Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

In Vivo Ambient Serotonin Measurements at Carbon-Fiber Microelectrodes

View Author Information
Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
Department of Research, Mayo Clinic, Scottsdale, Arizona 85453, United States
§ Department of Statistics, University of South Carolina, 1523 Greene Street, Columbia, South Carolina 29208, United States
Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Blvd., Tucson, Arizona 85721, United States
Cite this: Anal. Chem. 2017, 89, 18, 9703–9711
Publication Date (Web):August 10, 2017
https://doi.org/10.1021/acs.analchem.7b01257
Copyright © 2017 American Chemical Society

    Article Views

    2855

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The mechanisms that control extracellular serotonin levels in vivo are not well-defined. This shortcoming makes it very challenging to diagnose and treat the many psychiatric disorders in which serotonin is implicated. Fast-scan cyclic voltammetry (FSCV) can measure rapid serotonin release and reuptake events but cannot report critically important ambient serotonin levels. In this Article, we use fast-scan controlled adsorption voltammetry (FSCAV), to measure serotonin’s steady-state, extracellular chemistry. We characterize the “Jackson” voltammetric waveform for FSCAV and show highly stable, selective, and sensitive ambient serotonin measurements in vitro. In vivo, we report basal serotonin levels in the CA2 region of the hippocampus as 64.9 ± 2.3 nM (n = 15 mice, weighted average ± standard error). We electrochemically and pharmacologically verify the selectivity of the serotonin signal. Finally, we develop a statistical model that incorporates the uncertainty in in vivo measurements, in addition to electrode variability, to more critically analyze the time course of pharmacological data. Our novel method is a uniquely powerful analysis tool that can provide deeper insights into the mechanisms that control serotonin’s extracellular levels.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.7b01257.

    • Detailed description of mathematical model, statistical parameters obtained from model, standard errors, and tests of significance of the coefficients (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 78 publications.

    1. Blaise J. Ostertag, Evan J. Porshinsky, Chaminda P. Nawarathne, Ashley E. Ross. Surface-Roughened Graphene Oxide Microfibers Enhance Electrochemical Reversibility. Langmuir 2024, 40 (23) , 12124-12136. https://doi.org/10.1021/acs.langmuir.4c01004
    2. Shubhangi Shukla, Sumeer Khanna, Siba Sahoo, Naveen Joshi, Roger Narayan. Nanomaterial-Coated Carbon-Fiber-Based Multicontact Array Sensors for In Vitro Monitoring of Serotonin Levels. ACS Applied Bio Materials 2024, 7 (1) , 472-484. https://doi.org/10.1021/acsabm.3c01089
    3. Juan M. Rojas Cabrera, Tyler S. Oesterle, Aaron E. Rusheen, Abhinav Goyal, Kristen M. Scheitler, Ian Mandybur, Charles D. Blaha, Kevin E. Bennet, Michael L. Heien, Dong Pyo Jang, Kendall H. Lee, Yoonbae Oh, Hojin Shin. Techniques for Measurement of Serotonin: Implications in Neuropsychiatric Disorders and Advances in Absolute Value Recording Methods. ACS Chemical Neuroscience 2023, 14 (24) , 4264-4273. https://doi.org/10.1021/acschemneuro.3c00618
    4. Jiayi He, Eleni Spanolios, Clarice E. Froehlich, Cassandra L. Wouters, Christy L. Haynes. Recent Advances in the Development and Characterization of Electrochemical and Electrical Biosensors for Small Molecule Neurotransmitters. ACS Sensors 2023, 8 (4) , 1391-1403. https://doi.org/10.1021/acssensors.3c00082
    5. Melissa Hexter, Joseph van Batenburg-Sherwood, Parastoo Hashemi. Novel Experimental and Analysis Strategies for Fast Voltammetry: 2. A Troubleshoot-Free Flow Cell for FSCV Calibrations. ACS Measurement Science Au 2023, 3 (2) , 120-126. https://doi.org/10.1021/acsmeasuresciau.2c00059
    6. Chuanzhen Zhao, Tianxing Man, Yan Cao, Paul S. Weiss, Harold G. Monbouquette, Anne M. Andrews. Flexible and Implantable Polyimide Aptamer-Field-Effect Transistor Biosensors. ACS Sensors 2022, 7 (12) , 3644-3653. https://doi.org/10.1021/acssensors.2c01909
    7. Zijun Shao, Leslie Wilson, Yuanyu Chang, B. Jill Venton. MPCVD-Grown Nanodiamond Microelectrodes with Oxygen Plasma Activation for Neurochemical Applications. ACS Sensors 2022, 7 (10) , 3192-3200. https://doi.org/10.1021/acssensors.2c01803
    8. Jordan Holmes, Thorsten Lau, Rachel Saylor, Nadine Fernández-Novel, Melinda Hersey, Deanna Keen, Lena Hampel, Sandra Horschitz, Julia Ladewig, Brenna Parke, Michael C. Reed, H. Frederik Nijhout, Janet Best, Philipp Koch, Parastoo Hashemi. Voltammetric Approach for Characterizing the Biophysical and Chemical Functionality of Human Induced Pluripotent Stem Cell-Derived Serotonin Neurons. Analytical Chemistry 2022, 94 (25) , 8847-8856. https://doi.org/10.1021/acs.analchem.1c05082
    9. Zan Gao, Guangfu Wu, Yang Song, Huijie Li, Yuxuan Zhang, Michael J. Schneider, Yingqi Qiang, Jackson Kaszas, Zhengyan Weng, He Sun, Bryan D. Huey, Rebecca Y. Lai, Yi Zhang. Multiplexed Monitoring of Neurochemicals via Electrografting-Enabled Site-Selective Functionalization of Aptamers on Field-Effect Transistors. Analytical Chemistry 2022, 94 (24) , 8605-8617. https://doi.org/10.1021/acs.analchem.1c05531
    10. Sergio Mena, Marco Visentin, Colby E. Witt, Lauren E. Honan, Nathan Robins, Parastoo Hashemi. Novel, User-Friendly Experimental and Analysis Strategies for Fast Voltammetry: Next Generation FSCAV with Artificial Neural Networks. ACS Measurement Science Au 2022, 2 (3) , 241-250. https://doi.org/10.1021/acsmeasuresciau.1c00060
    11. Yuxin Li, Romana Jarosova, Moriah E. Weese-Myers, Ashley E. Ross. Graphene-Fiber Microelectrodes for Ultrasensitive Neurochemical Detection. Analytical Chemistry 2022, 94 (11) , 4803-4812. https://doi.org/10.1021/acs.analchem.1c05637
    12. Hojin Shin, Abhinav Goyal, J. Hudson Barnett, Aaron E. Rusheen, Jason Yuen, Rohan Jha, Sang Mun Hwang, Yumin Kang, Cheonho Park, Hyun-U Cho, Charles D. Blaha, Kevin E. Bennet, Yoonbae Oh, Michael L. Heien, Dong Pyo Jang, Kendall H. Lee. Tonic Serotonin Measurements In Vivo Using N-Shaped Multiple Cyclic Square Wave Voltammetry. Analytical Chemistry 2021, 93 (51) , 16987-16994. https://doi.org/10.1021/acs.analchem.1c02131
    13. Yuxi Tong, Lifen Wang, Jiajia Song, Mengyue Zhang, Hetong Qi, Shujiang Ding, Honglan Qi. Self-Terminated Electroless Deposition of Surfactant-Free and Monodispersed Pt Nanoparticles on Carbon Fiber Microelectrodes for Sensitive Detection of H2O2 Released from Living Cells. Analytical Chemistry 2021, 93 (49) , 16683-16689. https://doi.org/10.1021/acs.analchem.1c04299
    14. Sergio Mena, Solene Dietsch, Shane N. Berger, Colby E. Witt, Parastoo Hashemi. Novel, User-Friendly Experimental and Analysis Strategies for Fast Voltammetry: 1. The Analysis Kid for FSCV. ACS Measurement Science Au 2021, 1 (1) , 11-19. https://doi.org/10.1021/acsmeasuresciau.1c00003
    15. Jordan Holmes, Colby E. Witt, Deanna Keen, Anna Marie Buchanan, Lauren Batey, Melinda Hersey, Parastoo Hashemi. Glutamate Electropolymerization on Carbon Increases Analytical Sensitivity to Dopamine and Serotonin: An Auspicious In Vivo Phenomenon in Mice?. Analytical Chemistry 2021, 93 (31) , 10762-10771. https://doi.org/10.1021/acs.analchem.0c04316
    16. Marsilea A. Booth, Sally A. N. Gowers, Melinda Hersey, Isabelle C. Samper, Seongjun Park, Polina Anikeeva, Parastoo Hashemi, Molly M. Stevens, Martyn G. Boutelle. Fiber-Based Electrochemical Biosensors for Monitoring pH and Transient Neurometabolic Lactate. Analytical Chemistry 2021, 93 (17) , 6646-6655. https://doi.org/10.1021/acs.analchem.0c05108
    17. Carl J. Meunier, J. Dylan Denison, Gregory S. McCarty, Leslie A. Sombers. Interpreting Dynamic Interfacial Changes at Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy. Langmuir 2020, 36 (15) , 4214-4223. https://doi.org/10.1021/acs.langmuir.9b03941
    18. Keke Hu, Dengchao Wang, Min Zhou, Je Hyun Bae, Yun Yu, Huolin Xin, Michael V. Mirkin. Ultrasensitive Detection of Dopamine with Carbon Nanopipets. Analytical Chemistry 2019, 91 (20) , 12935-12941. https://doi.org/10.1021/acs.analchem.9b02994
    19. Moriah E. Weese, Rachel A. Krevh, Yuxin Li, Noe T. Alvarez, Ashley E. Ross. Defect Sites Modulate Fouling Resistance on Carbon-Nanotube Fiber Electrodes. ACS Sensors 2019, 4 (4) , 1001-1007. https://doi.org/10.1021/acssensors.9b00161
    20. Lin Zhou, Hanfeng Hou, Huan Wei, Lina Yao, Lei Sun, Ping Yu, Bin Su, Lanqun Mao. In Vivo Monitoring of Oxygen in Rat Brain by Carbon Fiber Microelectrode Modified with Antifouling Nanoporous Membrane. Analytical Chemistry 2019, 91 (5) , 3645-3651. https://doi.org/10.1021/acs.analchem.8b05658
    21. Melinda Hersey, Shane N. Berger, Jordan Holmes, Alyssa West, Parastoo Hashemi. Recent Developments in Carbon Sensors for At-Source Electroanalysis. Analytical Chemistry 2019, 91 (1) , 27-43. https://doi.org/10.1021/acs.analchem.8b05151
    22. Thushani Siriwardhane, Yangguang Ou, Pavithra Pathirathna, Parastoo Hashemi. Analysis of Electrochemically Elusive Trace Metals with Carbon Fiber Microelectrodes. Analytical Chemistry 2018, 90 (20) , 11917-11924. https://doi.org/10.1021/acs.analchem.8b02210
    23. Justin A. Johnson, Nathan T. Rodeberg, R. Mark Wightman. Measurement of Basal Neurotransmitter Levels Using Convolution-Based Nonfaradaic Current Removal. Analytical Chemistry 2018, 90 (12) , 7181-7189. https://doi.org/10.1021/acs.analchem.7b04682
    24. James G. Roberts and Leslie A. Sombers . Fast-Scan Cyclic Voltammetry: Chemical Sensing in the Brain and Beyond. Analytical Chemistry 2018, 90 (1) , 490-504. https://doi.org/10.1021/acs.analchem.7b04732
    25. Anna Marie Buchanan, Sergio Mena, Iman Choukari, Aditya Vasa, Jesseca N. Crawford, Jim Fadel, Nick Maxwell, Lawrence Reagan, Allie Cruikshank, Janet Best, H. Fred Nijhout, Michael Reed, Parastoo Hashemi. Serotonin as a biomarker of toxin-induced Parkinsonism. Molecular Medicine 2024, 30 (1) https://doi.org/10.1186/s10020-023-00773-9
    26. Sergio Mena, Allison Cruikshank, Janet Best, H. F. Nijhout, Michael C. Reed, Parastoo Hashemi. Modulation of serotonin transporter expression by escitalopram under inflammation. Communications Biology 2024, 7 (1) https://doi.org/10.1038/s42003-024-06240-3
    27. Jiatao Chen, Xiuting Ding, Dongdong Zhang. Challenges and strategies faced in the electrochemical biosensing analysis of neurochemicals in vivo: A review. Talanta 2024, 266 , 124933. https://doi.org/10.1016/j.talanta.2023.124933
    28. Colby E. Witt, Sergio Mena, Jordan Holmes, Melinda Hersey, Anna Marie Buchanan, Brenna Parke, Rachel Saylor, Lauren E. Honan, Shane N. Berger, Sara Lumbreras, Frederik H. Nijhout, Michael C. Reed, Janet Best, James Fadel, Patrick Schloss, Thorsten Lau, Parastoo Hashemi. Serotonin is a common thread linking different classes of antidepressants. Cell Chemical Biology 2023, 23 https://doi.org/10.1016/j.chembiol.2023.10.009
    29. Shuchang Zhao, Kiryl D. Piatkevich. Techniques for in vivo serotonin detection in the brain: State of the art. Journal of Neurochemistry 2023, 166 (3) , 453-480. https://doi.org/10.1111/jnc.15865
    30. Arpana Parihar, Shivani Malviya, Raju Khan, Ajeet Kaushik, Ebrahim Mostafavi. COVID-19 associated thyroid dysfunction and other comorbidities and its management using phytochemical-based therapeutics: a natural way. Bioscience Reports 2023, 43 (7) https://doi.org/10.1042/BSR20230293
    31. Deepak Dabur, Nallin Sharma, Hui-Fen Wu. “Synergistic effect” based novel and ultrasensitive approach for the detection of serotonin using DEM-modulated bimetallic nanosheets. Journal of Materials Chemistry B 2023, 11 (26) , 6044-6052. https://doi.org/10.1039/D3TB00572K
    32. Huijun Song, Yangyang Liu, Yuxin Fang, Di Zhang. Carbon-Based Electrochemical Sensors for In Vivo and In Vitro Neurotransmitter Detection. Critical Reviews in Analytical Chemistry 2023, 53 (5) , 955-974. https://doi.org/10.1080/10408347.2021.1997571
    33. Elisa Castagnola, Elaine M. Robbins, Daniela D. Krahe, Bingchen Wu, May Yoon Pwint, Qun Cao, Xinyan Tracy Cui. Stable in-vivo electrochemical sensing of tonic serotonin levels using PEDOT/CNT-coated glassy carbon flexible microelectrode arrays.. Biosensors and Bioelectronics 2023, 230 , 115242. https://doi.org/10.1016/j.bios.2023.115242
    34. Naela Delmo, Bahar Mostafiz, Ashley E. Ross, Johanna Suni, Emilia Peltola. Developing an electrochemical sensor for the in vivo measurements of dopamine. Sensors & Diagnostics 2023, 2 (3) , 559-581. https://doi.org/10.1039/D2SD00230B
    35. Divya, Monalisha Ghosh Dastidar, Supratim Mahapatra, Rohini Kumari, Daphika S. Dkhar, Sharmili Roy, Pranjal Chandra. Engineered nanomaterial based implantable MicroNanoelectrode for in vivo Analysis: Technological advancement and commercial aspects. Microchemical Journal 2023, 187 , 108431. https://doi.org/10.1016/j.microc.2023.108431
    36. Jinjing Han, Justin M. Stine, Ashley A. Chapin, Reza Ghodssi. A portable electrochemical sensing platform for serotonin detection based on surface-modified carbon fiber microelectrodes. Analytical Methods 2023, 15 (9) , 1096-1104. https://doi.org/10.1039/D2AY01627C
    37. Di Zheng, Filippo Pisano, Liam Collard, Antonio Balena, Marco Pisanello, Barbara Spagnolo, Rosa Mach‐Batlle, Francesco Tantussi, Luigi Carbone, Francesco De Angelis, Manuel Valiente, Liset M. de la Prida, Cristian Ciracì, Massimo De Vittorio, Ferruccio Pisanello. Toward Plasmonic Neural Probes: SERS Detection of Neurotransmitters through Gold‐Nanoislands‐Decorated Tapered Optical Fibers with Sub‐10 nm Gaps. Advanced Materials 2023, 35 (11) https://doi.org/10.1002/adma.202200902
    38. Melinda Hersey, Melissa Reneaux, Shane N. Berger, Sergio Mena, Anna Marie Buchanan, Yangguang Ou, Navid Tavakoli, Lawrence P. Reagan, Claudia Clopath, Parastoo Hashemi. A tale of two transmitters: serotonin and histamine as in vivo biomarkers of chronic stress in mice. Journal of Neuroinflammation 2022, 19 (1) https://doi.org/10.1186/s12974-022-02508-9
    39. Shane N. Berger, Beatrice Baumberger, Srimal Samaranayake, Melinda Hersey, Sergio Mena, Ian Bain, William Duncan, Michael C. Reed, H. Frederik Nijhout, Janet Best, Parastoo Hashemi. An In Vivo Definition of Brain Histamine Dynamics Reveals Critical Neuromodulatory Roles for This Elusive Messenger. International Journal of Molecular Sciences 2022, 23 (23) , 14862. https://doi.org/10.3390/ijms232314862
    40. Janet Best, Anna Marie Buchanan, Herman Frederik Nijhout, Parastoo Hashemi, Michael C. Reed. Mathematical Models of Serotonin, Histamine, and Depression. 2022https://doi.org/10.5772/intechopen.96990
    41. Rong Li, Xiaoxia Li, Liu Su, Hetong Qi, Xuanfeng Yue, Honglan Qi. Label‐free Electrochemical Aptasensor for the Determination of Serotonin. Electroanalysis 2022, 34 (6) , 1048-1053. https://doi.org/10.1002/elan.202100373
    42. Colby E. Witt, Sergio Mena, Lauren E. Honan, Lauren Batey, Victoria Salem, Yangguang Ou, Parastoo Hashemi. Low-Frequency Oscillations of In Vivo Ambient Extracellular Brain Serotonin. Cells 2022, 11 (10) , 1719. https://doi.org/10.3390/cells11101719
    43. Alexandra L. Keller, Steven M. Quarin, Pietro Strobbia, Ashley E. Ross. Platinum Nanoparticle Size and Density Impacts Purine Electrochemistry with Fast-Scan Cyclic Voltammetry. Journal of The Electrochemical Society 2022, 169 (4) , 046514. https://doi.org/10.1149/1945-7111/ac65bc
    44. Moriah E. Weese-Myers, Ashley E. Ross. Characterization of Electroactive Amino Acids with Fast-Scan Cyclic Voltammetry. Journal of The Electrochemical Society 2021, 168 (12) , 126524. https://doi.org/10.1149/1945-7111/ac4187
    45. Chuanzhen Zhao, Kevin M. Cheung, I-Wen Huang, Hongyan Yang, Nako Nakatsuka, Wenfei Liu, Yan Cao, Tianxing Man, Paul S. Weiss, Harold G. Monbouquette, Anne M. Andrews. Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Science Advances 2021, 7 (48) https://doi.org/10.1126/sciadv.abj7422
    46. Cameron S. Movassaghi, Katie A. Perrotta, Hongyan Yang, Rahul Iyer, Xinyi Cheng, Merel Dagher, Miguel Alcañiz Fillol, Anne M. Andrews. Simultaneous serotonin and dopamine monitoring across timescales by rapid pulse voltammetry with partial least squares regression. Analytical and Bioanalytical Chemistry 2021, 413 (27) , 6747-6767. https://doi.org/10.1007/s00216-021-03665-1
    47. Melinda Hersey, Jennifer L. Woodruff, Nicholas Maxwell, Alia T. Sadek, Maria K. Bykalo, Ian Bain, Claudia A. Grillo, Gerardo G. Piroli, Parastoo Hashemi, Lawrence P. Reagan. High-fat diet induces neuroinflammation and reduces the serotonergic response to escitalopram in the hippocampus of obese rats. Brain, Behavior, and Immunity 2021, 96 , 63-72. https://doi.org/10.1016/j.bbi.2021.05.010
    48. Mamta Devi, Maria Vomero, Erwin Fuhrer, Elisa Castagnola, Calogero Gueli, Surabhi Nimbalkar, Mieko Hirabayashi, Sam Kassegne, Thomas Stieglitz, Swati Sharma. Carbon-based neural electrodes: promises and challenges. Journal of Neural Engineering 2021, 18 (4) , 041007. https://doi.org/10.1088/1741-2552/ac1e45
    49. Jason Yuen, Abhinav Goyal, Aaron E. Rusheen, Abbas Z. Kouzani, Michael Berk, Jee Hyun Kim, Susannah J. Tye, Charles D. Blaha, Kevin E. Bennet, Dong-Pyo Jang, Kendall H. Lee, Hojin Shin, Yoonbae Oh. Cocaine-Induced Changes in Tonic Dopamine Concentrations Measured Using Multiple-Cyclic Square Wave Voltammetry in vivo. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.705254
    50. Shaopei Li, Kagan Kerman. Electrochemical biosensors for biometal-protein interactions in neurodegenerative diseases. Biosensors and Bioelectronics 2021, 179 , 113035. https://doi.org/10.1016/j.bios.2021.113035
    51. Anna Marie Buchanan, Brenna Parke, Parastoo Hashemi. Experimental Methods for Investigating Uptake 2 Processes In Vivo. 2021, 101-117. https://doi.org/10.1007/164_2021_452
    52. Carl J. Meunier, Leslie A. Sombers. Fast-Scan Voltammetry for In Vivo Measurements of Neurochemical Dynamics. 2021, 93-123. https://doi.org/10.1007/978-1-0716-1146-3_5
    53. Elizabeth K. Unger, Jacob P. Keller, Michael Altermatt, Ruqiang Liang, Aya Matsui, Chunyang Dong, Olivia J. Hon, Zi Yao, Junqing Sun, Samba Banala, Meghan E. Flanigan, David A. Jaffe, Samantha Hartanto, Jane Carlen, Grace O. Mizuno, Phillip M. Borden, Amol V. Shivange, Lindsay P. Cameron, Steffen Sinning, Suzanne M. Underhill, David E. Olson, Susan G. Amara, Duncan Temple Lang, Gary Rudnick, Jonathan S. Marvin, Luke D. Lavis, Henry A. Lester, Veronica A. Alvarez, Andrew J. Fisher, Jennifer A. Prescher, Thomas L. Kash, Vladimir Yarov-Yarovoy, Viviana Gradinaru, Loren L. Looger, Lin Tian. Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning. Cell 2020, 183 (7) , 1986-2002.e26. https://doi.org/10.1016/j.cell.2020.11.040
    54. Janet Best, William Duncan, Farrah Sadre-Marandi, Parastoo Hashemi, H. Frederik Nijhout, Michael Reed. Autoreceptor control of serotonin dynamics. BMC Neuroscience 2020, 21 (1) https://doi.org/10.1186/s12868-020-00587-z
    55. Kelly E. Dunham, B. Jill Venton. Improving serotonin fast-scan cyclic voltammetry detection: new waveforms to reduce electrode fouling. The Analyst 2020, 145 (22) , 7437-7446. https://doi.org/10.1039/D0AN01406K
    56. Gary N. Lim, Samantha L. Regan, Ashley E. Ross. Subsecond spontaneous catecholamine release in mesenteric lymph node ex vivo. Journal of Neurochemistry 2020, 155 (4) , 417-429. https://doi.org/10.1111/jnc.15115
    57. Lauren M. Delong, Yuxin Li, Gary N. Lim, Salmika G. Wairegi, Ashley E. Ross. A microfluidic electrochemical flow cell capable of rapid on-chip dilution for fast-scan cyclic voltammetry electrode calibration. Analytical and Bioanalytical Chemistry 2020, 412 (24) , 6287-6294. https://doi.org/10.1007/s00216-020-02493-z
    58. Aya Abdalla, Alyssa West, Yunju Jin, Rachel A. Saylor, Beidi Qiang, Edsel Peña, David J. Linden, H. Frederik Nijhout, Michael C. Reed, Janet Best, Parastoo Hashemi. Fast serotonin voltammetry as a versatile tool for mapping dynamic tissue architecture: I. Responses at carbon fibers describe local tissue physiology. Journal of Neurochemistry 2020, 153 (1) , 33-50. https://doi.org/10.1111/jnc.14854
    59. B. Jill Venton, Qun Cao. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. The Analyst 2020, 145 (4) , 1158-1168. https://doi.org/10.1039/C9AN01586H
    60. Alexander Mendoza, Thomas Asrat, Favian Liu, Pauline Wonnenberg, Alexander G. Zestos. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry. Sensors 2020, 20 (4) , 1173. https://doi.org/10.3390/s20041173
    61. B. Jill Venton, Dana J. DiScenza. Voltammetry. 2020, 27-50. https://doi.org/10.1016/B978-0-12-821203-5.00004-X
    62. Aya Abdalla. In vivo electrochemistry. 2020, 195-222. https://doi.org/10.1016/B978-0-12-821203-5.00011-7
    63. Rhiannon Robke, Aishwarya Parthasarathy, Ingo Willuhn, Parastoo Hashemi. Electrochemical detection of serotonin release in rodents. 2020, 157-174. https://doi.org/10.1016/B978-0-444-64125-0.00008-6
    64. Scott D. Adams, Egan H. Doeven, Susannah J. Tye, Kevin E. Bennet, Michael Berk, Abbas Z. Kouzani. TinyFSCV: FSCV for the Masses. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2020, 28 (1) , 133-142. https://doi.org/10.1109/TNSRE.2019.2956479
    65. Sanghwa Jeong, Darwin Yang, Abraham G. Beyene, Jackson Travis Del Bonis-O’Donnell, Anneliese M. M. Gest, Nicole Navarro, Xiaoqi Sun, Markita P. Landry. High-throughput evolution of near-infrared serotonin nanosensors. Science Advances 2019, 5 (12) https://doi.org/10.1126/sciadv.aay3771
    66. Jiajia Song, Lifen Wang, Hetong Qi, Honglan Qi, Chengxiao Zhang. Highly selective electrochemical method for the detection of serotonin at carbon fiber microelectrode modified with gold nanoflowers and overoxidized polypyrrole. Chinese Chemical Letters 2019, 30 (9) , 1643-1646. https://doi.org/10.1016/j.cclet.2019.05.042
    67. Mimi Shin, Ying Wang, Jason R. Borgus, B. Jill Venton. Electrochemistry at the Synapse. Annual Review of Analytical Chemistry 2019, 12 (1) , 297-321. https://doi.org/10.1146/annurev-anchem-061318-115434
    68. Yangguang Ou, Anna Marie Buchanan, Colby E. Witt, Parastoo Hashemi. Frontiers in electrochemical sensors for neurotransmitter detection: towards measuring neurotransmitters as chemical diagnostics for brain disorders. Analytical Methods 2019, 11 (21) , 2738-2755. https://doi.org/10.1039/C9AY00055K
    69. Rachel A. Saylor, Melinda Hersey, Alyssa West, Anna Marie Buchanan, Shane N. Berger, H. Frederik Nijhout, Michael C. Reed, Janet Best, Parastoo Hashemi. In vivo Hippocampal Serotonin Dynamics in Male and Female Mice: Determining Effects of Acute Escitalopram Using Fast Scan Cyclic Voltammetry. Frontiers in Neuroscience 2019, 13 https://doi.org/10.3389/fnins.2019.00362
    70. Rhiannon Robke, Parastoo Hashemi, Eric Ramsson. A simplified LED-driven switch for fast-scan controlled-adsorption voltammetry instrumentation. HardwareX 2019, 5 , e00051. https://doi.org/10.1016/j.ohx.2018.e00051
    71. Alyssa West, Janet Best, Aya Abdalla, H. Frederik Nijhout, Michael Reed, Parastoo Hashemi. Voltammetric evidence for discrete serotonin circuits, linked to specific reuptake domains, in the mouse medial prefrontal cortex. Neurochemistry International 2019, 123 , 50-58. https://doi.org/10.1016/j.neuint.2018.07.004
    72. Yoonbae Oh, Michael L. Heien, Cheonho Park, Yu Min Kang, Jaekyung Kim, Suelen Lucio Boschen, Hojin Shin, Hyun U. Cho, Charles D. Blaha, Kevin E. Bennet, Han Kyu Lee, Sung Jun Jung, In Young Kim, Kendall H. Lee, Dong Pyo Jang. Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry. Biosensors and Bioelectronics 2018, 121 , 174-182. https://doi.org/10.1016/j.bios.2018.08.034
    73. Zongbao Chen, Minghua Lu. Thionine-coordinated BCN nanosheets for electrochemical enzyme immunoassay of lipocalin-2 on biofunctionalized carbon-fiber microelectrode. Sensors and Actuators B: Chemical 2018, 273 , 253-259. https://doi.org/10.1016/j.snb.2018.06.053
    74. Sharmila Durairaj, Boopathi Sidhureddy, Joseph Cirone, Aicheng Chen. Nanomaterials-Based Electrochemical Sensors for In Vitro and In Vivo Analyses of Neurotransmitters. Applied Sciences 2018, 8 (9) , 1504. https://doi.org/10.3390/app8091504
    75. Alexander G. Zestos. Carbon Nanoelectrodes for the Electrochemical Detection of Neurotransmitters. International Journal of Electrochemistry 2018, 2018 , 1-19. https://doi.org/10.1155/2018/3679627
    76. Shikha Sharma, Nidhi Singh, Vartika Tomar, Ramesh Chandra. A review on electrochemical detection of serotonin based on surface modified electrodes. Biosensors and Bioelectronics 2018, 107 , 76-93. https://doi.org/10.1016/j.bios.2018.02.013
    77. Jong-Min Moon, Neeta Thapliyal, Khalil Khadim Hussain, Rajendra N. Goyal, Yoon-Bo Shim. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosensors and Bioelectronics 2018, 102 , 540-552. https://doi.org/10.1016/j.bios.2017.11.069
    78. Shane N. Berger, Parastoo Hashemi. Brain Chemistry: Neurotransmitters. 2018https://doi.org/10.1016/B978-0-12-409547-2.12682-4