ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry

View Author Information
Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
The University of Newcastle, Newcastle, New South Wales 2308, Australia
§ National Security Engineering Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
Global Security Computing Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
Cite this: Anal. Chem. 2017, 89, 11, 6224–6231
Publication Date (Web):May 9, 2017
https://doi.org/10.1021/acs.analchem.7b01204
Copyright © 2017 American Chemical Society

    Article Views

    619

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)

    Abstract

    Abstract Image

    Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. We demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar+ and Ga+ sputtering. The useful yield for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.

    Cited By

    This article is cited by 22 publications.

    1. Wen Guo, Xingquan Zou, Hanjie Jiang, Karl J. Koebke, Marie Hoarau, Ralph Crisci, Tieyi Lu, Tao Wei, E. Neil G. Marsh, Zhan Chen. Molecular Structure of the Surface-Immobilized Super Uranyl Binding Protein. The Journal of Physical Chemistry B 2021, 125 (28) , 7706-7716. https://doi.org/10.1021/acs.jpcb.1c03849
    2. Michael R. Savina, Brett H. Isselhardt, Reto Trappitsch. Simultaneous Isotopic Analysis of U, Pu, and Am in Spent Nuclear Fuel by Resonance Ionization Mass Spectrometry. Analytical Chemistry 2021, 93 (27) , 9505-9512. https://doi.org/10.1021/acs.analchem.1c01360
    3. Michael R. Savina, Reto Trappitsch, Andrew Kucher, Brett H. Isselhardt. New Resonance Ionization Mass Spectrometry Scheme for Improved Uranium Analysis. Analytical Chemistry 2018, 90 (17) , 10551-10558. https://doi.org/10.1021/acs.analchem.8b02656
    4. Zhibin Yin, Zhouyi Xu, Rong Liu, Wei Hang, and Benli Huang . Microtrace Analysis of Rare Earth Element Residues in Femtogram Quantities by Laser Desorption and Laser Postionization Mass Spectrometry. Analytical Chemistry 2017, 89 (14) , 7455-7461. https://doi.org/10.1021/acs.analchem.7b01033
    5. Michael R. Savina, Brett H. Isselhardt, Danielle Z. Shulaker, Martin Robel, Andrew J. Conant, Brian J. Ade. Simultaneous isotopic analysis of fission product Sr, Mo, and Ru in spent nuclear fuel particles by resonance ionization mass spectrometry. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-32203-5
    6. Michael R. Savina, Danielle Ziva Shulaker, Brett H. Isselhardt, Gregory A. Brennecka. Rapid isotopic analysis of uranium, plutonium, and americium in post-detonation debris simulants by RIMS. Journal of Analytical Atomic Spectrometry 2023, 38 (6) , 1205-1212. https://doi.org/10.1039/D3JA00096F
    7. M. Au, M. Athanasakis-Kaklamanakis, L. Nies, R. Heinke, K. Chrysalidis, U. Köster, P. Kunz, B. Marsh, M. Mougeot, L. Schweikhard, S. Stegemann, Y. Vila Gracia, Ch. E. Düllmann, S. Rothe. Production of neptunium and plutonium nuclides from uranium carbide using 1.4-GeV protons. Physical Review C 2023, 107 (6) https://doi.org/10.1103/PhysRevC.107.064604
    8. Danielle Ziva Shulaker, Reto Trappitsch, Michael R. Savina, Brett Isselhardt. High-useful yield and new autoionizing state of resonantly ionized tungsten. Journal of Analytical Atomic Spectrometry 2023, 38 (2) , 457-463. https://doi.org/10.1039/D2JA00320A
    9. R. Trappitsch, D. Z. Shulaker, W.-J. Ong, M. R. Savina, B. H. Isselhardt. Resonance ionization of zirconium. Journal of Radioanalytical and Nuclear Chemistry 2022, 331 (12) , 5199-5204. https://doi.org/10.1007/s10967-022-08581-x
    10. Akira Kuwahara, Kenta Murakami, Hideki Tomita, Kayo Sawada, Youichi Enokida. Doppler splitting and expansion dynamics of laser-produced plasma plume under a high vacuum ambience. Journal of Analytical Atomic Spectrometry 2022, 37 (10) , 2033-2041. https://doi.org/10.1039/D2JA00177B
    11. Manuel Raiwa, Sebastian Büchner, Nina Kneip, Martin Weiß, Paul Hanemann, Polina Fraatz, Maximilian Heller, Hauke Bosco, Felix Weber, Klaus Wendt, Clemens Walther. Actinide imaging in environmental hot particles from Chernobyl by rapid spatially resolved resonant laser secondary neutral mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2022, 190 , 106377. https://doi.org/10.1016/j.sab.2022.106377
    12. M Aliotta, R Buompane, M Couder, A Couture, R J deBoer, A Formicola, L Gialanella, J Glorius, G Imbriani, M Junker, C Langer, A Lennarz, Yu A Litvinov, W-P Liu, M Lugaro, C Matei, Z Meisel, L Piersanti, R Reifarth, D Robertson, A Simon, O Straniero, A Tumino, M Wiescher, Y Xu. The status and future of direct nuclear reaction measurements for stellar burning. Journal of Physics G: Nuclear and Particle Physics 2022, 49 (1) , 010501. https://doi.org/10.1088/1361-6471/ac2b0f
    13. Alfredo Galindo-Uribarri, Yuan Liu, Elisa Romero Romero, Daniel W. Stracener. High efficiency laser resonance ionization of plutonium. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-01886-z
    14. Hauke Bosco, Linda Hamann, Nina Kneip, Manuel Raiwa, Martin Weiss, Klaus Wendt, Clemens Walther. New horizons in microparticle forensics: Actinide imaging and detection of 238 Pu and 242m Am in hot particles. Science Advances 2021, 7 (44) https://doi.org/10.1126/sciadv.abj1175
    15. Daniela Schönenbach, Felix Berg, Markus Breckheimer, Daniel Hagenlocher, Pascal Schönberg, Raphael Haas, Samer Amayri, Tobias Reich. Development, characterization, and first application of a resonant laser secondary neutral mass spectrometry setup for the research of plutonium in the context of long-term nuclear waste storage. Analytical and Bioanalytical Chemistry 2021, 413 (15) , 3987-3997. https://doi.org/10.1007/s00216-021-03350-3
    16. Michael Savina, Reto Trappitsch. Resonance Ionization Mass Spectrometry ( RIMS ): Fundamentals and Applications Including Secondary Neutral Mass Spectrometry. 2021, 215-244. https://doi.org/10.1002/9783527682201.ch6
    17. Clemens Walther, Klaus Wendt. Radioisotope mass spectrometry. 2020, 861-898. https://doi.org/10.1016/B978-0-12-814397-1.00008-X
    18. Y. Liu, D.W. Stracener. High efficiency resonance ionization of thorium. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2020, 462 , 95-101. https://doi.org/10.1016/j.nimb.2019.11.006
    19. Michael R. Savina, Reto Trappitsch, Brett H. Isselhardt. Electronic excitation of uranium atoms sputtered from uranium metal and oxides. Spectrochimica Acta Part B: Atomic Spectroscopy 2018, 149 , 214-221. https://doi.org/10.1016/j.sab.2018.08.003
    20. Reto Trappitsch, Michael R. Savina, Brett H. Isselhardt. Resonance ionization of titanium: high useful yield and new autoionizing states. Journal of Analytical Atomic Spectrometry 2018, 33 (11) , 1962-1969. https://doi.org/10.1039/C8JA00269J
    21. E. Hywel Evans, Jorge Pisonero, Clare M. M. Smith, Rex N. Taylor. Atomic spectrometry update: review of advances in atomic spectrometry and related techniques. Journal of Analytical Atomic Spectrometry 2018, 33 (5) , 684-705. https://doi.org/10.1039/C8JA90012D
    22. Evan E. Groopman, Kenneth S. Grabowski, Albert J. Fahey, Levke Kööp. Rapid, molecule-free, in situ rare earth element abundances by SIMS-SSAMS. Journal of Analytical Atomic Spectrometry 2017, 32 (11) , 2153-2163. https://doi.org/10.1039/C7JA00294G

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect