schlesinger, Simon J. Elsässer. Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins. The FEBS Journal 2022, 289 (1) , 53-74. https://doi.org/10.1111/febs.15769
    57. John Anders, Hannes Petruschke, Nico Jehmlich, Sven-Bastiaan Haange, Martin von Bergen, Peter F Stadler. A workflow to identify novel proteins based on the direct mapping of peptide-spectrum-matches to genomic locations. BMC Bioinformatics 2021, 22 (1) https://doi.org/10.1186/s12859-021-04159-8
    58. Liam Cassidy, Philipp T. Kaulich, Sandra Maaß, Jürgen Bartel, Dörte Becher, Andreas Tholey. Bottom‐up and top‐down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame‐encoded peptides. PROTEOMICS 2021, 21 (23-24) https://doi.org/10.1002/pmic.202100008
    59. Igor Fijalkowski, Marlies K. R. Peeters, Petra Van Damme. Small Protein Enrichment Improves Proteomics Detection of sORF Encoded Polypeptides. Frontiers in Genetics 2021, 12 https://doi.org/10.3389/fgene.2021.713400
    60. Daniel L. Morris, Nico Tjandra. Inducible fold‐switching as a mechanism to fibrillate pro‐apoptotic BCL ‐2 proteins. Biopolymers 2021, 112 (10) https://doi.org/10.1002/bip.23424
    61. Parthiban Periasamy, Sureka Rajandran, Rebekah Ziegman, Mika Casey, Kyohei Nakamura, Hitesh Kore, Keshava Datta, Harsha Gowda. A simple organic solvent precipitation method to improve detection of low molecular weight proteins. PROTEOMICS 2021, 21 (19) https://doi.org/10.1002/pmic.202100152
    62. Rui Vitorino, Manisha Choudhury, Sofia Guedes, Rita Ferreira, Visith Thongboonkerd, Lakshya Sharma, Francisco Amado, Sanjeeva Srivastava. Peptidomics and proteogenomics: background, challenges and future needs. Expert Review of Proteomics 2021, 9 , 1-17. https://doi.org/10.1080/14789450.2021.1980388
    63. Meiqian Jiang, Huiqiang Lou, Wenya Hou. Microproteins: from behind the scenes to the spotlight. Genome Instability & Disease 2021, 2 (4) , 225-239. https://doi.org/10.1007/s42764-021-00040-3
    64. Ni Pan, Zhiwei Wang, Bing Wang, Jian Wan, Cuihong Wan. Mapping Microproteins and ncRNA-Encoded Polypeptides in Different Mouse Tissues. Frontiers in Cell and Developmental Biology 2021, 9 https://doi.org/10.3389/fcell.2021.687748
    65. Tanxi Cai, Qing Zhang, Bowen Wu, Jifeng Wang, Na Li, Tingting Zhang, Zhipeng Wang, Jianjun Luo, Xiaojing Guo, Xiang Ding, Zhensheng Xie, Lili Niu, Weihai Ning, Zhen Fan, Xiaowei Chen, Xiangqian Guo, Runsheng Chen, Hongwei Zhang, Fuquan Yang. LncRNA‐encoded microproteins: A new form of cargo in cell culture‐derived and circulating extracellular vesicles. Journal of Extracellular Vesicles 2021, 10 (9) https://doi.org/10.1002/jev2.12123
    66. Stephan Fuchs, Martin Kucklick, Erik Lehmann, Alexander Beckmann, Maya Wilkens, Baban Kolte, Ayten Mustafayeva, Tobias Ludwig, Maurice Diwo, Josef Wissing, Lothar Jänsch, Christian H. Ahrens, Zoya Ignatova, Susanne Engelmann, . Towards the characterization of the hidden world of small proteins in Staphylococcus aureus, a proteogenomics approach. PLOS Genetics 2021, 17 (6) , e1009585. https://doi.org/10.1371/journal.pgen.1009585
    67. Bing Wang, Zhiwei Wang, Ni Pan, Jiangmei Huang, Cuihong Wan. Improved Identification of Small Open Reading Frames Encoded Peptides by Top-Down Proteomic Approaches and De Novo Sequencing. International Journal of Molecular Sciences 2021, 22 (11) , 5476. https://doi.org/10.3390/ijms22115476
    68. Bertrand Fabre, Jean-Philippe Combier, Serge Plaza. Recent advances in mass spectrometry–based peptidomics workflows to identify short-open-reading-frame-encoded peptides and explore their functions. Current Opinion in Chemical Biology 2021, 60 , 122-130. https://doi.org/10.1016/j.cbpa.2020.12.002
    69. Qing Zhang, Erzhong Wu, Yiheng Tang, Tanxi Cai, Lili Zhang, Jifeng Wang, Yajing Hao, Bao Zhang, Yue Zhou, Xiaojing Guo, Jianjun Luo, Runsheng Chen, Fuquan Yang. Deeply Mining a Universe of Peptides Encoded by Long Noncoding RNAs. Molecular & Cellular Proteomics 2021, 20 , 100109. https://doi.org/10.1016/j.mcpro.2021.100109
    70. Bing Wang, Junhui Hao, Ni Pan, Zhiwei Wang, Yinxuan Chen, Cuihong Wan. Identification and analysis of small proteins and short open reading frame encoded peptides in Hep3B cell. Journal of Proteomics 2021, 230 , 103965. https://doi.org/10.1016/j.jprot.2020.103965
    71. Liam Cassidy, Andreas O. Helbig, Philipp T. Kaulich, Kathrin Weidenbach, Ruth A. Schmitz, Andreas Tholey. Multidimensional separation schemes enhance the identification and molecular characterization of low molecular weight proteomes and short open reading frame-encoded peptides in top-down proteomics. Journal of Proteomics 2021, 230 , 103988. https://doi.org/10.1016/j.jprot.2020.103988
    72. Daniel L. Morris, Sabrina Johnson, Christopher K.E. Bleck, Duck-Yeon Lee, Nico Tjandra. Humanin selectively prevents the activation of pro-apoptotic protein BID by sequestering it into fibers. Journal of Biological Chemistry 2020, 295 (52) , 18226-18238. https://doi.org/10.1074/jbc.RA120.013023
    73. Philipp T. Kaulich, Liam Cassidy, Katrin Weidenbach, Ruth A. Schmitz, Andreas Tholey. Complementarity of Different SDS‐PAGE Gel Staining Methods for the Identification of Short Open Reading Frame‐Encoded Peptides. PROTEOMICS 2020, 20 (19-20) https://doi.org/10.1002/pmic.202000084
    74. Marie A. Brunet, Sebastien Leblanc, Xavier Roucou. Reconsidering proteomic diversity with functional investigation of small ORFs and alternative ORFs. Experimental Cell Research 2020, 393 (1) , 112057. https://doi.org/10.1016/j.yexcr.2020.112057
    75. Kelvin Yen, Hemal H. Mehta, Su-Jeong Kim, YanHe Lue, James Hoang, Noel Guerrero, Jenna Port, Qiuli Bi, Gerardo Navarrete, Sebastian Brandhorst, Kaitlyn Noel Lewis, Junxiang Wan, Ronald Swerdloff, Julie A. Mattison, Rochelle Buffenstein, Carrie V. Breton, Christina Wang, Valter Longo, Gil Atzmon, Douglas Wallace, Nir Barzilai, Pinchas Cohen. The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging 2020, 12 (12) , 11185-11199. https://doi.org/10.18632/aging.103534
    76. Xiongwen Cao, Sarah A. Slavoff. Non-AUG start codons: Expanding and regulating the small and alternative ORFeome. Experimental Cell Research 2020, 391 (1) , 111973. https://doi.org/10.1016/j.yexcr.2020.111973
    77. Thomas F. Martinez, Qian Chu, Cynthia Donaldson, Dan Tan, Maxim N. Shokhirev, Alan Saghatelian. Accurate annotation of human protein-coding small open reading frames. Nature Chemical Biology 2020, 16 (4) , 458-468. https://doi.org/10.1038/s41589-019-0425-0
    78. Hannes Petruschke, John Anders, Peter F. Stadler, Nico Jehmlich, Martin von Bergen. Enrichment and identification of small proteins in a simplified human gut microbiome. Journal of Proteomics 2020, 213 , 103604. https://doi.org/10.1016/j.jprot.2019.103604
    79. Jonathan M. Mudge, Irwin Jungreis, Toby Hunt, Jose Manuel Gonzalez, James C. Wright, Mike Kay, Claire Davidson, Stephen Fitzgerald, Ruth Seal, Susan Tweedie, Liang He, Robert M. Waterhouse, Yue Li, Elspeth Bruford, Jyoti S. Choudhary, Adam Frankish, Manolis Kellis. Discovery of high-confidence human protein-coding genes and exons by whole-genome PhyloCSF helps elucidate 118 GWAS loci. Genome Research 2019, 29 (12) , 2073-2087. https://doi.org/10.1101/gr.246462.118
    80. Daniel L. Morris, David W. Kastner, Sabrina Johnson, Marie-Paule Strub, Yi He, Christopher K.E. Bleck, Duck-Yeon Lee, Nico Tjandra. Humanin induces conformational changes in the apoptosis regulator BAX and sequesters it into fibers, preventing mitochondrial outer-membrane permeabilization. Journal of Biological Chemistry 2019, 294 (50) , 19055-19065. https://doi.org/10.1074/jbc.RA119.011297
    81. Qian Chu, Thomas F. Martinez, Sammy Weiser Novak, Cynthia J. Donaldson, Dan Tan, Joan M. Vaughan, Tina Chang, Jolene K. Diedrich, Leo Andrade, Andrew Kim, Tong Zhang, Uri Manor, Alan Saghatelian. Regulation of the ER stress response by a mitochondrial microprotein. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-12816-z
    82. Alexandra Khitun, Sarah A. Slavoff. Proteomic Detection and Validation of Translated Small Open Reading Frames. Current Protocols in Chemical Biology 2019, 11 (4) https://doi.org/10.1002/cpch.77
    83. Igor Fesenko, Ilya Kirov, Andrey Kniazev, Regina Khazigaleeva, Vassili Lazarev, Daria Kharlampieva, Ekaterina Grafskaia, Viktor Zgoda, Ivan Butenko, Georgy Arapidi, Anna Mamaeva, Vadim Ivanov, Vadim Govorun. Distinct types of short open reading frames are translated in plant cells. Genome Research 2019, 29 (9) , 1464-1477. https://doi.org/10.1101/gr.253302.119
    84. Ritesh Mewalal, Hengfu Yin, Rongbin Hu, Sara Jawdy, Patrice Vion, Gerald A. Tuskan, François Le Tacon, Jessy L. Labbé, Xiaohan Yang. Identification of Populus Small RNAs Responsive to Mutualistic Interactions With Mycorrhizal Fungi, Laccaria bicolor and Rhizophagus irregularis. Frontiers in Microbiology 2019, 10 https://doi.org/10.3389/fmicb.2019.00515
    85. Vivian Delcourt, Mylène Brunelle, Annie V. Roy, Jean-François Jacques, Michel Salzet, Isabelle Fournier, Xavier Roucou. The Protein Coded by a Short Open Reading Frame, Not by the Annotated Coding Sequence, Is the Main Gene Product of the Dual-Coding Gene MIEF1. Molecular & Cellular Proteomics 2018, 17 (12) , 2402-2411. https://doi.org/10.1074/mcp.RA118.000593
    86. Marie A Brunet, Mylène Brunelle, Jean-François Lucier, Vivian Delcourt, Maxime Levesque, Frédéric Grenier, Sondos Samandi, Sébastien Leblanc, Jean-David Aguilar, Pascal Dufour, Jean-Francois Jacques, Isabelle Fournier, Aida Ouangraoua, Michelle S Scott, François-Michel Boisvert, Xavier Roucou. OpenProt: a more comprehensive guide to explore eukaryotic coding potential and proteomes. Nucleic Acids Research 2018, 38 https://doi.org/10.1093/nar/gky936
    87. I. A. Fesenko, I. V. Kirov, A. A. Filippova. Impact of Noncoding Part of the Genome on the Proteome Plasticity of the Eukaryotic Cell. Russian Journal of Bioorganic Chemistry 2018, 44 (4) , 397-402. https://doi.org/10.1134/S1068162018040076
    88. Marie A. Brunet, Sébastien A. Levesque, Darel J. Hunting, Alan A. Cohen, Xavier Roucou. Recognition of the polycistronic nature of human genes is critical to understanding the genotype-phenotype relationship. Genome Research 2018, 28 (5) , 609-624. https://doi.org/10.1101/gr.230938.117
    89. Vivian Delcourt, Antanas Staskevicius, Michel Salzet, Isabelle Fournier, Xavier Roucou. Small Proteins Encoded by Unannotated ORFs are Rising Stars of the Proteome, Confirming Shortcomings in Genome Annotations and Current Vision of an mRNA. PROTEOMICS 2018, 18 (10) , 1700058. https://doi.org/10.1002/pmic.201700058
    90. Caitlin E. VanOrsdel, John P. Kelly, Brittany N. Burke, Christina D. Lein, Christopher E. Oufiero, Joseph F. Sanchez, Larry E. Wimmers, David J. Hearn, Fatimeh J. Abuikhdair, Kathryn R. Barnhart, Michelle L. Duley, Sarah E. G. Ernst, Briana A. Kenerson, Aubrey J. Serafin, Matthew R. Hemm. Identifying New Small Proteins in Escherichia coli. PROTEOMICS 2018, 18 (10) , 1700064. https://doi.org/10.1002/pmic.201700064
    91. Jiao Ma, Alan Saghatelian, Maxim Nikolaievich Shokhirev, . The influence of transcript assembly on the proteogenomics discovery of microproteins. PLOS ONE 2018, 13 (3) , e0194518. https://doi.org/10.1371/journal.pone.0194518
    92. Giorgia Benegiamo, Ludovic S. Mure, Galina Erikson, Hiep D. Le, Ermanno Moriggi, Steven A. Brown, Satchidananda Panda. The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding. Cell Metabolism 2018, 27 (2) , 404-418.e7. https://doi.org/10.1016/j.cmet.2017.12.010
    93. Peter D. E. M. Verhaert. The Bright Future of Peptidomics. 2018, 407-416. https://doi.org/10.1007/978-1-4939-7537-2_28
    94. Thierry Bertomeu, Jasmin Coulombe-Huntington, Andrew Chatr-aryamontri, Karine G. Bourdages, Etienne Coyaud, Brian Raught, Yu Xia, Mike Tyers. A High-Resolution Genome-Wide CRISPR/Cas9 Viability Screen Reveals Structural Features and Contextual Diversity of the Human Cell-Essential Proteome. Molecular and Cellular Biology 2018, 38 (1) , 1-24. https://doi.org/10.1128/MCB.00302-17
    95. Abigail Buchwalter, Martin W. Hetzer. Nucleolar expansion and elevated protein translation in premature aging. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-00322-z
    96. Serge Plaza, Gerben Menschaert, François Payre. In Search of Lost Small Peptides. Annual Review of Cell and Developmental Biology 2017, 33 (1) , 391-416. https://doi.org/10.1146/annurev-cellbio-100616-060516
    97. Mélodie Duval, Pascale Cossart. Small bacterial and phagic proteins: an updated view on a rapidly moving field. Current Opinion in Microbiology 2017, 39 , 81-88. https://doi.org/10.1016/j.mib.2017.09.010
    98. Peilan Zhang, Kunhua Li, Guang Yang, Changqing Xia, Jane E. Polston, Gengnan Li, Shiwu Li, Zhao Lin, Li-jun Yang, Steven D. Bruner, Yousong Ding. Cytotoxic protein from the mushroom Coprinus comatus possesses a unique mode for glycan binding and specificity. Proceedings of the National Academy of Sciences 2017, 114 (34) , 8980-8985. https://doi.org/10.1073/pnas.1706894114
    99. Qiao Zhang, Ajay A. Vashisht, Jason O’Rourke, Stéphane Y Corbel, Rita Moran, Angelica Romero, Loren Miraglia, Jia Zhang, Eric Durrant, Christian Schmedt, Srinath C. Sampath, Srihari C. Sampath. The microprotein Minion controls cell fusion and muscle formation. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms15664
    100. Brandon Razooky, Benedikt Obermayer, Joshua O’May, Alexander Tarakhovsky. Viral Infection Identifies Micropeptides Differentially Regulated in smORF-Containing lncRNAs. Genes 2017, 8 (8) , 206. https://doi.org/10.3390/genes8080206
    Load all citations

    Analytical Chemistry

    Cite this: Anal. Chem. 2016, 88, 7, 3967–3975
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.analchem.6b00191
    Published March 24, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    3014

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.