ACS Publications. Most Trusted. Most Cited. Most Read
Alternatives to Nuclear Overhauser Enhancement Spectroscopy Presat and Carr–Purcell–Meiboom–Gill Presat for NMR-Based Metabolomics
My Activity
  • Open Access
Perspective

Alternatives to Nuclear Overhauser Enhancement Spectroscopy Presat and Carr–Purcell–Meiboom–Gill Presat for NMR-Based Metabolomics
Click to copy article linkArticle link copied!

View Author Information
† ‡ § Complex Carbohydrate Research Center (CCRC), Departments of Genetics and Biochemistry & Molecular Biology, and §Institute of Bioinformatics, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
Open PDF

Analytical Chemistry

Cite this: Anal. Chem. 2017, 89, 17, 8582–8588
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.analchem.7b02354
Published July 24, 2017

Copyright © 2017 American Chemical Society. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

NMR metabolomics are primarily conducted with 1D nuclear Overhauser enhancement spectroscopy (NOESY) presat for water suppression and Carr–Purcell–Meiboom–Gill (CPMG) presat as a T2 filter to remove macromolecule signals. Others pulse sequences exist for these two objectives but are not often used in metabolomics studies, because they are less robust or unknown to the NMR metabolomics community. However, recent improvements on alternative pulse sequences provide attractive alternatives to 1D NOESY presat and CPMG presat. We focus this perspective on PURGE, a water suppression technique, and PROJECT presat, a T2 filter. These two pulse sequences, when optimized, performed at least on par with 1D NOESY presat and CPMG presat, if not better. These pulse sequences were tested on common samples for metabolomics, human plasma, and urine.

Copyright © 2017 American Chemical Society

NMR-based metabolomics has become established over the past 2 decades, with a great amount of work done to standardize the acquisition parameters and analysis of the data. (1-3) While 2D NMR metabolomics are sometimes used, (4-6) the majority of NMR-based metabolomics are conducted using 1D pulse sequences, with most of these studies relying on two pulse sequences: 1D nuclear Overhauser enhancement spectroscopy (NOESY) presat (7, 8) (solvent suppression) and Carr–Purcell–Meiboom–Gill (CPMG) presat (9, 10) (T2 filter).
Both pulse sequences have become gold standards for NMR-based metabolomics, thanks to their effectiveness at removing unwanted signals and general robustness. Despite their utility, these pulse sequences have limitations, as we will show below. For these cases, recently developed alternatives are worth considering.
For water suppression, several pulse sequences have been already designed, like presaturation, (11) composite pulses, (12) WET, (13, 14) WATERGATE, (15-18) or PURGE. (19) Despite all these variants, the 1D NOESY presat pulse sequence (noesypr1d on Bruker spectrometers) has emerged as the leading choice for NMR-based metabolomics. One of the main reasons for the success of noesypr1d is its ability to greatly suppress the water peak without intensity losses for most of the other peaks (except those close to the water resonance, like glucose and carnitine) and not needing gradients to have adequate water suppression, so gradient imperfections do not affect the final spectra, as seen in Figure 1. However, the 1D NOESY presat does have some shortcomings, the main one being the noncomplete suppression of “faraway water”, (20) i.e., water outside of the homogeneous part of the NMR volume, which does not experience the same frequency as the rest of the water.

Figure 1

Figure 1. Zoom of the 1D NOESY presat spectra overlay of pooled urine without (black) and with (red) gradients, along with the complete spectrum shown above, to show the difference in residual water peak intensity.

Alternate Water Suppression Techniques and Avoiding Some of Their Shortcomings

Click to copy section linkSection link copied!

Some of the water suppression techniques cited above are more efficient at suppressing faraway water, along with pulse sequence variants aimed at suppressing faraway water, like PRESAT180 (21) or WET180. (22) However, they either use shaped pulses or gradients, which limits the robustness and thus reproducibility of the pulse sequence, an important requirement for metabolomics applications. Among these alternatives, PURGE (19) was developed for applications requiring extensive solvent suppression (LC–NMR, metabolomics, protein study, etc.).
Since its first publication, the PURGE pulse sequence has been used on a regular basis by the team that created it, (23-35) along with several other groups, (36-46) and even suggested in a Nature protocol. (47) Despite this visibility, the PURGE pulse sequence has not become routine in metabolomics. The relative lack of popularity may come from a lack of familiarity by a majority of NMR-based metabolomics researchers and/or an important shortcoming of the PURGE pulse sequence, namely, sensitivity to gradient imperfections.
This sensitivity to gradient imperfections is apparent in our relatively new 600 MHz AVIII-HD, as shown on a sample of glucose in water (Figure 2b). This spectrometer is equipped with a cryoprobe and is currently the main spectrometer for our high-throughput metabolomics studies, which means the PURGE pulse sequence is not the best fit for most of our metabolomics studies due to its poor line shape performance. This issue has also been mentioned in at least one other paper. (44) However, a recent study (48) showed that pulse sequences sensitive to gradient imperfections could still give good line shape by alternating gradient signs between scans. In that case, the WATERGATE water suppression scheme was used, but as we show here the scheme seems to be useful for other pulse sequences, including PURGE.

Figure 2

Figure 2. Pulse sequences for the original PURGE and the optimized PURGE (a), where gradient signs are inverted between every scan. The gradient levels themselves are shown for the original PURGE. d20 and d21 are the delays used within the pulse sequence for short presaturation times and were set to 200 μs, the recommend values. 1D 1H spectra of glucose with the original PURGE (b) and the optimized PURGE (c) pulse sequences, with the water peak framed in red, showing the nonexistent impact of alternating gradients on the water peak. 1D 1H spectra of a urine sample with the original PURGE (d) and the optimized PURGE (e) pulse sequences. An expansion of part e is shown in part f, where both the 1D NOESY presat (red) and the PURGE (black) spectra of 10 urine samples are superimposed. A more global view of the water peak is shown in the framed inset (g).

We modified the standard PURGE to an “optimized” PURGE sequence by applying gradients that alternated in sign between scans (Figure 2a), similar to the ROBUST-5 approach of Aguilar and co-workers. (48) While we started by including both alternating gradients and prefocusing gradients, we found an increase in the water resonance using prefocusing gradients (data not shown). Therefore, we kept only the alternating gradients. On a concentrated glucose sample (100 mM), the original PURGE shows sensitivity to gradient imperfections, which causes line shape distortions (Figure 2b), while the optimized PURGE shows good line shape and baseline without modification of the water peak (Figure 2c).
After verifying the optimized PURGE on the glucose sample, we compared it to 1D NOESY preset using 10 replicates of pooled human urine samples containing a high concentration of salts and 90% H2O. In these conditions, the optimized PURGE still showed good line shape and baseline compared to the original PURGE (Figure 2d,e). Spectra from each pulse sequence are shown in Figure 2f. This figure shows that the water peak in 1D NOESY presat distorted the baseline over a bigger chemical shift range than for PURGE. This property is probably caused by an incomplete suppression of “faraway water”, as seen in the framed expansion in Figure 2g. In addition, the resonances closest to the water have a higher intensity in the PURGE spectrum, despite using the same presaturation power for both experiments. Our results confirm the utility of the PURGE pulse sequence, especially with the rather simple solution to compensate for gradient imperfections. (48) It should be noted that it is possible to adjust the pre-emphasis on most gradients. However, this is time-consuming and also specific for each probe. Alternating the sign of the gradients provides a much simpler and robust solution to the problem.

T2 Filter

Click to copy section linkSection link copied!

For samples with a large quantity of macromolecules (like proteins or lipids), T2 filters are useful in order to remove the broad unwanted resonances, as seen in Figure 3b. The pulse sequence mainly used for T2 filters is the CPMG, (10) which has been used for decades. However, a variant called PROJECT has been developed recently, which has some distinct advantages with no significant downsides (Figure 3a). (49) This variant uses perfect echoes instead of spin echoes, an approach developed in 1989 (50) but recently reintroduced after it was shown that it can avoid J-modulation for most spin systems, in contrast to CPMG. (49)

Figure 3

Figure 3. 1D 1H spectrum of whole plasma with 1D NOESY presat and CPMG presat, using standardized parameters (3) (a), along with a close-up of the CPMG presat spectrum, showing in green frame regions where there is still some significant signal from macromolecules (b). The use of a longer T2 filter allows reducing further signals from macromolecules (c), but the use of longer spin echoes (without changing the length of the T2 filter) decreases the sensitivity of signals and even distorts the line shape of some of them (d). The use of the PROJECT pulse sequence as shown in (e) and compared to the CPMG pulse sequence, allows retaining sensitivity when using longer spin echoes (f).

Since the first publication of PROJECT, a few other papers have shown its utility for T2 measurements or as a T2 filter. (51-57) However, a large number of the references to PROJECT use it as an alternative spin echo for other pulse sequences, (58-65) like WATERGATE, HSQC, INEPT, etc. To our knowledge there has been no mention of PROJECT for metabolomics. For that reason, we were interested to compare PROJECT with CPMG, especially for the quantification of plasma or serum, along with intact tissues with HR-MAS, as shown elsewhere. (54) It should be noted that no new parameters had to be introduced in the PROJECT pulse sequence, so it should be as robust and simple as CPMG.
We compared intact plasma with methanol/water extracted plasma (66, 67) using the same pooled Red Cross plasma that is used for quality control in the Southeast Center for Integrated Metabolomics (SECIM). Intact plasma allows for the comparison between CPMG presat and PROJECT presat, while extracted plasma was used as the standard in terms of quantification. (67) It should be noted that, as described by Gowda and co-workers, extracted plasma or serum produce excellent results. However, it adds extra steps to the sample preparation and also removes the lipoproteins, which can be analyzed directly on the same sample to obtain additional information. (68-70) We first applied CPMG presat with standardized parameters for metabolomics with plasma (Figure 3b). (3) While most of the macromolecular signals are already suppressed, a close examination of the baseline shows that some broad signal remains (Figure 3c). These residual signals can interfere with quantification, so we first tried to increase the length of the T2 filter.
In order to increase the length of T2 and avoid heating the sample, it is preferable to increase the length of each echo rather than the number of echoes. This strategy allows a further reduction of intensity of macromolecules compared to the standardized CPMG presat (Figure 3d). However, when compared to a T2 filter with the same total duration with shorter spin echoes, the CPMG presat with longer spin echoes leads to sensitivity losses for most of the peaks (from 10% to more than 50% in our data set), along with line shape distortion for some peaks that is caused by J-modulation that is not completely suppressed by CPMG presat (Figure 3e). These shortcomings of CPMG presat can be resolved by using the PROJECT presat pulse sequence, which produces spectra almost identical to the one obtained with the CPMG presat using short spin echoes (Figure 3f).
Along with this qualitative overview of the differences in the spectra, we also wanted to determine the effect of the changes in parameters for quantification, results shown in Figure 4. Peaks from 5 different molecules were selected for quantification. These had different properties: isolated peaks (lactate H10 formate H4), peaks with some overlap with macromolecule signals (valine H9-11 and H12-14, α-glucose H19) and peaks with major overlap with macromolecules (lactate H7-9, phenylalanine H13, H14-15, and H16-17). All atom labeling comes from the recently developed ALATIS, which creates a unique and atom-specific InChI string. (71)

Figure 4

Figure 4. CPMG presat spectrum of methanol/water extracted plasma. Assigned peaks used for quantification are displayed. Ten replicate pooled aliquots were prepared for intact and extracted samples (20 total), and each reported pulse sequence was applied to each sample. The bar plots are the mean concentration (in μM) and standard deviation of 10 replicates of each condition, each measured from standard addition, using 3 spectra: one of the extract alone and two after 2 consecutive standard additions of each quantified metabolite. For this figure, the different variants correspond to different parameters (designated in the legend) and not different pulse sequences. CPMG-A, CPMG-B, CPMG-C, and PROJECT-A were used on intact plasma, while NOESYPR1d, PURGE, PROJECT-B, and CPMG-D were used on extracted plasma. τ, spin echo delay between two pulses; τmax, total duration of the spin echo. The parameters for CPMG-A are considered standard for analysis of intact plasma. For each peak, t tests were done, comparing the results of the CPMG presat of extracted plasma (CPMG-D) to the 7 other spectra. *, p < 0.05; **, p < 0.005; ***, p < 0.0005.

For each selected resonance, quantification was done on both intact and extracted plasma (67) by integrating the area under each resonance and by using standard addition to build the calibration curves. The spiking buffer was identical to that used for the original samples. The single spiking solution contained 55 mM lactate, 57 mM glucose, 10 mM valine, 11 mM phenylalanine, and 0.55 mM formate. We added 20 μL of this solution and recorded all 1D experiments for each spike; this was done twice. For extracted plasma, all pulse sequences mentioned in this paper (noesypr1d, PURGE, cpmgpr1d, and PROJECTpr1d) were tested, using the standard parameters. (3, 67)
t tests for each selected resonance were performed to statistically evaluate the changes in quantification between the different pulse sequences, using a threshold of 0.05 for the p-value. The concentrations from the CPMG presat spectra of the extracted plasma were used as the reference standards. These analyses show two trends. First, the pulse sequences that show the greatest differences with the CPMG presat of extracted plasma are the ones without T2 filters (noesypr1d, PURGE), even though these all used the extracted plasma. This shows that the remaining proteins after extraction are still concentrated enough to interfere with 1D quantification, demonstrating the need for a T2 filter. (67) This difference can be mainly explained by the influence of protein signals in the total area under some of the peaks, especially lactate H7-9, both valine peaks, and α-glucose H19. For phenylalanine, in addition to some interfering protein signal, the different results can be explained by low signal-to-noise (S/N) and the longer T2 filters that further reduce the S/N.
Second, increasing the length of the T2 filter in intact plasma tends toward the values from the CPMG of the extracted plasma. The main exceptions are the phenylalanine peaks, as mentioned above. It can also be noted that for quantification, the length of the T2 filters is more important than the length of the spin echoes or the variant of T2 filter.
Results show that while both CPMG presat and PROJECT presat can be used for quantification, samples with high amount of proteins need long T2 filters, and PROJECT gave better results in these conditions, due to better overall sensitivity and line shape.
In summary, we have shown that there are useful alternatives to the most commonly used 1D NMR metabolomics pulse sequences. Should everyone adopt these in their metabolomics workflow? The answer to this question is complicated by the opposing need for the field to move toward standardization so that data can be compared across studies and between different laboratories. One could argue that it is more important to keep protocols like pulse sequences constant than to further optimize, but this argument is countered by each new generation of instrumentation that is available, which will undoubtedly have a significant impact on the spectra or we would not be willing to pay large amounts of money to buy them. The good news is that the sequences described here produce similar results to their currently used counterparts. In our hands, the optimized PURGE pulse sequence improved the water region when compared with noesypr1d for all samples tested, but other regions of the spectra were essentially unchanged. For plasma or serum, things are more complicated, because every combination of pulse sequence and sample preparation method gives different quantitative values. We think that we understand these differences and have attempted to describe them here. Our recommendation is to use PROJECT presat in place of CPMG presat for intact or extracted samples, because there is no change in parameter optimization and no change for most resonances. However, there is a great improvement when longer T2 filters need to be applied, because PROJECT does not cause J-coupling distortions that arise in CPMG. As the field advances and new techniques are introduced, the best way to establish back-compatibility with older data sets and methods will be to employ a reference standard, such as the NIST plasma (SRM 1950). (72)

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Arthur S. Edison - †Complex Carbohydrate Research Center (CCRC), ‡Departments of Genetics and Biochemistry & Molecular Biology, and §Institute of Bioinformatics, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United StatesOrcidhttp://orcid.org/0000-0002-5686-2350 Email: [email protected]
  • Authors
    • Adrien Le Guennec - †Complex Carbohydrate Research Center (CCRC), ‡Departments of Genetics and Biochemistry & Molecular Biology, and §Institute of Bioinformatics, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
    • Fariba Tayyari - †Complex Carbohydrate Research Center (CCRC), ‡Departments of Genetics and Biochemistry & Molecular Biology, and §Institute of Bioinformatics, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
  • Author Contributions

    A.L.G conceived the study, implemented the pulse sequences, and measured and analyzed the data. F.T. assisted with extraction protocols and data analysis. All authors contributed to writing the manuscript.

  • Notes
    The authors declare no competing financial interest.

    The raw data used in this study will be deposited in the Metabolomics Workbench.

Acknowledgment

Click to copy section linkSection link copied!

This work was supported by the Southeast Center for Integrated Metabolomics (Grant NIH/NIDDK U24DK097209) and the Georgia Research Alliance.

References

Click to copy section linkSection link copied!

This article references 72 other publications.

  1. 1
    Lindon, J. C.; Nicholson, J. K.; Holmes, E.; Everett, J. R. Concepts Magn. Reson. 2000, 12, 289 320 DOI: 10.1002/1099-0534(2000)12:5<289::AID-CMR3>3.0.CO;2-W
  2. 2
    Bernini, P.; Bertini, I.; Luchinat, C.; Nincheri, P.; Staderini, S.; Turano, P. J. Biomol. NMR 2011, 49, 231 243 DOI: 10.1007/s10858-011-9489-1
  3. 3
    Dona, A. C.; Jiménez, B.; Schäfer, H.; Humpfer, E.; Spraul, M.; Lewis, M. R.; Pearce, J. T. M.; Holmes, E.; Lindon, J. C.; Nicholson, J. K. Anal. Chem. 2014, 86, 9887 9894 DOI: 10.1021/ac5025039
  4. 4
    Robinette, S. L.; Ajredini, R.; Rasheed, H.; Zeinomar, A.; Schroeder, F. C.; Dossey, A. T.; Edison, A. S. Anal. Chem. 2011, 83, 1649 1657 DOI: 10.1021/ac102724x
  5. 5
    Lewis, I. A.; Schommer, S. C.; Markley, J. L. Magn. Reson. Chem. 2009, 47, S123 S126 DOI: 10.1002/mrc.2526
  6. 6
    Zhang, F.; Robinette, S. L.; Bruschweiler-Li, L.; Brüschweiler, R. Magn. Reson. Chem. 2009, 47, S118 S122 DOI: 10.1002/mrc.2486
  7. 7
    Nicholson, J. K.; Foxall, P. J. D.; Spraul, M.; Farrant, R. D.; Lindon, J. C. Anal. Chem. 1995, 67, 793 811 DOI: 10.1021/ac00101a004
  8. 8
    McKay, R. T. Concepts Magn. Reson., Part A 2011, 38A, 197 220 DOI: 10.1002/cmr.a.20223
  9. 9
    Carr, H. Y.; Purcell, E. M. Phys. Rev. 1954, 94, 630 638 DOI: 10.1103/PhysRev.94.630
  10. 10
    Meiboom, S.; Gill, D. Rev. Sci. Instrum. 1958, 29, 688 691 DOI: 10.1063/1.1716296
  11. 11
    Hoult, D. I. J. Magn. Reson. (1969-1992) 1976, 21, 337 347 DOI: 10.1016/0022-2364(76)90081-0
  12. 12
    Bax, A. J. Magn. Reson. (1969-1992) 1985, 65, 142 145 DOI: 10.1016/0022-2364(85)90383-X
  13. 13
    Ogg, R. J.; Kingsley, R. B.; Taylor, J. S. J. Magn. Reson., Ser. B 1994, 104, 1 10 DOI: 10.1006/jmrb.1994.1048
  14. 14
    Smallcombe, S. H.; Patt, S. L.; Keifer, P. A. J. Magn. Reson., Ser. A 1995, 117, 295 303 DOI: 10.1006/jmra.1995.0759
  15. 15
    Hwang, T. L.; Shaka, A. J. J. Magn. Reson., Ser. A 1995, 112, 275 279 DOI: 10.1006/jmra.1995.1047
  16. 16
    Liu, M.; Mao, X.-a.; Ye, C.; Huang, H.; Nicholson, J. K.; Lindon, J. C. J. Magn. Reson. 1998, 132, 125 129 DOI: 10.1006/jmre.1998.1405
  17. 17
    Piotto, M.; Saudek, V.; Sklenář, V. J. Biomol. NMR 1992, 2, 661 665 DOI: 10.1007/BF02192855
  18. 18
    Sklenar, V.; Piotto, M.; Leppik, R.; Saudek, V. J. Magn. Reson., Ser. A 1993, 102, 241 245 DOI: 10.1006/jmra.1993.1098
  19. 19
    Simpson, A. J.; Brown, S. A. J. Magn. Reson. 2005, 175, 340 346 DOI: 10.1016/j.jmr.2005.05.008
  20. 20
    Giraudeau, P.; Silvestre, V.; Akoka, S. Metabolomics 2015, 11, 1041 1055 DOI: 10.1007/s11306-015-0794-7
  21. 21
    Mo, H.; Raftery, D. J. Magn. Reson. 2008, 190, 1 6 DOI: 10.1016/j.jmr.2007.09.016
  22. 22
    Mo, H.; Raftery, D. J. Biomol. NMR 2008, 41, 105 111 DOI: 10.1007/s10858-008-9246-2
  23. 23
    McKelvie, J. R.; Yuk, J.; Xu, Y.; Simpson, A. J.; Simpson, M. J. Metabolomics 2009, 5, 84 DOI: 10.1007/s11306-008-0122-6
  24. 24
    Brown, S. A. E.; Simpson, A. J.; Simpson, M. J. Environmental Chemistry 2009, 6, 432 440 DOI: 10.1071/EN09054
  25. 25
    Brown, S. A. E.; McKelvie, J. R.; Simpson, A. J.; Simpson, M. J. Environ. Pollut. 2010, 158, 2117 2123 DOI: 10.1016/j.envpol.2010.02.023
  26. 26
    Whitfield Åslund, M. L.; Simpson, A. J.; Simpson, M. J. Ecotoxicology 2011, 20, 836 846 DOI: 10.1007/s10646-011-0638-9
  27. 27
    Woods, G. C.; Simpson, M. J.; Koerner, P. J.; Napoli, A.; Simpson, A. J. Environ. Sci. Technol. 2011, 45, 3880 3886 DOI: 10.1021/es103425s
  28. 28
    Whitfield Åslund, M.; Simpson, M. J.; Simpson, A. J.; Zeeb, B. A.; Rutter, A. Ecotoxicology 2012, 21, 1947 1956 DOI: 10.1007/s10646-012-0928-x
  29. 29
    Lankadurai, B.; Furdui, V.; Reiner, E.; Simpson, A.; Simpson, M. Metabolites 2013, 3, 718 DOI: 10.3390/metabo3030718
  30. 30
    Lankadurai, B. P.; Wolfe, D. M.; Whitfield Åslund, M. L.; Simpson, A. J.; Simpson, M. J. Metabolomics 2013, 9, 44 56 DOI: 10.1007/s11306-012-0427-3
  31. 31
    Lankadurai, B. P.; Nagato, E. G.; Simpson, A. J.; Simpson, M. J. Ecotoxicol. Environ. Saf. 2015, 120, 48 58 DOI: 10.1016/j.ecoenv.2015.05.020
  32. 32
    Marshall, M. H. M.; McKelvie, J. R.; Simpson, A. J.; Simpson, M. J. Appl. Geochem. 2015, 54, 43 53 DOI: 10.1016/j.apgeochem.2014.12.013
  33. 33
    Kovacevic, V.; Simpson, A. J.; Simpson, M. J. Comp. Biochem. Physiol., Part D: Genomics Proteomics 2016, 19, 199 210 DOI: 10.1016/j.cbd.2016.01.004
  34. 34
    Nagato, E. G.; Simpson, A. J.; Simpson, M. J. Aquat. Toxicol. 2016, 170, 175 186 DOI: 10.1016/j.aquatox.2015.11.023
  35. 35
    Wagner, N. D.; Simpson, A. J.; Simpson, M. J. Environ. Toxicol. Chem. 2017, 36, 938 946 DOI: 10.1002/etc.3604
  36. 36
    Hölscher, D.; Brand, S.; Wenzler, M.; Schneider, B. J. Nat. Prod. 2008, 71, 251 257 DOI: 10.1021/np0705514
  37. 37
    Byrne, C. M. P.; Hayes, M. H. B.; Kumar, R.; Novotny, E. H.; Lanigan, G.; Richards, K. G.; Fay, D.; Simpson, A. J. Water Res. 2010, 44, 4379 4390 DOI: 10.1016/j.watres.2010.05.055
  38. 38
    Lesar, C. T.; Decatur, J.; Lukasiewicz, E.; Champeil, E. Forensic Sci. Int. 2011, 212, e40 e45 DOI: 10.1016/j.forsciint.2011.06.017
  39. 39
    Houghton, J. L.; Biswas, T.; Chen, W.; Tsodikov, O. V.; Garneau-Tsodikova, S. ChemBioChem 2013, 14, 2127 2135 DOI: 10.1002/cbic.201300359
  40. 40
    Houghton, J. L.; Green, K. D.; Pricer, R. E.; Mayhoub, A. S.; Garneau-Tsodikova, S. J. Antimicrob. Chemother. 2013, 68, 800 805 DOI: 10.1093/jac/dks497
  41. 41
    Pardo Torre, J. C.; Schmidt, G. W.; Paetz, C.; Reichelt, M.; Schneider, B.; Gershenzon, J.; D’Auria, J. C. Phytochemistry 2013, 91, 177 186 DOI: 10.1016/j.phytochem.2012.09.009
  42. 42
    Plaza, C.; Courtier-Murias, D.; Fernández, J. M.; Polo, A.; Simpson, A. J. Soil Biol. Biochem. 2013, 57, 124 134 DOI: 10.1016/j.soilbio.2012.07.026
  43. 43
    Koehler, J.; Beck Erlach, M.; Crusca, E.; Kremer, W.; Munte, C. E.; Meier, A.; Kalbitzer, H. R. J. Biomol. NMR 2014, 60, 45 50 DOI: 10.1007/s10858-014-9850-2
  44. 44
    del Campo, G.; Zuriarrain, J.; Zuriarrain, A.; Berregi, I. Food Chem. 2016, 196, 1031 1039 DOI: 10.1016/j.foodchem.2015.10.036
  45. 45
    Marshall, D. D.; Sadykov, M. R.; Thomas, V. C.; Bayles, K. W.; Powers, R. J. Proteome Res. 2016, 15, 1205 1212 DOI: 10.1021/acs.jproteome.5b01089
  46. 46
    Vučković, I.; Rapinoja, M.-L.; Vaismaa, M.; Vanninen, P.; Koskela, H. Phytochem. Anal. 2016, 27, 64 72 DOI: 10.1002/pca.2600
  47. 47
    Kim, H. K.; Choi, Y. H.; Verpoorte, R. Nat. Protoc. 2010, 5, 536 549 DOI: 10.1038/nprot.2009.237
  48. 48
    Aguilar, J. A.; Kenwright, S. J. Analyst 2016, 141, 236 242 DOI: 10.1039/C5AN02121A
  49. 49
    Aguilar, J. A.; Nilsson, M.; Bodenhausen, G.; Morris, G. A. Chem. Commun. 2012, 48, 811 813 DOI: 10.1039/C1CC16699A
  50. 50
    Takegoshi, K.; Ogura, K.; Hikichi, K. J. Magn. Reson. (1969-1992) 1989, 84, 611 615 DOI: 10.1016/0022-2364(89)90127-3
  51. 51
    Leung, I. K. H.; Demetriades, M.; Hardy, A. P.; Lejeune, C.; Smart, T. J.; Szöllössi, A.; Kawamura, A.; Schofield, C. J.; Claridge, T. D. W. J. Med. Chem. 2013, 56, 547 555 DOI: 10.1021/jm301583m
  52. 52
    Pinto, L. F.; Riguera, R.; Fernandez-Megia, E. J. Am. Chem. Soc. 2013, 135, 11513 11516 DOI: 10.1021/ja4059348
  53. 53
    Sánchez-Fernández, E. M.; Tarhonskaya, H.; Al-Qahtani, K.; Hopkinson; Richard, J.; McCullagh; James, S. O.; Schofield; Christopher, J.; Flashman, E. Biochem. J. 2013, 449, 491 496 DOI: 10.1042/BJ20121155
  54. 54
    André, M.; Dumez, J.-N.; Rezig, L.; Shintu, L.; Piotto, M.; Caldarelli, S. Anal. Chem. 2014, 86, 10749 10754 DOI: 10.1021/ac502792u
  55. 55
    Castañar, L.; Nolis, P.; Virgili, A.; Parella, T. J. Magn. Reson. 2014, 244, 30 35 DOI: 10.1016/j.jmr.2014.04.003
  56. 56
    Walport, L. J.; Hopkinson, R. J.; Vollmar, M.; Madden, S. K.; Gileadi, C.; Oppermann, U.; Schofield, C. J.; Johansson, C. J. Biol. Chem. 2014, 289, 18302 18313 DOI: 10.1074/jbc.M114.555052
  57. 57
    Berman, P.; Meiri, N.; Colnago, L. A.; Moraes, T. B.; Linder, C.; Levi, O.; Parmet, Y.; Saunders, M.; Wiesman, Z. Biotechnol. Biofuels 2015, 8, 12 DOI: 10.1186/s13068-014-0194-7
  58. 58
    Klika, K. D. Org. Lett. 2012, 14, 524 527 DOI: 10.1021/ol2031334
  59. 59
    Adams, R. W.; Holroyd, C. M.; Aguilar, J. A.; Nilsson, M.; Morris, G. A. Chem. Commun. 2013, 49, 358 360 DOI: 10.1039/C2CC37579F
  60. 60
    Baishya, B.; Khetrapal, C. L.; Dey, K. K. J. Magn. Reson. 2013, 234, 67 74 DOI: 10.1016/j.jmr.2013.06.004
  61. 61
    Gambarota, G.; Bondon, A.; Floch, M. L.; Mulkern, R. V.; Saint-Jalmes, H. J. Magn. Reson. 2013, 228, 76 80 DOI: 10.1016/j.jmr.2012.12.014
  62. 62
    Baishya, B.; Khetrapal, C. L. J. Magn. Reson. 2014, 242, 143 154 DOI: 10.1016/j.jmr.2014.02.017
  63. 63
    Kaltschnee, L.; Kolmer, A.; Timari, I.; Schmidts, V.; Adams, R. W.; Nilsson, M.; Kover, K. E.; Morris, G. A.; Thiele, C. M. Chem. Commun. 2014, 50, 15702 15705 DOI: 10.1039/C4CC04217D
  64. 64
    Baishya, B.; Verma, A. J. Magn. Reson. 2015, 252, 41 48 DOI: 10.1016/j.jmr.2014.12.007
  65. 65
    Aguilar, J. A.; Adams, R. W.; Nilsson, M.; Morris, G. A. J. Magn. Reson. 2014, 238, 16 19 DOI: 10.1016/j.jmr.2013.10.018
  66. 66
    Gowda, G. A. N.; Raftery, D. Anal. Chem. 2014, 86, 5433 5440 DOI: 10.1021/ac5005103
  67. 67
    Nagana Gowda, G. A.; Gowda, Y. N.; Raftery, D. Anal. Chem. 2015, 87, 706 715 DOI: 10.1021/ac503651e
  68. 68
    Soininen, P.; Kangas, A. J.; Wurtz, P.; Tukiainen, T.; Tynkkynen, T.; Laatikainen, R.; Jarvelin, M.-R.; Kahonen, M.; Lehtimaki, T.; Viikari, J.; Raitakari, O. T.; Savolainen, M. J.; Ala-Korpela, M. Analyst 2009, 134, 1781 1785 DOI: 10.1039/b910205a
  69. 69
    Kaess, B. M.; Tomaszewski, M.; Braund, P. S.; Stark, K.; Rafelt, S.; Fischer, M.; Hardwick, R.; Nelson, C. P.; Debiec, R.; Huber, F.; Kremer, W.; Kalbitzer, H. R.; Rose, L. M.; Chasman, D. I.; Hopewell, J.; Clarke, R.; Burton, P. R.; Tobin, M. D.; Hengstenberg, C.; Samani, N. J. PLoS One 2011, 6, e14529 DOI: 10.1371/journal.pone.0014529
  70. 70
    Petersen, A.-K.; Stark, K.; Musameh, M. D.; Nelson, C. P.; Römisch-Margl, W.; Kremer, W.; Raffler, J.; Krug, S.; Skurk, T.; Rist, M. J.; Daniel, H.; Hauner, H.; Adamski, J.; Tomaszewski, M.; Döring, A.; Peters, A.; Wichmann, H. E.; Kaess, B. M.; Kalbitzer, H. R.; Huber, F.; Pfahlert, V.; Samani, N. J.; Kronenberg, F.; Dieplinger, H.; Illig, T.; Hengstenberg, C.; Suhre, K.; Gieger, C.; Kastenmüller, G. Hum. Mol. Genet. 2012, 21, 1433 1443 DOI: 10.1093/hmg/ddr580
  71. 71
    Dashti, H.; Westler, W. M.; Markley, J. L.; Eghbalnia, H. R. Sci. Data 2017, 4, 170073 DOI: 10.1038/sdata.2017.73
  72. 72
    Phinney, K. W.; Ballihaut, G.; Bedner, M.; Benford, B. S.; Camara, J. E.; Christopher, S. J.; Davis, W. C.; Dodder, N. G.; Eppe, G.; Lang, B. E.; Long, S. E.; Lowenthal, M. S.; McGaw, E. A.; Murphy, K. E.; Nelson, B. C.; Prendergast, J. L.; Reiner, J. L.; Rimmer, C. A.; Sander, L. C.; Schantz, M. M.; Sharpless, K. E.; Sniegoski, L. T.; Tai, S. S. C.; Thomas, J. B.; Vetter, T. W.; Welch, M. J.; Wise, S. A.; Wood, L. J.; Guthrie, W. F.; Hagwood, C. R.; Leigh, S. D.; Yen, J. H.; Zhang, N.-F.; Chaudhary-Webb, M.; Chen, H.; Fazili, Z.; LaVoie, D. J.; McCoy, L. F.; Momin, S. S.; Paladugula, N.; Pendergrast, E. C.; Pfeiffer, C. M.; Powers, C. D.; Rabinowitz, D.; Rybak, M. E.; Schleicher, R. L.; Toombs, B. M. H.; Xu, M.; Zhang, M.; Castle, A. L. Anal. Chem. 2013, 85, 11732 11738 DOI: 10.1021/ac402689t

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 44 publications.

  1. Anna Mascellani Bergo, Kirsten Leiss, Jaroslav Havlik. Twenty Years of 1H NMR Plant Metabolomics: A Way Forward toward Assessment of Plant Metabolites for Constitutive and Inducible Defenses to Biotic Stress. Journal of Agricultural and Food Chemistry 2024, 72 (15) , 8332-8346. https://doi.org/10.1021/acs.jafc.3c09362
  2. Upendra Singh, Shuruq Alsuhaymi, Ruba Al-Nemi, Abdul-Hamid Emwas, Mariusz Jaremko. Compound-Specific 1D 1H NMR Pulse Sequence Selection for Metabolomics Analyses. ACS Omega 2023, 8 (26) , 23651-23663. https://doi.org/10.1021/acsomega.3c01688
  3. Francois-Xavier Theillet. In-Cell Structural Biology by NMR: The Benefits of the Atomic Scale. Chemical Reviews 2022, 122 (10) , 9497-9570. https://doi.org/10.1021/acs.chemrev.1c00937
  4. Alessandro Pratesi, Damiano Cirri, Dolores Fregona, Giarita Ferraro, Anna Giorgio, Antonello Merlino, Luigi Messori. Structural Characterization of a Gold/Serum Albumin Complex. Inorganic Chemistry 2019, 58 (16) , 10616-10619. https://doi.org/10.1021/acs.inorgchem.9b01900
  5. Peter W. A. Howe. Suppression of Protonated Organic Solvents in NMR Spectroscopy Using a Perfect Echo Low-Pass Filtration Pulse Sequence. Analytical Chemistry 2018, 90 (7) , 4316-4319. https://doi.org/10.1021/acs.analchem.8b00621
  6. Daniela Grasso, Barbara Marzocchi, Guido Scoccianti, Ilaria Palchetti, Domenico Andrea Campanacci, Lorenzo Antonuzzo, Federico Scolari, Serena Pillozzi, Andrea Bernini. Untargeted Metabolomics and Liquid Biopsy Investigation of Circulating Biomarkers in Soft Tissue Sarcoma. Cancers 2025, 17 (3) , 553. https://doi.org/10.3390/cancers17030553
  7. Ram B. Khattri, Abhinandan Batra, Zoe White, David Hammers, Terence E. Ryan, Elisabeth R. Barton, Pascal Bernatchez, Glenn A. Walter. Comparative lipidomic and metabolomic profiling of mdx and severe mdx-apolipoprotein e-null mice. Skeletal Muscle 2024, 14 (1) https://doi.org/10.1186/s13395-024-00368-w
  8. Ingrid Fernanda Bernardes Matias, Eduardo Solano Pina Santos, João Marcos Bovetto de Campos Valim, Alex Castro, Antônio Gilberto Ferreira, Luís Carlos Barbosa, Gabriel Henrique Ribeiro, Luiz Alberto Colnago, Douglas Gabriel Asnchau, Yasmin Gonçaõves da Silva Souza, Rafael Henrique de Tonissi e Buschinelli Góes, Nara Regina Brandão Cônsolo. Preparation of ruminal fluid and serum samples from beef cattle for nuclear magnetic resonance based–metabolomics. New Zealand Journal of Agricultural Research 2024, 15 , 1-14. https://doi.org/10.1080/00288233.2024.2344506
  9. Alessandro Maccelli, Anna Borioni, Federica Aureli, Maria Cristina Gaudiano, Livia Manna, Mariangela Raimondo. A screening method for the quantitative determination of selective androgen receptor modulators (SARMs) in capsules by high resolution 19 F- and 1 H-NMR spectroscopy. Analytical Methods 2024, 16 (14) , 2135-2146. https://doi.org/10.1039/D4AY00188E
  10. Robert Powers, Erik R. Andersson, Amanda L. Bayless, Robert B. Brua, Mario C. Chang, Leo L. Cheng, Chaevien S. Clendinen, Darcy Cochran, Valérie Copié, John R. Cort, Alexandra A. Crook, Hamid R. Eghbalnia, Anthony Giacalone, Goncalo J. Gouveia, Jeffrey C. Hoch, Micah J. Jeppesen, Amith S. Maroli, Matthew E. Merritt, Wimal Pathmasiri, Heidi E. Roth, Anna Rushin, Isin T. Sakallioglu, Saurav Sarma, Tracey B. Schock, Lloyd W. Sumner, Panteleimon Takis, Mario Uchimiya, David S. Wishart. Best practices in NMR metabolomics: Current state. TrAC Trends in Analytical Chemistry 2024, 171 , 117478. https://doi.org/10.1016/j.trac.2023.117478
  11. Kiera Ronda, Katelyn Downey, Amy Jenne, Monica Bastawrous, William W. Wolff, Katrina Steiner, Daniel H. Lysak, Peter M. Costa, Myrna J. Simpson, Karl J. Jobst, Andre J. Simpson. Exploring Proton-Only NMR Experiments and Filters for Daphnia In Vivo: Potential and Limitations. Molecules 2023, 28 (12) , 4863. https://doi.org/10.3390/molecules28124863
  12. Ram B. Khattri, Abhinandan Batra, Michael Matheny, Cora Hart, Spencer C. Henley‐Beasley, David Hammers, Huadong Zeng, Zoe White, Terence E. Ryan, Elisabeth Barton, Pascal Bernatchez, Glenn A. Walter. Magnetic resonance quantification of skeletal muscle lipid infiltration in a humanized mouse model of Duchenne muscular dystrophy. NMR in Biomedicine 2023, 36 (3) https://doi.org/10.1002/nbm.4869
  13. Mansor Fazliana, Zubaidah Nor Hanipah, Barakatun Nisak Mohd Yusof, Nur Azlin Zainal Abidin, You Zhuan Tan, Farah Huda Mohkiar, Ahmad Zamri Liyana, Mohd Nawi Mohd Naeem, Norazlan Mohmad Misnan, Haron Ahmad, Mohd Shazli Draman, Poh Yue Tsen, Shu Yu Lim, Tikfu Gee. Molecular, Metabolic, and Nutritional Changes after Metabolic Surgery in Obese Diabetic Patients (MoMen): A Protocol for a Multicenter Prospective Cohort Study. Metabolites 2023, 13 (3) , 413. https://doi.org/10.3390/metabo13030413
  14. Ricardo Moreira Borges, Gonçalo Jorge Gouveia, Fernanda Oliveira das Chagas. Advances in Microbial NMR Metabolomics. 2023, 123-147. https://doi.org/10.1007/978-3-031-41741-2_6
  15. Daniela Grasso, Serena Pillozzi, Ilaria Tazza, Matteo Bertelli, Domenico Andrea Campanacci, Ilaria Palchetti, Andrea Bernini. An improved NMR approach for metabolomics of intact serum samples. Analytical Biochemistry 2022, 654 , 114826. https://doi.org/10.1016/j.ab.2022.114826
  16. David S. Wishart, Leo L. Cheng, Valérie Copié, Arthur S. Edison, Hamid R. Eghbalnia, Jeffrey C. Hoch, Goncalo J. Gouveia, Wimal Pathmasiri, Robert Powers, Tracey B. Schock, Lloyd W. Sumner, Mario Uchimiya. NMR and Metabolomics—A Roadmap for the Future. Metabolites 2022, 12 (8) , 678. https://doi.org/10.3390/metabo12080678
  17. M. Saladrigas-García, M. D’Angelo, H. L. Ko, S. Traserra, P. Nolis, Y. Ramayo-Caldas, J. M. Folch, P. Vergara, P. Llonch, J. F. Pérez, S. M. Martín-Orúe. Early socialization and environmental enrichment of lactating piglets affects the caecal microbiota and metabolomic response after weaning. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-85460-7
  18. Liza Selley, Ariana Lammers, Adrien Le Guennec, Milad Pirhadi, Constantinos Sioutas, Nicole Janssen, Anke H. Maitland - van der Zee, Ian Mudway, Flemming Cassee. Alterations to the urinary metabolome following semi-controlled short exposures to ultrafine particles at a major airport. International Journal of Hygiene and Environmental Health 2021, 237 , 113803. https://doi.org/10.1016/j.ijheh.2021.113803
  19. Ashraf Ahmad Issa Alapid, Roslaini Abd. Majid, Zaid O. Ibraheem, Ahmed Mediani, Intan Safinar Ismail, Ngah Zasmy Unyah, Sharif Alhassan Abdullahi, Norshariza Nordin, Mohammed Nasiru Wana, Rusliza Basir. Investigation of Andrographolide Effect on Non-Infected Red Blood Cells Using the 1H-NMR-Based Metabolomics Approach. Metabolites 2021, 11 (8) , 486. https://doi.org/10.3390/metabo11080486
  20. Paulo R. Ribeiro, Elisangela F. Boffo. NMR Approaches for Probing the Polar Metabolome. 2021, 185-218. https://doi.org/10.1039/9781839163524-00185
  21. Emily M. Grasso, Ananya Majumdar, James O. Wrabl, Dominique P. Frueh, Vincent J. Hilser. Conserved allosteric ensembles in disordered proteins using TROSY/anti-TROSY R2-filtered spectroscopy. Biophysical Journal 2021, 120 (12) , 2498-2510. https://doi.org/10.1016/j.bpj.2021.04.017
  22. Dieuwertje Augustijn, Huub J. M. de Groot, A. Alia. HR-MAS NMR Applications in Plant Metabolomics. Molecules 2021, 26 (4) , 931. https://doi.org/10.3390/molecules26040931
  23. Benita Percival, Miles Gibson, Justine Leenders, Philippe B. Wilson, Martin Grootveld. Univariate and Multivariate Statistical Approaches to the Analysis and Interpretation of NMR-based Metabolomics Datasets of Increasing Complexity. 2020, 1-40. https://doi.org/10.1039/9781788015882-00001
  24. Kung-Hao Liang, Mei-Ling Cheng, Chi-Jen Lo, Yang-Hsiang Lin, Ming-Wei Lai, Wey-Ran Lin, Chau-Ting Yeh. Plasma phenylalanine and glutamine concentrations correlate with subsequent hepatocellular carcinoma occurrence in liver cirrhosis patients: an exploratory study. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-67971-x
  25. Nur Hasnieza Mohd Rosli, Hanis Mastura Yahya, Farah Wahida Ibrahim, Suzana Shahar, Intan Safinar Ismail, Amalina Ahmad Azam, Nor Fadilah Rajab. Serum Metabolomics Profiling of Commercially Mixed Functional Foods—Effects in Beta-Amyloid Induced Rats Measured Using 1H NMR Spectroscopy. Nutrients 2020, 12 (12) , 3812. https://doi.org/10.3390/nu12123812
  26. Ciara Myer, Leila Abdelrahman, Santanu Banerjee, Ram B. Khattri, Matthew E. Merritt, Anna K. Junk, Richard K. Lee, Sanjoy K. Bhattacharya. Aqueous humor metabolite profile of pseudoexfoliation glaucoma is distinctive. Molecular Omics 2020, 16 (5) , 425-435. https://doi.org/10.1039/C9MO00192A
  27. Jacquelyn M. Walejko, Anushka Chelliah, Maureen Keller-Wood, Clive Wasserfall, Mark Atkinson, Anthony Gregg, Arthur S. Edison. Diabetes Leads to Alterations in Normal Metabolic Transitions of Pregnancy as Revealed by Time-Course Metabolomics. Metabolites 2020, 10 (9) , 350. https://doi.org/10.3390/metabo10090350
  28. Ciara Myer, Jordan Perez, Leila Abdelrahman, Roberto Mendez, Ram B. Khattri, Anna K. Junk, Sanjoy K. Bhattacharya. Differentiation of soluble aqueous humor metabolites in primary open angle glaucoma and controls. Experimental Eye Research 2020, 194 , 108024. https://doi.org/10.1016/j.exer.2020.108024
  29. Andrew J. Borchert, Goncalo J. Gouveia, Arthur S. Edison, Diana M. Downs, . Proton Nuclear Magnetic Resonance Metabolomics Corroborates Serine Hydroxymethyltransferase as the Primary Target of 2-Aminoacrylate in a ridA Mutant of Salmonella enterica. mSystems 2020, 5 (2) https://doi.org/10.1128/mSystems.00843-19
  30. Graciela Carlos, Francisco Paulo dos Santos, Pedro Eduardo Fröehlich. Canine metabolomics advances. Metabolomics 2020, 16 (2) https://doi.org/10.1007/s11306-020-1638-7
  31. Liliana López‐Garrido, Angel E. Bañuelos‐Hernández, Elizabeth Pérez‐Hernández, Romeo Tecualt‐Gómez, Jorge Quiroz‐Williams, Armando Ariza‐Castolo, Elvia Becerra‐Martínez, Nury Pérez‐Hernández. Metabolic profiling of serum in patients with cartilage tumours using 1 H‐NMR spectroscopy: A pilot study. Magnetic Resonance in Chemistry 2020, 58 (1) , 65-76. https://doi.org/10.1002/mrc.4925
  32. Yuqing Huang, Haolin Zhan, Xueqiu You, Yu Yang, Chen Li, Shuhui Cai, Zhong Chen. A Pure Shift-Based NMR Method for Transverse Relaxation Measurements on Complex Samples. IEEE Transactions on Instrumentation and Measurement 2020, 69 (1) , 201-211. https://doi.org/10.1109/TIM.2019.2894047
  33. Jasmohan S. Bajaj, Nita Salzman, Chathur Acharya, Hajime Takei, Genta Kakiyama, Andrew Fagan, Melanie B. White, Edith A. Gavis, Mary L. Holtz, Michael Hayward, Hiroshi Nittono, Phillip B. Hylemon, I. Jane Cox, Roger Williams, Simon D. Taylor-Robinson, Richard K. Sterling, Scott C. Matherly, Michael Fuchs, Hannah Lee, Puneet Puri, R. Todd Stravitz, Arun J. Sanyal, Lola Ajayi, Adrien Le Guennec, R. Andrew Atkinson, Mohammad S. Siddiqui, Velimir Luketic, William M. Pandak, Masoumeh Sikaroodi, Patrick M. Gillevet. Microbial functional change is linked with clinical outcomes after capsular fecal transplant in cirrhosis. JCI Insight 2019, 4 (24) https://doi.org/10.1172/jci.insight.133410
  34. Juan A. Aguilar, Julia Cassani, Fay Probert, Jacqueline Palace, Tim D. W. Claridge, Adolfo Botana, Alan M. Kenwright. Reliable, high-quality suppression of NMR signals arising from water and macromolecules: application to bio-fluid analysis. The Analyst 2019, 144 (24) , 7270-7277. https://doi.org/10.1039/C9AN01005J
  35. Virginia Fuochi, Maria Anna Coniglio, Luca Laghi, Antonio Rescifina, Massimo Caruso, Aldo Stivala, Pio Maria Furneri. Metabolic Characterization of Supernatants Produced by Lactobacillus spp. With in vitro Anti-Legionella Activity. Frontiers in Microbiology 2019, 10 https://doi.org/10.3389/fmicb.2019.01403
  36. Diana Montes-Grajales, Nuria Esturau-Escofet, Baldomero Esquivel, Esperanza Martinez-Romero. Exo-Metabolites of Phaseolus vulgaris-Nodulating Rhizobial Strains. Metabolites 2019, 9 (6) , 105. https://doi.org/10.3390/metabo9060105
  37. Henrik Max Jensen, Hanne Christine Bertram. The magic angle view to food: magic-angle spinning (MAS) NMR spectroscopy in food science. Metabolomics 2019, 15 (3) https://doi.org/10.1007/s11306-019-1504-7
  38. Qusai Hassan, Rudraksha Dutta Majumdar, Bing Wu, Daniel Lane, Maryam Tabatabaei‐Anraki, Ronald Soong, Myrna J. Simpson, Andre J. Simpson. Improvements in lipid suppression for 1 H NMR‐based metabolomics: Applications to solution‐state and HR‐MAS NMR in natural and in vivo samples. Magnetic Resonance in Chemistry 2019, 57 (2-3) , 69-81. https://doi.org/10.1002/mrc.4814
  39. Teodor Parella. Towards perfect NMR: Spin‐echo versus perfect‐echo building blocks. Magnetic Resonance in Chemistry 2019, 57 (1) , 13-29. https://doi.org/10.1002/mrc.4776
  40. Tedros Bezabeh, Ana Capati, Omkar B. Ijare. NMR-Based Urinary Metabolomics Applications. 2019, 215-229. https://doi.org/10.1007/978-1-4939-9690-2_13
  41. Penghui Lin, Andrew N. Lane, Teresa W.-M. Fan. Stable Isotope-Resolved Metabolomics by NMR. 2019, 151-168. https://doi.org/10.1007/978-1-4939-9690-2_9
  42. John L. Markley, Hesam Dashti, Jonathan R. Wedell, William M. Westler, Eldon L. Ulrich, Hamid R. Eghbalnia. Approach to Improving the Quality of Open Data in the Universe of Small Molecules. 2019, 519-530. https://doi.org/10.1007/978-3-030-36691-9_44
  43. Jing Cheng, Wenxian Lan, Guangyong Zheng, Xianfu Gao. Metabolomics: A High-Throughput Platform for Metabolite Profile Exploration. 2018, 265-292. https://doi.org/10.1007/978-1-4939-7717-8_16
  44. H. Nothaft, M. E. Perez-Muñoz, G. J. Gouveia, R. M. Duar, J. J. Wanford, L. Lango-Scholey, C. G. Panagos, V. Srithayakumar, G. S. Plastow, C. Coros, C. D. Bayliss, A. S. Edison, J. Walter, C. M. Szymanski, . Coadministration of the Campylobacter jejuni N-Glycan-Based Vaccine with Probiotics Improves Vaccine Performance in Broiler Chickens. Applied and Environmental Microbiology 2017, 83 (23) https://doi.org/10.1128/AEM.01523-17

Analytical Chemistry

Cite this: Anal. Chem. 2017, 89, 17, 8582–8588
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.analchem.7b02354
Published July 24, 2017

Copyright © 2017 American Chemical Society. This publication is licensed under these Terms of Use.

Article Views

3799

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Zoom of the 1D NOESY presat spectra overlay of pooled urine without (black) and with (red) gradients, along with the complete spectrum shown above, to show the difference in residual water peak intensity.

    Figure 2

    Figure 2. Pulse sequences for the original PURGE and the optimized PURGE (a), where gradient signs are inverted between every scan. The gradient levels themselves are shown for the original PURGE. d20 and d21 are the delays used within the pulse sequence for short presaturation times and were set to 200 μs, the recommend values. 1D 1H spectra of glucose with the original PURGE (b) and the optimized PURGE (c) pulse sequences, with the water peak framed in red, showing the nonexistent impact of alternating gradients on the water peak. 1D 1H spectra of a urine sample with the original PURGE (d) and the optimized PURGE (e) pulse sequences. An expansion of part e is shown in part f, where both the 1D NOESY presat (red) and the PURGE (black) spectra of 10 urine samples are superimposed. A more global view of the water peak is shown in the framed inset (g).

    Figure 3

    Figure 3. 1D 1H spectrum of whole plasma with 1D NOESY presat and CPMG presat, using standardized parameters (3) (a), along with a close-up of the CPMG presat spectrum, showing in green frame regions where there is still some significant signal from macromolecules (b). The use of a longer T2 filter allows reducing further signals from macromolecules (c), but the use of longer spin echoes (without changing the length of the T2 filter) decreases the sensitivity of signals and even distorts the line shape of some of them (d). The use of the PROJECT pulse sequence as shown in (e) and compared to the CPMG pulse sequence, allows retaining sensitivity when using longer spin echoes (f).

    Figure 4

    Figure 4. CPMG presat spectrum of methanol/water extracted plasma. Assigned peaks used for quantification are displayed. Ten replicate pooled aliquots were prepared for intact and extracted samples (20 total), and each reported pulse sequence was applied to each sample. The bar plots are the mean concentration (in μM) and standard deviation of 10 replicates of each condition, each measured from standard addition, using 3 spectra: one of the extract alone and two after 2 consecutive standard additions of each quantified metabolite. For this figure, the different variants correspond to different parameters (designated in the legend) and not different pulse sequences. CPMG-A, CPMG-B, CPMG-C, and PROJECT-A were used on intact plasma, while NOESYPR1d, PURGE, PROJECT-B, and CPMG-D were used on extracted plasma. τ, spin echo delay between two pulses; τmax, total duration of the spin echo. The parameters for CPMG-A are considered standard for analysis of intact plasma. For each peak, t tests were done, comparing the results of the CPMG presat of extracted plasma (CPMG-D) to the 7 other spectra. *, p < 0.05; **, p < 0.005; ***, p < 0.0005.

  • References


    This article references 72 other publications.

    1. 1
      Lindon, J. C.; Nicholson, J. K.; Holmes, E.; Everett, J. R. Concepts Magn. Reson. 2000, 12, 289 320 DOI: 10.1002/1099-0534(2000)12:5<289::AID-CMR3>3.0.CO;2-W
    2. 2
      Bernini, P.; Bertini, I.; Luchinat, C.; Nincheri, P.; Staderini, S.; Turano, P. J. Biomol. NMR 2011, 49, 231 243 DOI: 10.1007/s10858-011-9489-1
    3. 3
      Dona, A. C.; Jiménez, B.; Schäfer, H.; Humpfer, E.; Spraul, M.; Lewis, M. R.; Pearce, J. T. M.; Holmes, E.; Lindon, J. C.; Nicholson, J. K. Anal. Chem. 2014, 86, 9887 9894 DOI: 10.1021/ac5025039
    4. 4
      Robinette, S. L.; Ajredini, R.; Rasheed, H.; Zeinomar, A.; Schroeder, F. C.; Dossey, A. T.; Edison, A. S. Anal. Chem. 2011, 83, 1649 1657 DOI: 10.1021/ac102724x
    5. 5
      Lewis, I. A.; Schommer, S. C.; Markley, J. L. Magn. Reson. Chem. 2009, 47, S123 S126 DOI: 10.1002/mrc.2526
    6. 6
      Zhang, F.; Robinette, S. L.; Bruschweiler-Li, L.; Brüschweiler, R. Magn. Reson. Chem. 2009, 47, S118 S122 DOI: 10.1002/mrc.2486
    7. 7
      Nicholson, J. K.; Foxall, P. J. D.; Spraul, M.; Farrant, R. D.; Lindon, J. C. Anal. Chem. 1995, 67, 793 811 DOI: 10.1021/ac00101a004
    8. 8
      McKay, R. T. Concepts Magn. Reson., Part A 2011, 38A, 197 220 DOI: 10.1002/cmr.a.20223
    9. 9
      Carr, H. Y.; Purcell, E. M. Phys. Rev. 1954, 94, 630 638 DOI: 10.1103/PhysRev.94.630
    10. 10
      Meiboom, S.; Gill, D. Rev. Sci. Instrum. 1958, 29, 688 691 DOI: 10.1063/1.1716296
    11. 11
      Hoult, D. I. J. Magn. Reson. (1969-1992) 1976, 21, 337 347 DOI: 10.1016/0022-2364(76)90081-0
    12. 12
      Bax, A. J. Magn. Reson. (1969-1992) 1985, 65, 142 145 DOI: 10.1016/0022-2364(85)90383-X
    13. 13
      Ogg, R. J.; Kingsley, R. B.; Taylor, J. S. J. Magn. Reson., Ser. B 1994, 104, 1 10 DOI: 10.1006/jmrb.1994.1048
    14. 14
      Smallcombe, S. H.; Patt, S. L.; Keifer, P. A. J. Magn. Reson., Ser. A 1995, 117, 295 303 DOI: 10.1006/jmra.1995.0759
    15. 15
      Hwang, T. L.; Shaka, A. J. J. Magn. Reson., Ser. A 1995, 112, 275 279 DOI: 10.1006/jmra.1995.1047
    16. 16
      Liu, M.; Mao, X.-a.; Ye, C.; Huang, H.; Nicholson, J. K.; Lindon, J. C. J. Magn. Reson. 1998, 132, 125 129 DOI: 10.1006/jmre.1998.1405
    17. 17
      Piotto, M.; Saudek, V.; Sklenář, V. J. Biomol. NMR 1992, 2, 661 665 DOI: 10.1007/BF02192855
    18. 18
      Sklenar, V.; Piotto, M.; Leppik, R.; Saudek, V. J. Magn. Reson., Ser. A 1993, 102, 241 245 DOI: 10.1006/jmra.1993.1098
    19. 19
      Simpson, A. J.; Brown, S. A. J. Magn. Reson. 2005, 175, 340 346 DOI: 10.1016/j.jmr.2005.05.008
    20. 20
      Giraudeau, P.; Silvestre, V.; Akoka, S. Metabolomics 2015, 11, 1041 1055 DOI: 10.1007/s11306-015-0794-7
    21. 21
      Mo, H.; Raftery, D. J. Magn. Reson. 2008, 190, 1 6 DOI: 10.1016/j.jmr.2007.09.016
    22. 22
      Mo, H.; Raftery, D. J. Biomol. NMR 2008, 41, 105 111 DOI: 10.1007/s10858-008-9246-2
    23. 23
      McKelvie, J. R.; Yuk, J.; Xu, Y.; Simpson, A. J.; Simpson, M. J. Metabolomics 2009, 5, 84 DOI: 10.1007/s11306-008-0122-6
    24. 24
      Brown, S. A. E.; Simpson, A. J.; Simpson, M. J. Environmental Chemistry 2009, 6, 432 440 DOI: 10.1071/EN09054
    25. 25
      Brown, S. A. E.; McKelvie, J. R.; Simpson, A. J.; Simpson, M. J. Environ. Pollut. 2010, 158, 2117 2123 DOI: 10.1016/j.envpol.2010.02.023
    26. 26
      Whitfield Åslund, M. L.; Simpson, A. J.; Simpson, M. J. Ecotoxicology 2011, 20, 836 846 DOI: 10.1007/s10646-011-0638-9
    27. 27
      Woods, G. C.; Simpson, M. J.; Koerner, P. J.; Napoli, A.; Simpson, A. J. Environ. Sci. Technol. 2011, 45, 3880 3886 DOI: 10.1021/es103425s
    28. 28
      Whitfield Åslund, M.; Simpson, M. J.; Simpson, A. J.; Zeeb, B. A.; Rutter, A. Ecotoxicology 2012, 21, 1947 1956 DOI: 10.1007/s10646-012-0928-x
    29. 29
      Lankadurai, B.; Furdui, V.; Reiner, E.; Simpson, A.; Simpson, M. Metabolites 2013, 3, 718 DOI: 10.3390/metabo3030718
    30. 30
      Lankadurai, B. P.; Wolfe, D. M.; Whitfield Åslund, M. L.; Simpson, A. J.; Simpson, M. J. Metabolomics 2013, 9, 44 56 DOI: 10.1007/s11306-012-0427-3
    31. 31
      Lankadurai, B. P.; Nagato, E. G.; Simpson, A. J.; Simpson, M. J. Ecotoxicol. Environ. Saf. 2015, 120, 48 58 DOI: 10.1016/j.ecoenv.2015.05.020
    32. 32
      Marshall, M. H. M.; McKelvie, J. R.; Simpson, A. J.; Simpson, M. J. Appl. Geochem. 2015, 54, 43 53 DOI: 10.1016/j.apgeochem.2014.12.013
    33. 33
      Kovacevic, V.; Simpson, A. J.; Simpson, M. J. Comp. Biochem. Physiol., Part D: Genomics Proteomics 2016, 19, 199 210 DOI: 10.1016/j.cbd.2016.01.004
    34. 34
      Nagato, E. G.; Simpson, A. J.; Simpson, M. J. Aquat. Toxicol. 2016, 170, 175 186 DOI: 10.1016/j.aquatox.2015.11.023
    35. 35
      Wagner, N. D.; Simpson, A. J.; Simpson, M. J. Environ. Toxicol. Chem. 2017, 36, 938 946 DOI: 10.1002/etc.3604
    36. 36
      Hölscher, D.; Brand, S.; Wenzler, M.; Schneider, B. J. Nat. Prod. 2008, 71, 251 257 DOI: 10.1021/np0705514
    37. 37
      Byrne, C. M. P.; Hayes, M. H. B.; Kumar, R.; Novotny, E. H.; Lanigan, G.; Richards, K. G.; Fay, D.; Simpson, A. J. Water Res. 2010, 44, 4379 4390 DOI: 10.1016/j.watres.2010.05.055
    38. 38
      Lesar, C. T.; Decatur, J.; Lukasiewicz, E.; Champeil, E. Forensic Sci. Int. 2011, 212, e40 e45 DOI: 10.1016/j.forsciint.2011.06.017
    39. 39
      Houghton, J. L.; Biswas, T.; Chen, W.; Tsodikov, O. V.; Garneau-Tsodikova, S. ChemBioChem 2013, 14, 2127 2135 DOI: 10.1002/cbic.201300359
    40. 40
      Houghton, J. L.; Green, K. D.; Pricer, R. E.; Mayhoub, A. S.; Garneau-Tsodikova, S. J. Antimicrob. Chemother. 2013, 68, 800 805 DOI: 10.1093/jac/dks497
    41. 41
      Pardo Torre, J. C.; Schmidt, G. W.; Paetz, C.; Reichelt, M.; Schneider, B.; Gershenzon, J.; D’Auria, J. C. Phytochemistry 2013, 91, 177 186 DOI: 10.1016/j.phytochem.2012.09.009
    42. 42
      Plaza, C.; Courtier-Murias, D.; Fernández, J. M.; Polo, A.; Simpson, A. J. Soil Biol. Biochem. 2013, 57, 124 134 DOI: 10.1016/j.soilbio.2012.07.026
    43. 43
      Koehler, J.; Beck Erlach, M.; Crusca, E.; Kremer, W.; Munte, C. E.; Meier, A.; Kalbitzer, H. R. J. Biomol. NMR 2014, 60, 45 50 DOI: 10.1007/s10858-014-9850-2
    44. 44
      del Campo, G.; Zuriarrain, J.; Zuriarrain, A.; Berregi, I. Food Chem. 2016, 196, 1031 1039 DOI: 10.1016/j.foodchem.2015.10.036
    45. 45
      Marshall, D. D.; Sadykov, M. R.; Thomas, V. C.; Bayles, K. W.; Powers, R. J. Proteome Res. 2016, 15, 1205 1212 DOI: 10.1021/acs.jproteome.5b01089
    46. 46
      Vučković, I.; Rapinoja, M.-L.; Vaismaa, M.; Vanninen, P.; Koskela, H. Phytochem. Anal. 2016, 27, 64 72 DOI: 10.1002/pca.2600
    47. 47
      Kim, H. K.; Choi, Y. H.; Verpoorte, R. Nat. Protoc. 2010, 5, 536 549 DOI: 10.1038/nprot.2009.237
    48. 48
      Aguilar, J. A.; Kenwright, S. J. Analyst 2016, 141, 236 242 DOI: 10.1039/C5AN02121A
    49. 49
      Aguilar, J. A.; Nilsson, M.; Bodenhausen, G.; Morris, G. A. Chem. Commun. 2012, 48, 811 813 DOI: 10.1039/C1CC16699A
    50. 50
      Takegoshi, K.; Ogura, K.; Hikichi, K. J. Magn. Reson. (1969-1992) 1989, 84, 611 615 DOI: 10.1016/0022-2364(89)90127-3
    51. 51
      Leung, I. K. H.; Demetriades, M.; Hardy, A. P.; Lejeune, C.; Smart, T. J.; Szöllössi, A.; Kawamura, A.; Schofield, C. J.; Claridge, T. D. W. J. Med. Chem. 2013, 56, 547 555 DOI: 10.1021/jm301583m
    52. 52
      Pinto, L. F.; Riguera, R.; Fernandez-Megia, E. J. Am. Chem. Soc. 2013, 135, 11513 11516 DOI: 10.1021/ja4059348
    53. 53
      Sánchez-Fernández, E. M.; Tarhonskaya, H.; Al-Qahtani, K.; Hopkinson; Richard, J.; McCullagh; James, S. O.; Schofield; Christopher, J.; Flashman, E. Biochem. J. 2013, 449, 491 496 DOI: 10.1042/BJ20121155
    54. 54
      André, M.; Dumez, J.-N.; Rezig, L.; Shintu, L.; Piotto, M.; Caldarelli, S. Anal. Chem. 2014, 86, 10749 10754 DOI: 10.1021/ac502792u
    55. 55
      Castañar, L.; Nolis, P.; Virgili, A.; Parella, T. J. Magn. Reson. 2014, 244, 30 35 DOI: 10.1016/j.jmr.2014.04.003
    56. 56
      Walport, L. J.; Hopkinson, R. J.; Vollmar, M.; Madden, S. K.; Gileadi, C.; Oppermann, U.; Schofield, C. J.; Johansson, C. J. Biol. Chem. 2014, 289, 18302 18313 DOI: 10.1074/jbc.M114.555052
    57. 57
      Berman, P.; Meiri, N.; Colnago, L. A.; Moraes, T. B.; Linder, C.; Levi, O.; Parmet, Y.; Saunders, M.; Wiesman, Z. Biotechnol. Biofuels 2015, 8, 12 DOI: 10.1186/s13068-014-0194-7
    58. 58
      Klika, K. D. Org. Lett. 2012, 14, 524 527 DOI: 10.1021/ol2031334
    59. 59
      Adams, R. W.; Holroyd, C. M.; Aguilar, J. A.; Nilsson, M.; Morris, G. A. Chem. Commun. 2013, 49, 358 360 DOI: 10.1039/C2CC37579F
    60. 60
      Baishya, B.; Khetrapal, C. L.; Dey, K. K. J. Magn. Reson. 2013, 234, 67 74 DOI: 10.1016/j.jmr.2013.06.004
    61. 61
      Gambarota, G.; Bondon, A.; Floch, M. L.; Mulkern, R. V.; Saint-Jalmes, H. J. Magn. Reson. 2013, 228, 76 80 DOI: 10.1016/j.jmr.2012.12.014
    62. 62
      Baishya, B.; Khetrapal, C. L. J. Magn. Reson. 2014, 242, 143 154 DOI: 10.1016/j.jmr.2014.02.017
    63. 63
      Kaltschnee, L.; Kolmer, A.; Timari, I.; Schmidts, V.; Adams, R. W.; Nilsson, M.; Kover, K. E.; Morris, G. A.; Thiele, C. M. Chem. Commun. 2014, 50, 15702 15705 DOI: 10.1039/C4CC04217D
    64. 64
      Baishya, B.; Verma, A. J. Magn. Reson. 2015, 252, 41 48 DOI: 10.1016/j.jmr.2014.12.007
    65. 65
      Aguilar, J. A.; Adams, R. W.; Nilsson, M.; Morris, G. A. J. Magn. Reson. 2014, 238, 16 19 DOI: 10.1016/j.jmr.2013.10.018
    66. 66
      Gowda, G. A. N.; Raftery, D. Anal. Chem. 2014, 86, 5433 5440 DOI: 10.1021/ac5005103
    67. 67
      Nagana Gowda, G. A.; Gowda, Y. N.; Raftery, D. Anal. Chem. 2015, 87, 706 715 DOI: 10.1021/ac503651e
    68. 68
      Soininen, P.; Kangas, A. J.; Wurtz, P.; Tukiainen, T.; Tynkkynen, T.; Laatikainen, R.; Jarvelin, M.-R.; Kahonen, M.; Lehtimaki, T.; Viikari, J.; Raitakari, O. T.; Savolainen, M. J.; Ala-Korpela, M. Analyst 2009, 134, 1781 1785 DOI: 10.1039/b910205a
    69. 69
      Kaess, B. M.; Tomaszewski, M.; Braund, P. S.; Stark, K.; Rafelt, S.; Fischer, M.; Hardwick, R.; Nelson, C. P.; Debiec, R.; Huber, F.; Kremer, W.; Kalbitzer, H. R.; Rose, L. M.; Chasman, D. I.; Hopewell, J.; Clarke, R.; Burton, P. R.; Tobin, M. D.; Hengstenberg, C.; Samani, N. J. PLoS One 2011, 6, e14529 DOI: 10.1371/journal.pone.0014529
    70. 70
      Petersen, A.-K.; Stark, K.; Musameh, M. D.; Nelson, C. P.; Römisch-Margl, W.; Kremer, W.; Raffler, J.; Krug, S.; Skurk, T.; Rist, M. J.; Daniel, H.; Hauner, H.; Adamski, J.; Tomaszewski, M.; Döring, A.; Peters, A.; Wichmann, H. E.; Kaess, B. M.; Kalbitzer, H. R.; Huber, F.; Pfahlert, V.; Samani, N. J.; Kronenberg, F.; Dieplinger, H.; Illig, T.; Hengstenberg, C.; Suhre, K.; Gieger, C.; Kastenmüller, G. Hum. Mol. Genet. 2012, 21, 1433 1443 DOI: 10.1093/hmg/ddr580
    71. 71
      Dashti, H.; Westler, W. M.; Markley, J. L.; Eghbalnia, H. R. Sci. Data 2017, 4, 170073 DOI: 10.1038/sdata.2017.73
    72. 72
      Phinney, K. W.; Ballihaut, G.; Bedner, M.; Benford, B. S.; Camara, J. E.; Christopher, S. J.; Davis, W. C.; Dodder, N. G.; Eppe, G.; Lang, B. E.; Long, S. E.; Lowenthal, M. S.; McGaw, E. A.; Murphy, K. E.; Nelson, B. C.; Prendergast, J. L.; Reiner, J. L.; Rimmer, C. A.; Sander, L. C.; Schantz, M. M.; Sharpless, K. E.; Sniegoski, L. T.; Tai, S. S. C.; Thomas, J. B.; Vetter, T. W.; Welch, M. J.; Wise, S. A.; Wood, L. J.; Guthrie, W. F.; Hagwood, C. R.; Leigh, S. D.; Yen, J. H.; Zhang, N.-F.; Chaudhary-Webb, M.; Chen, H.; Fazili, Z.; LaVoie, D. J.; McCoy, L. F.; Momin, S. S.; Paladugula, N.; Pendergrast, E. C.; Pfeiffer, C. M.; Powers, C. D.; Rabinowitz, D.; Rybak, M. E.; Schleicher, R. L.; Toombs, B. M. H.; Xu, M.; Zhang, M.; Castle, A. L. Anal. Chem. 2013, 85, 11732 11738 DOI: 10.1021/ac402689t