ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Absolute Quantification of Uric Acid in Human Urine Using Surface Enhanced Raman Scattering with the Standard Addition Method

View Author Information
School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
St George’s, University of London and St George’s University Hospitals NHS Foundation Trust Clinical Sciences Research Centre, London, SW17 0RE, United Kingdom
§ Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
Cite this: Anal. Chem. 2017, 89, 4, 2472–2477
Publication Date (Web):January 19, 2017
https://doi.org/10.1021/acs.analchem.6b04588
Copyright © 2017 American Chemical Society

    Article Views

    2882

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (659 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    High levels of uric acid in urine and serum can be indicative of hypertension and the pregnancy related condition, preeclampsia. We have developed a simple, cost-effective, portable surface enhanced Raman scattering (SERS) approach for the routine analysis of uric acid at clinically relevant levels in urine patient samples. This approach, combined with the standard addition method (SAM), allows for the absolute quantification of uric acid directly in a complex matrix such as that from human urine. Results are highly comparable and in very good agreement with HPLC results, with an average <9% difference in predictions between the two analytical approaches across all samples analyzed, with SERS demonstrating a 60-fold reduction in acquisition time compared with HPLC. For the first time, clinical prepreeclampsia patient samples have been used for quantitative uric acid detection using a simple, rapid colloidal SERS approach without the need for complex data analysis.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.6b04588.

    • Full experimental details of all supplementary methods, including: reagents and materials, methods, instrumentation, and data processing; pictorial representation of the overall process described in this paper (Figure S1); optimization of the developed SERS process (Figure S2); pH profiling of uric acid to check for ionization and the effect this has on SERS (Figure S3); an annotated mean average Raman spectra of uric acid (Figure S4); UV absorbance of five different hydroxylamine-reduced silver colloids showing excellent reproducibility of synthesis (Figure S5); a comparison of the SERS method developed with HPLC from the same patient sample (Figure S6) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 99 publications.

    1. Bingbing Hou, Xinyue Guo, Ying Zhang, Li Zhang, Dongxin Zhang, Zhengyan Wu, Jia Zhang, Zongyao Hao. Rational Atomic Engineering of Prussian Blue Analogues as Peroxidase Mimetics for Colorimetric Urinalysis of Uric Acid. ACS Sustainable Chemistry & Engineering 2023, 11 (16) , 6211-6219. https://doi.org/10.1021/acssuschemeng.2c07286
    2. Mengmeng Han, Juan Zhang, Haiyan Wei, Wei Zou, Mengping Zhang, Xiao Meng, Wenwen Chen, Hua Shao, Cuijuan Wang. Rapid and Robust Analysis of Coumatetralyl in Environmental Water and Human Urine Using a Portable Raman Spectrometer. ACS Omega 2023, 8 (14) , 12878-12885. https://doi.org/10.1021/acsomega.3c00005
    3. Jing Liu, Wufeng Fan, Xiaoxia Lv, Cuijuan Wang. Rapid Quantitative Detection of Voriconazole in Human Plasma Using Surface-Enhanced Raman Scattering. ACS Omega 2022, 7 (51) , 47634-47641. https://doi.org/10.1021/acsomega.2c04521
    4. Marios Constantinou, Katerina Hadjigeorgiou, Sara Abalde-Cela, Chrysafis Andreou. Label-Free Sensing with Metal Nanostructure-Based Surface-Enhanced Raman Spectroscopy for Cancer Diagnosis. ACS Applied Nano Materials 2022, 5 (9) , 12276-12299. https://doi.org/10.1021/acsanm.2c02392
    5. Peng Zhao, Yiyi Liu, Yuanyuan Chen, Mei Yang, Shixian Zhao, Na Qi, Yongzhong Wang, Danqun Huo, Changjun Hou. Hemin-Functionalized Microfluidic Chip with Dual-Electric Signal Outputs for Accurate Determination of Uric Acid. ACS Applied Materials & Interfaces 2022, 14 (36) , 41369-41378. https://doi.org/10.1021/acsami.2c07660
    6. Yasir Abbas, Shafqat Ali, Majid Basharat, Wenqi Zou, Fan Yang, Wei Liu, Shuangkun Zhang, Zhanpeng Wu, Naeem Akhtar, Dezhen Wu. Heteroatom-Doped Carbon Nanoparticle–Ionic Liquid Composites as Electrochemical Sensors for Uric Acid. ACS Applied Nano Materials 2020, 3 (11) , 11383-11390. https://doi.org/10.1021/acsanm.0c02466
    7. Laryssa Fernanda da Silva Gonçalves, Christian Silva Abreu, Keycianne da Cruz Silva, Aparecida Barbosa Mageste, Guilherme Dias Rodrigues, Wallans Torres Pio dos Santos, Leandro Rodrigues de Lemos. Thermodynamics Investigation of Partition Behavior of Uric Acid in Aqueous Two-Phase Systems. Journal of Chemical & Engineering Data 2020, 65 (7) , 3627-3636. https://doi.org/10.1021/acs.jced.0c00206
    8. Vinayak Narasimhan, Radwanul Hasan Siddique, Haeri Park, Hyuck Choo. Bioinspired Disordered Flexible Metasurfaces for Human Tear Analysis Using Broadband Surface-Enhanced Raman Scattering. ACS Omega 2020, 5 (22) , 12915-12922. https://doi.org/10.1021/acsomega.0c00677
    9. Li-Juan Han, Ya-Jie Kong, Guo-Zheng Hou, Hua-Chong Chen, Xing-Min Zhang, He-Gen Zheng. A Europium-based MOF Fluorescent Probe for Efficiently Detecting Malachite Green and Uric Acid. Inorganic Chemistry 2020, 59 (10) , 7181-7187. https://doi.org/10.1021/acs.inorgchem.0c00620
    10. Judith Langer, Dorleta Jimenez de Aberasturi, Javier Aizpurua, Ramon A. Alvarez-Puebla, Baptiste Auguié, Jeremy J. Baumberg, Guillermo C. Bazan, Steven E. J. Bell, Anja Boisen, Alexandre G. Brolo, Jaebum Choo, Dana Cialla-May, Volker Deckert, Laura Fabris, Karen Faulds, F. Javier García de Abajo, Royston Goodacre, Duncan Graham, Amanda J. Haes, Christy L. Haynes, Christian Huck, Tamitake Itoh, Mikael Käll, Janina Kneipp, Nicholas A. Kotov, Hua Kuang, Eric C. Le Ru, Hiang Kwee Lee, Jian-Feng Li, Xing Yi Ling, Stefan A. Maier, Thomas Mayerhöfer, Martin Moskovits, Kei Murakoshi, Jwa-Min Nam, Shuming Nie, Yukihiro Ozaki, Isabel Pastoriza-Santos, Jorge Perez-Juste, Juergen Popp, Annemarie Pucci, Stephanie Reich, Bin Ren, George C. Schatz, Timur Shegai, Sebastian Schlücker, Li-Lin Tay, K. George Thomas, Zhong-Qun Tian, Richard P. Van Duyne, Tuan Vo-Dinh, Yue Wang, Katherine A. Willets, Chuanlai Xu, Hongxing Xu, Yikai Xu, Yuko S. Yamamoto, Bing Zhao, Luis M. Liz-Marzán. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14 (1) , 28-117. https://doi.org/10.1021/acsnano.9b04224
    11. Raja Ram Pandey, Yuhang Guo, Ying Gao, Charles C. Chusuei. A Prussian Blue ZnO Carbon Nanotube Composite for Chronoamperometrically Assaying H2O2 in BT20 and 4T1 Breast Cancer Cells. Analytical Chemistry 2019, 91 (16) , 10573-10581. https://doi.org/10.1021/acs.analchem.9b01636
    12. Lee Sanchez, Charles Farber, Jiaxin Lei, Keyan Zhu-Salzman, Dmitry Kurouski. Noninvasive and Nondestructive Detection of Cowpea Bruchid within Cowpea Seeds with a Hand-Held Raman Spectrometer. Analytical Chemistry 2019, 91 (3) , 1733-1737. https://doi.org/10.1021/acs.analchem.8b05555
    13. Zixin Yang, Mengling Song, Yang Chen, Funan Chen. Bimetallic CuFe Prussian blue analogue cubes enhanced luminol chemiluminesence and its application. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2024, 304 , 123421. https://doi.org/10.1016/j.saa.2023.123421
    14. Sultan Aitekenov, Alisher Sultangaziyev, Perizat Abdirova, Lyailya Yussupova, Abduzhappar Gaipov, Zhandos Utegulov, Rostislav Bukasov. Raman, Infrared and Brillouin Spectroscopies of Biofluids for Medical Diagnostics and for Detection of Biomarkers. Critical Reviews in Analytical Chemistry 2023, 53 (7) , 1561-1590. https://doi.org/10.1080/10408347.2022.2036941
    15. Xin Liu, Alei Dang, Tiehu Li, Tung-Chun Lee, Yiting Sun, Yuhui Liu, Fei Ye, Shuze Ma, Yong Yang, Weibin Deng. Triple-enhanced Raman scattering sensors from flexible MXene/Au nanocubes platform via attenuating the coffee ring effect. Biosensors and Bioelectronics 2023, 237 , 115531. https://doi.org/10.1016/j.bios.2023.115531
    16. Chiyu Ma, Nan Jiang, Xianyou Sun, Liubing Kong, Tao Liang, Xinwei Wei, Ping Wang. Progress in optical sensors-based uric acid detection. Biosensors and Bioelectronics 2023, 237 , 115495. https://doi.org/10.1016/j.bios.2023.115495
    17. Yicheng Zhou, Li Dong, Tongtong Cao, Jiazheng Zhang, Rongrong Qiao, Lin Liu, Chao Liu, Xiaobo Zhang, Zhiwei Tong. A novel nanocomposite material C 3 F 7 -azo + /Ti 4 O 9 2− was prepared as a sensor for the detection of ascorbic acid and uric acid. New Journal of Chemistry 2023, 47 (35) , 16695-16705. https://doi.org/10.1039/D3NJ03612J
    18. Jingyu Xiao, Shuxin Zhang, Qingzhou Liu, Tailin Xu, Xueji Zhang. Microfluidic-based Plasmonic Microneedle Biosensor for Uric Acid Ultrasensitive Monitoring. Sensors and Actuators B: Chemical 2023, 9 , 134685. https://doi.org/10.1016/j.snb.2023.134685
    19. Xin Lin, Li-Jun Li, He-Yuan-Xi Guo, Rui Li, Jun Feng. Preparation of 3D nano silver trees/sea urchin-like gold and SERS detection of uric acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023, 59 , 123464. https://doi.org/10.1016/j.saa.2023.123464
    20. Mei-Chin Lien, I-Hsiu Yeh, Yin-Cheng Lu, Keng-Ku Liu. Plasmonic nanomaterials-based flexible strips for the SERS detection of gouty arthritis. The Analyst 2023, 148 (17) , 4109-4115. https://doi.org/10.1039/D3AN01130E
    21. Dechan Lu, Rongyuan Cai, Yuqin Liao, Ruiyun You, Yudong Lu. Two-dimensional glass/p-ATP/Ag NPs as multifunctional SERS substrates for label-free quantification of uric acid in sweat. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023, 296 , 122631. https://doi.org/10.1016/j.saa.2023.122631
    22. Abdul Ghaffar Solangi, Aneela Tahira, Baradi Waryani, Abdul Sattar Chang, Tajnees Pirzada, Ayman Nafady, Elmuez A. Dawi, Lama M. A. Saleem, Mohsen Padervand, Abd Al Karim Haj Ismail, Kangle Lv, Brigitte Vigolo, Zafar Hussain Ibupoto. Green-Mediated Synthesis of NiCo2O4 Nanostructures Using Radish White Peel Extract for the Sensitive and Selective Enzyme-Free Detection of Uric Acid. Biosensors 2023, 13 (8) , 780. https://doi.org/10.3390/bios13080780
    23. Rahul Verma, Kshitij RB Singh, Ranjana Verma, Jay Singh. Electro‐optical behaviour of CuFe 2 O 4 @rGO nanocomposite for nonenzymatic detection of uric acid via the electrochemical method. Luminescence 2023, 38 (7) , 1393-1404. https://doi.org/10.1002/bio.4479
    24. Huan Yao, Shi-Yao Li, Hong Zhang, Xin-Yu Pang, Jia-Le Lu, Cong Chen, Wei Jiang, Liu-Pan Yang, Li-Li Wang. Tetralactam macrocycle based indicator displacement assay for colorimetric and fluorometric dual-mode detection of urinary uric acid. Chemical Communications 2023, 59 (36) , 5411-5414. https://doi.org/10.1039/D2CC06622J
    25. Gustavo Gonçalves Dalkiranis, Fernando Costa Basílio, Roberto S. Nobuyasu, Silésia de Fátima Curcino da Silva, Sandra Lucia Dias Nogueira, Eralci Moreira Therézio, Françoise Serein-Spirau, Raigna A. Silva, Alexandre Marletta. Photoluminescent ellipsometric circular dichroism. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023, 293 , 122437. https://doi.org/10.1016/j.saa.2023.122437
    26. Mengping Zhang, Xiao Meng, Nianlu Li, Wei Zou, Haiyan Wei, Ranran Liu, Yaxin Sun, Wenwen Chen, Jingcheng Cui, Cuijuan Wang. Integration of solid-phase microextraction and surface-enhanced Raman spectroscopy for in-vivo screening of polybrominated diphenyl ether. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023, 293 , 122476. https://doi.org/10.1016/j.saa.2023.122476
    27. Xinjie Wu, Congyi Hu, Siyu Xiao, Xue Wang, Shujun Zhen, Chengzhi Huang, Yuanfang Li. A Novel Luminol-Coordinated Silver(I) Organic Gel with Self-Enhanced Chemiluminescence Applied for Uric Acid Detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023, 91 , 122906. https://doi.org/10.1016/j.saa.2023.122906
    28. Priyankamoni Saikia, Jayashree Nath, Swapan Kumar Dolui, Sanjeev Pran Mahanta. Cesium lead bromide as a colorimetric and fluorometric sensing platform for the selective detection of uric acid. New Journal of Chemistry 2023, 47 (15) , 7425-7431. https://doi.org/10.1039/D3NJ00202K
    29. Kangkang Wang, Zhexue Chen, Yueqi Li, Yong Zhang. Top-down produced CdSe quantum dots as an ultrasensitive SERS platform for the detection of uric acid. Materials Chemistry Frontiers 2023, 7 (8) , 1624-1632. https://doi.org/10.1039/D2QM01275H
    30. Najla AlMasoud, Taghrid S. Alomar, Yun Xu, Cassio Lima, Royston Goodacre. Rapid detection and quantification of paracetamol and its major metabolites using surface enhanced Raman scattering. The Analyst 2023, 148 (8) , 1805-1814. https://doi.org/10.1039/D3AN00249G
    31. Po-Hui Yang, Ying-Sheng Chang, Che-Tsung Chan. Aluminum-Doped Zinc Oxide Enzymatic Dopamine Biosensor Integrated With Potentiometric Readout Circuit Board. IEEE Sensors Journal 2023, 23 (3) , 1809-1817. https://doi.org/10.1109/JSEN.2022.3231412
    32. Jinyong Lin, Shangyuan Feng, Xianzeng Zhang. Combining urine surface-enhanced Raman spectroscopy with PCA-SVM algorithm for improving the identification of colorectal cancer at different stages. Optoelectronics Letters 2023, 19 (2) , 101-104. https://doi.org/10.1007/s11801-023-2157-3
    33. Ziyan Song, Siyu Chen, Qiushi He, Hu Liang, Guangyao Huang, Pan Li, Zongyao Hao, Liangbao Yang. Floating Ag-NPs@Cu-NW bundles fabricated on copper mesh for highly sensitive SERS detection of uric acid in pretreatment-free urine. The Analyst 2022, 147 (24) , 5670-5679. https://doi.org/10.1039/D2AN01586B
    34. Xinyu Zheng, Yang Yang, Feng Gao, Huihui Li, Weikang Yang, Dong-Yu Guo, Shengming Chen, Qinhe Pan. Enzyme-free fluorescence determination of uric acid by combining CdTe quantum dots with metal–organic framework for signal amplification. Microchimica Acta 2022, 189 (11) https://doi.org/10.1007/s00604-022-05535-8
    35. Teodoru Soare, Ana Maria Iordache, George Nicolae, Stefan-Marian Iordache, Cosmin Baciu, Silviu Marinescu, Raluca Ioana Rizac, Manuella Militaru. Identification of Uric Acid Crystals Accumulation in Human and Animal Tissues Using Combined Morphological and Raman Spectroscopy Analysis. Diagnostics 2022, 12 (11) , 2762. https://doi.org/10.3390/diagnostics12112762
    36. Chang Wang, Shihao Zhou, Yue Tian, Anxin Jiao, Hui Ma, Mengya Zhang, Linqi Zheng, Xiangdong Liu, Qingqiang Cui, Shuang Li, Ming Chen. Super-hydrophilic SERS sensor with both ultrahigh activity and exceptional 3D spatial uniformity for sensitive detection of toxic pollutants. Applied Surface Science 2022, 603 , 154445. https://doi.org/10.1016/j.apsusc.2022.154445
    37. Cheng-Ye Xi, Min Zhang, Lei Jiang, Hua-Ying Chen, Jian Lv, Yue He, Mahmoud Elsayed Hafez, Ruo-Can Qian, Da-Wei Li. MOFs-functionalized regenerable SERS sensor based on electrochemistry for pretreatment-free detection of serum alkaline phosphatase activity. Sensors and Actuators B: Chemical 2022, 369 , 132264. https://doi.org/10.1016/j.snb.2022.132264
    38. Ming Shang, Haiyan Wei, Ge Gao, Nianlu Li, Wei Zou, Ranran Liu, Mengping Zhang, Xiao Meng, Wenwen Chen, Yaxin Sun, Cuijuan Wang. A Portable Kit for Rapid Detection of Bromadiolone in Human Blood and Urine via Surface-enhanced Raman Scattering coupled with Salt-Induced Liquid-Liquid Phase Separation. Sensors and Actuators B: Chemical 2022, 94 , 132809. https://doi.org/10.1016/j.snb.2022.132809
    39. Jinming Li, Xiaoyu Cui, Xia Yang, Yuting Qiu, Yuzhan Li, Hui Cao, Dong Wang, Wanli He, Yun Feng, Zhou Yang. Quantification of uric acid concentration in tears by using PDMS inverse opal structure surface-enhanced Raman scattering substrates: Application in hyperuricemia. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 278 , 121326. https://doi.org/10.1016/j.saa.2022.121326
    40. Mingyan Huang, Yuzhou Wang, Mengling Song, Funan Chen. Bimetallic CuCo Prussian blue analogue nanocubes induced chemiluminescence of luminol under alkaline solution for uric acid detection in human serum. Microchemical Journal 2022, 181 , 107667. https://doi.org/10.1016/j.microc.2022.107667
    41. Xiaoying Zhang, Xin Wang, Mengling Ning, Peng Wang, Wen Wang, Xiaozhou Zhang, Zhiming Liu, Yanjiao Zhang, Shaoxin Li. Fast Synthesis of Au Nanoparticles on Metal–Phenolic Network for Sweat SERS Analysis. Nanomaterials 2022, 12 (17) , 2977. https://doi.org/10.3390/nano12172977
    42. Chang Wang, Qingqiang Cui, Tian Yue, Anxin Jiao, Hui Ma, Mengya Zhang, Linqi Zheng, Shuang Li, Guanhua Li, Ming Chen. Thermal annealing-boosted photoinduced electron transfer efficiency of g-C3N4/Au NPs hybrids for promoting SERS detection of uric acids. Vibrational Spectroscopy 2022, 122 , 103424. https://doi.org/10.1016/j.vibspec.2022.103424
    43. Jie Yang, Jie Che, Xin Jiang, Yangchun Fan, Daojiang Gao, Jian Bi, Zhanglei Ning. A Novel Turn-On Fluorescence Probe Based on Cu(II) Functionalized Metal–Organic Frameworks for Visual Detection of Uric Acid. Molecules 2022, 27 (15) , 4803. https://doi.org/10.3390/molecules27154803
    44. Vlad Cristian Munteanu, Raluca Andrada Munteanu, Diana Gulei, Radu Mărginean, Vlad Horia Schițcu, Anca Onaciu, Valentin Toma, Gabriela Fabiola Știufiuc, Ioan Coman, Rareș Ionuț Știufiuc. New Insights into the Multivariate Analysis of SER Spectra Collected on Blood Samples for Prostate Cancer Detection: Towards a Better Understanding of the Role Played by Different Biomolecules on Cancer Screening: A Preliminary Study. Cancers 2022, 14 (13) , 3227. https://doi.org/10.3390/cancers14133227
    45. Wubulitalifu Dawuti, Xiangxiang Zheng, Hui Liu, Hui Zhao, Jingrui Dou, Li Sun, Jin Chu, Renyong Lin, Guodong Lü. Urine surface-enhanced Raman spectroscopy combined with SVM algorithm for rapid diagnosis of liver cirrhosis and hepatocellular carcinoma. Photodiagnosis and Photodynamic Therapy 2022, 38 , 102811. https://doi.org/10.1016/j.pdpdt.2022.102811
    46. Mengya Zhang, Yue Tian, Anxin Jiao, Hui Ma, Chang Wang, Linqi Zheng, Shuang Li, Ming Chen. Synergistic double laser beam-boosted liquid-NIR-SERS for ultralow detection of non-adsorptive polycyclic aromatic hydrocarbons in lake water. Nanophotonics 2022, 11 (12) , 2875-2889. https://doi.org/10.1515/nanoph-2022-0010
    47. Aneta Aniela Kowalska, Marta Czaplicka, Ariadna B. Nowicka, Izabela Chmielewska, Karolina Kędra, Tomasz Szymborski, Agnieszka Kamińska. Lung Cancer: Spectral and Numerical Differentiation among Benign and Malignant Pleural Effusions Based on the Surface-Enhanced Raman Spectroscopy. Biomedicines 2022, 10 (5) , 993. https://doi.org/10.3390/biomedicines10050993
    48. Stefania D. Iancu, Ramona G. Cozan, Andrei Stefancu, Maria David, Tudor Moisoiu, Cristiana Moroz-Dubenco, Adel Bajcsi, Camelia Chira, Anca Andreica, Loredana F. Leopold, Daniela Eniu, Adelina Staicu, Iulian Goidescu, Carmen Socaciu, Dan T. Eniu, Laura Diosan, Nicolae Leopold. SERS liquid biopsy in breast cancer. What can we learn from SERS on serum and urine?. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 273 , 120992. https://doi.org/10.1016/j.saa.2022.120992
    49. M. Verma, Tania K. Naqvi, Santosh K. Tripathi, Manish M. Kulkarni, N. Eswara Prasad, Prabhat K. Dwivedi. Plasmonic Paper-Based Flexible SERS Biosensor for Highly Sensitive Detection of Lactic and Uric Acid. IEEE Transactions on NanoBioscience 2022, 21 (2) , 294-300. https://doi.org/10.1109/TNB.2021.3124055
    50. Muhammad Naeem Ashraf, Muhammad Irfan Majeed, Haq Nawaz, Muhammad Adnan Iqbal, Javed Iqbal, Nida Iqbal, Ahmad Hasan, Nosheen Rashid, Muhammad Abubakar, Muhammad Zaman Nawaz, Kashif Shahzad, Muhammad Zeeshan Haider. Raman spectroscopic characterization of selenium N-heterocyclic carbene compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 270 , 120823. https://doi.org/10.1016/j.saa.2021.120823
    51. Umesha Mogera, Heng Guo, Myeong Namkoong, Md Saifur Rahman, Tan Nguyen, Limei Tian. Wearable plasmonic paper–based microfluidics for continuous sweat analysis. Science Advances 2022, 8 (12) https://doi.org/10.1126/sciadv.abn1736
    52. Guowei Sun, Chen Fu, Mengmeng Dong, Guangxia Jin, Qijun Song. The finite-difference time-domain (FDTD) guided preparation of Ag nanostructures on Ti substrate for sensitive SERS detection of small molecules. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 269 , 120743. https://doi.org/10.1016/j.saa.2021.120743
    53. Tudor Moisoiu, Stefania D. Iancu, Dan Burghelea, Mihnea P. Dragomir, Gheorghita Iacob, Andrei Stefancu, Ramona G. Cozan, Oana Antal, Zoltán Bálint, Valentin Muntean, Radu I. Badea, Emilia Licarete, Nicolae Leopold, Florin I. Elec. SERS Liquid Biopsy Profiling of Serum for the Diagnosis of Kidney Cancer. Biomedicines 2022, 10 (2) , 233. https://doi.org/10.3390/biomedicines10020233
    54. Iris Baffour Ansah, Won-Chul Lee, ChaeWon Mun, Jong-Joo Rha, Ho Sang Jung, Mijeong Kang, Sung-Gyu Park, Dong-Ho Kim. In situ electrochemical surface modification of Au electrodes for simultaneous label-free SERS detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical 2022, 353 , 131196. https://doi.org/10.1016/j.snb.2021.131196
    55. Mingyan Huang, Yuzhou Wang, Mengling Song, Funan Chen. Bimetallic Cuco Prussian Blue Analogue Nanocubes Induced Chemiluminescence of Luminol Under Alkaline Solution for Uric Acid Detection in Human Serum. SSRN Electronic Journal 2022, 179 https://doi.org/10.2139/ssrn.4016990
    56. Ming Shang, Haiyan Wei, Ge Gao, Nianlu Li, Wei Zou, Ranran Liu, Mengping Zhang, Xiao Meng, Wenwen Chen, Yaxin Sun, Cuijuan Wang. A Portable Kit for Rapid Detection of Bromadiolone in Human Blood and Urine Via Surface-Enhanced Raman Scattering Coupled with Salt-Induced Liquid–Liquid Phase Separation. SSRN Electronic Journal 2022, 94 https://doi.org/10.2139/ssrn.4156362
    57. Gizem Turkkan, Salih Zeki Bas, Keziban Atacan, Mustafa Ozmen. An electrochemical sensor based on a Co 3 O 4 –ERGO nanocomposite modified screen-printed electrode for detection of uric acid in artificial saliva. Analytical Methods 2021, 14 (1) , 67-75. https://doi.org/10.1039/D1AY01744F
    58. Fang Xin Hu, Tao Hu, Shihong Chen, Dongping Wang, Qianghai Rao, Yuhang Liu, Fangyin Dai, Chunxian Guo, Hong Bin Yang, Chang Ming Li. Single-Atom Cobalt-Based Electrochemical Biomimetic Uric Acid Sensor with Wide Linear Range and Ultralow Detection Limit. Nano-Micro Letters 2021, 13 (1) https://doi.org/10.1007/s40820-020-00536-9
    59. Vlad Moisoiu, Stefania D. Iancu, Andrei Stefancu, Tudor Moisoiu, Barbara Pardini, Mihnea P. Dragomir, Nicolae Crisan, Lucretia Avram, Dana Crisan, Iulia Andras, Daniela Fodor, Loredana F. Leopold, Carmen Socaciu, Zoltán Bálint, Ciprian Tomuleasa, Florin Elec, Nicolae Leopold. SERS liquid biopsy: An emerging tool for medical diagnosis. Colloids and Surfaces B: Biointerfaces 2021, 208 , 112064. https://doi.org/10.1016/j.colsurfb.2021.112064
    60. Binbin Zhou, Weihui Ou, Chenghao Zhao, Junda Shen, Guobin Zhang, Xianghu Tang, Zhiqin Deng, Guangyu Zhu, Yang Yang Li, Jian Lu. Insertable and reusable SERS sensors for rapid on-site quality control of fish and meat products. Chemical Engineering Journal 2021, 426 , 130733. https://doi.org/10.1016/j.cej.2021.130733
    61. Alessandro Esposito, Alois Bonifacio, Valter Sergo, Stefano Fornasaro. Label-free Surface Enhanced Raman Scattering (SERS) on Centrifugal Silver Plasmonic Paper (CSPP): A Novel Methodology for Unprocessed Biofluids Sampling and Analysis. Biosensors 2021, 11 (11) , 467. https://doi.org/10.3390/bios11110467
    62. Vandana Nagal, Virendra Kumar, Marya Khan, Suliman Yousef AlOmar, Nirmalya Tripathy, Kedar Singh, Ajit Khosla, Naushad Ahmad, Aurangzeb Khurram Hafiz, Rafiq Ahmad. A highly sensitive uric acid biosensor based on vertically arranged ZnO nanorods on a ZnO nanoparticle-seeded electrode. New Journal of Chemistry 2021, 45 (40) , 18863-18870. https://doi.org/10.1039/D1NJ03744G
    63. Qutong Zheng, Li Xiong, Long Yu, Di Wu, Chunxu Yang, Yuxiu Xiao. An enzyme-free fluorescent sensing platform for the detection of uric acid in human urine. Journal of Luminescence 2021, 236 , 118076. https://doi.org/10.1016/j.jlumin.2021.118076
    64. Cassio Lima, Howbeer Muhamadali, Royston Goodacre. The Role of Raman Spectroscopy Within Quantitative Metabolomics. Annual Review of Analytical Chemistry 2021, 14 (1) , 323-345. https://doi.org/10.1146/annurev-anchem-091420-092323
    65. Yang Li, Haolin Chen, Yanxian Guo, Kangkang Wang, Yue Zhang, Peilin Lan, Jinhao Guo, Wen Zhang, Huiqing Zhong, Zhouyi Guo, Zhengfei Zhuang, Zhiming Liu. Lamellar hafnium ditelluride as an ultrasensitive surface-enhanced Raman scattering platform for label-free detection of uric acid. Photonics Research 2021, 9 (6) , 1039. https://doi.org/10.1364/PRJ.421415
    66. Oliver Richards, Cerys Jenkins, Helena Griffiths, Edyta Paczkowska, Peter R. Dunstan, Sharon Jones, Margery Morgan, Tanya Thomas, Jayne Bowden, Annettee Nakimuli, Manju Nair, Catherine A. Thornton. Vibrational Spectroscopy: A Valuable Screening and Diagnostic Tool for Obstetric Disorders?. Frontiers in Global Women's Health 2021, 1 https://doi.org/10.3389/fgwh.2020.610582
    67. Fengtong Zhao, Weipeng Wang, Haodong Zhong, Fei Yang, Wangyang Fu, Yunhan Ling, Zhengjun Zhang. Robust quantitative SERS analysis with Relative Raman scattering intensities. Talanta 2021, 221 , 121465. https://doi.org/10.1016/j.talanta.2020.121465
    68. Paul A. Flowers, Xin Dong, Jackson G. Bounds. Kinetic Spectroelectrochemical Assay for Uric Acid in Human Urine. Electroanalysis 2021, 33 (1) , 75-80. https://doi.org/10.1002/elan.202060251
    69. Chu-Yu Huang, Hung-Che Hsiao. Integrated EC-SERS Chip with Uniform Nanostructured EC-SERS Active Working Electrode for Rapid Detection of Uric Acid. Sensors 2020, 20 (24) , 7066. https://doi.org/10.3390/s20247066
    70. Jinyong Lin, Zongwei Huang, Xueliang Lin, Qiong Wu, Kerun Quan, Yanming Cheng, Mingzhi Zheng, Jiaying Xu, Yitao Dai, Hejin Qiu, Duo Lin, Shangyuan Feng. Rapid and label-free urine test based on surface-enhanced Raman spectroscopy for the non-invasive detection of colorectal cancer at different stages. Biomedical Optics Express 2020, 11 (12) , 7109. https://doi.org/10.1364/BOE.406097
    71. Weishan Shi, Jing Li, Jie Wu, Qianying Wei, Cuili Chen, Ning Bao, Chunmei Yu, Haiying Gu. An electrochemical biosensor based on multi-wall carbon nanotube–modified screen-printed electrode immobilized by uricase for the detection of salivary uric acid. Analytical and Bioanalytical Chemistry 2020, 412 (26) , 7275-7283. https://doi.org/10.1007/s00216-020-02860-w
    72. Daniel-Ralph Hermann, David Lilek, Christina Daffert, Ines Fritz, Simone Weinberger, Vanessa Rumpler, Birgit Herbinger, Katerina Prohaska. In situ based surface-enhanced Raman spectroscopy (SERS) for the fast and reproducible identification of PHB producers in cyanobacterial cultures. The Analyst 2020, 145 (15) , 5242-5251. https://doi.org/10.1039/D0AN00969E
    73. Vlad Moisoiu, Maria Badarinza, Andrei Stefancu, Stefania D. Iancu, Oana Serban, Nicolae Leopold, Daniela Fodor. Combining surface-enhanced Raman scattering (SERS) of saliva and two-dimensional shear wave elastography (2D-SWE) of the parotid glands in the diagnosis of Sjögren's syndrome. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 235 , 118267. https://doi.org/10.1016/j.saa.2020.118267
    74. Xiaoying Guo, Xinyu Wang, Dongwei Huang, Jinjie Zhang, Dalun Xu, Wenge Yang, Qijie Hu, Zhongxiang Fang, Tao Huang. Method study on determination of total purine content in fish meat by diazotization reaction combined with SERS. LWT 2020, 123 , 109027. https://doi.org/10.1016/j.lwt.2020.109027
    75. Steven E. J. Bell, Gaëlle Charron, Emiliano Cortés, Janina Kneipp, Marc Lamy de la Chapelle, Judith Langer, Marek Procházka, Vi Tran, Sebastian Schlücker. Auf dem Weg zur verlässlichen und quantitativen SERS‐Spektroskopie: von Schlüsselparametern zur guten analytischen Praxis. Angewandte Chemie 2020, 132 (14) , 5496-5505. https://doi.org/10.1002/ange.201908154
    76. Steven E. J. Bell, Gaëlle Charron, Emiliano Cortés, Janina Kneipp, Marc Lamy de la Chapelle, Judith Langer, Marek Procházka, Vi Tran, Sebastian Schlücker. Towards Reliable and Quantitative Surface‐Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice. Angewandte Chemie International Edition 2020, 59 (14) , 5454-5462. https://doi.org/10.1002/anie.201908154
    77. Saqib Ali, Ayesha Riaz, Muhammad Irfan Majeed, Muhammad Adnan Iqbal, Haq Nawaz Bhatti, Nosheen Rashid, Muhammad Kashif, Muhammad Tahir, Saira Nasir, Saifullah, Sidra Farooq, Ammara Naseem, Haq Nawaz. Raman spectroscopy along with Principal Component Analysis for the confirmation of Silver(I)-N-heterocyclic carbene complex formation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 228 , 117851. https://doi.org/10.1016/j.saa.2019.117851
    78. Ana M. Garcia, Roy Lavendomme, Slavko Kralj, Marina Kurbasic, Ottavia Bellotto, Maria C. Cringoli, Sabrina Semeraro, Antonella Bandiera, Rita De Zorzi, Silvia Marchesan. Self‐Assembly of an Amino Acid Derivative into an Antimicrobial Hydrogel Biomaterial. Chemistry – A European Journal 2020, 26 (8) , 1880-1886. https://doi.org/10.1002/chem.201905681
    79. Lucretia Avram, Stefania D. Iancu, Andrei Stefancu, Vlad Moisoiu, Alia Colnita, Daniel Marconi, Valer Donca, Elena Buzdugan, Rares Craciun, Nicolae Leopold, Nicolae Crisan, Ioan Coman, Dana Crisan. SERS-Based Liquid Biopsy of Gastrointestinal Tumors Using a Portable Raman Device Operating in a Clinical Environment. Journal of Clinical Medicine 2020, 9 (1) , 212. https://doi.org/10.3390/jcm9010212
    80. Jakub Hrdlička, Tomáš Gucký, Ondřej Novák, Manoj Kulkarni, Shubhpriya Gupta, Johannes van Staden, Karel Doležal. Quantification of karrikins in smoke water using ultra-high performance liquid chromatography–tandem mass spectrometry. Plant Methods 2019, 15 (1) https://doi.org/10.1186/s13007-019-0467-z
    81. Sheila Hernandez, Juan V. Perales-Rondon, Aranzazu Heras, Alvaro Colina. Determination of uric acid in synthetic urine by using electrochemical surface oxidation enhanced Raman scattering. Analytica Chimica Acta 2019, 1085 , 61-67. https://doi.org/10.1016/j.aca.2019.07.057
    82. Andrei Stefancu, Maria Badarinza, Vlad Moisoiu, Stefania D. Iancu, Oana Serban, Nicolae Leopold, Daniela Fodor. SERS-based liquid biopsy of saliva and serum from patients with Sjögren’s syndrome. Analytical and Bioanalytical Chemistry 2019, 411 (22) , 5877-5883. https://doi.org/10.1007/s00216-019-01969-x
    83. Melisew Tadele Alula, Peter Lemmens, Liu Bo, Dirk Wulferding, Jyisy Yang, Hendrik Spende. Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy. Analytica Chimica Acta 2019, 1073 , 62-71. https://doi.org/10.1016/j.aca.2019.04.061
    84. Sumeng Zou, Lingwei Ma, Jianghao Li, Yuehua Liu, Dongliang Zhao, Zhengjun Zhang. Ag Nanorods-Based Surface-Enhanced Raman Scattering: Synthesis, Quantitative Analysis Strategies, and Applications. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00376
    85. Chaoying Tong, Jinju Xu, Qiachi Fu, Ruiqing Long, Sheng Peng, Shuyun Shi. Rapid extraction, discrimination and quantification of thermally unstable isomeric acteoside and isoacteoside in natural products by online extraction-quadrupole time-of-flight tandem mass spectrometry. Analytical Methods 2019, 11 (16) , 2148-2154. https://doi.org/10.1039/C8AY02584C
    86. Juan V. Perales-Rondon, Sheila Hernandez, Aranzazu Heras, Alvaro Colina. Effect of chloride and pH on the electrochemical surface oxidation enhanced Raman scattering. Applied Surface Science 2019, 473 , 366-372. https://doi.org/10.1016/j.apsusc.2018.12.148
    87. Malama Chisanga, Howbeer Muhamadali, David Ellis, Royston Goodacre. Enhancing Disease Diagnosis: Biomedical Applications of Surface-Enhanced Raman Scattering. Applied Sciences 2019, 9 (6) , 1163. https://doi.org/10.3390/app9061163
    88. Lidia Morelli, Francesca Alessandra Centorbi, Oleksii Ilchenko, Christian Bille Jendresen, Danilo Demarchi, Alex Toftgaard Nielsen, Kinga Zór, Anja Boisen. Simultaneous quantification of multiple bacterial metabolites using surface-enhanced Raman scattering. The Analyst 2019, 144 (5) , 1600-1607. https://doi.org/10.1039/C8AN02128G
    89. Shefali Jain, Shilpi Verma, Surinder P. Singh, Shailesh Narain Sharma. An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection. Biosensors and Bioelectronics 2019, 127 , 135-141. https://doi.org/10.1016/j.bios.2018.12.008
    90. Vlad Moisoiu, Andreea Socaciu, Andrei Stefancu, Stefania Iancu, Imre Boros, Cristian Alecsa, Claudiu Rachieriu, Angelica Chiorean, Daniela Eniu, Nicolae Leopold, Carmen Socaciu, Dan Eniu. Breast Cancer Diagnosis by Surface-Enhanced Raman Scattering (SERS) of Urine. Applied Sciences 2019, 9 (4) , 806. https://doi.org/10.3390/app9040806
    91. Paul I.C. Richardson, Howbeer Muhamadali, David I. Ellis, Royston Goodacre. Rapid quantification of the adulteration of fresh coconut water by dilution and sugars using Raman spectroscopy and chemometrics. Food Chemistry 2019, 272 , 157-164. https://doi.org/10.1016/j.foodchem.2018.08.038
    92. Tony R. L. Dadamos, Airton J. Damaceno, Fernando L. Fertonani, Ricardo J. N. B. Silva. Standard addition method with cumulative spikes: uric acid determination in human serum by voltammetry with optimized uncertainty. Accreditation and Quality Assurance 2018, 23 (6) , 337-348. https://doi.org/10.1007/s00769-018-1350-8
    93. Fangmei Zhang, Pinyi Ma, Xinyu Deng, Ying Sun, Xinghua Wang, Daqian Song. Enzymatic determination of uric acid using water-soluble CuInS/ZnS quantum dots as a fluorescent probe. Microchimica Acta 2018, 185 (11) https://doi.org/10.1007/s00604-018-3030-0
    94. Andrei Stefancu, Vlad Moisoiu, Razvan Couti, Iulia Andras, Razvan Rahota, Dana Crisan, Ioana E Pavel, Carmen Socaciu, Nicolae Leopold, Nicolae Crisan. Combining SERS analysis of serum with PSA levels for improving the detection of prostate cancer. Nanomedicine 2018, 13 (19) , 2455-2467. https://doi.org/10.2217/nnm-2018-0127
    95. Yudong Lu, Changji Wu, Ruiyun You, Yang Wu, Huiying Shen, Lanjin Zhu, Shangyuan Feng. Superhydrophobic silver film as a SERS substrate for the detection of uric acid and creatinine. Biomedical Optics Express 2018, 9 (10) , 4988. https://doi.org/10.1364/BOE.9.004988
    96. Juan V. Perales-Rondon, Sheila Hernandez, Daniel Martin-Yerga, Pablo Fanjul-Bolado, Aranzazu Heras, Alvaro Colina. Electrochemical surface oxidation enhanced Raman scattering. Electrochimica Acta 2018, 282 , 377-383. https://doi.org/10.1016/j.electacta.2018.06.079
    97. Armandas Balčytis, Yoshiaki Nishijima, Sivashankar Krishnamoorthy, Aleksandr Kuchmizhak, Paul R. Stoddart, Raimondas Petruškevičius, Saulius Juodkazis. From Fundamental toward Applied SERS: Shared Principles and Divergent Approaches. Advanced Optical Materials 2018, 6 (16) https://doi.org/10.1002/adom.201800292
    98. K. M. Muhammed Shameem, Arun Chawla, Madhukar Mallya, Bijay Kumar Barik, V. K. Unnikrishnan, V. B. Kartha, C. Santhosh. Laser‐induced breakdown spectroscopy‐Raman: An effective complementary approach to analyze renal‐calculi. Journal of Biophotonics 2018, 11 (6) https://doi.org/10.1002/jbio.201700271
    99. Royston Goodacre, Duncan Graham, Karen Faulds. Recent developments in quantitative SERS: Moving towards absolute quantification. TrAC Trends in Analytical Chemistry 2018, 102 , 359-368. https://doi.org/10.1016/j.trac.2018.03.005

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect