ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Simplified Protocol for Cross-linking Mass Spectrometry Using the MS-Cleavable Cross-linker DSBU with Efficient Cross-link Identification

  • Dongqing Pan*
    Dongqing Pan
    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
    *E-mail: [email protected]
    More by Dongqing Pan
  • Andreas Brockmeyer
    Andreas Brockmeyer
    Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
  • Franziska Mueller
    Franziska Mueller
    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
  • Andrea Musacchio
    Andrea Musacchio
    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
    Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
  • , and 
  • Tanja Bange*
    Tanja Bange
    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
    Department for Systems Chronobiology, Institute of Medical Psychology, LMU Munich, Goethe-Str. 31, 80336 Munich, Germany
    *E-mail: [email protected]
    More by Tanja Bange
Cite this: Anal. Chem. 2018, 90, 18, 10990–10999
Publication Date (Web):August 3, 2018
https://doi.org/10.1021/acs.analchem.8b02593
Copyright © 2018 American Chemical Society

    Article Views

    3483

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (7 MB)
    Supporting Info (7)»

    Abstract

    Abstract Image

    Chemical cross-linking combined with mass spectrometry (MS) is a powerful approach to identify and map protein–protein interactions. Its applications support computational modeling of three-dimensional structures and complement classical structural methodologies such as X-ray crystallography, NMR spectroscopy, and electron microscopy (EM). A plethora of cross-linkers, MS methods, and data analysis programs have been developed, but due to their methodological complexity application is currently reserved for specialized mass spectrometry laboratories. Here, we present a simplified single-step purification protocol that results in improved identifications of cross-linked peptides. We describe an easy-to-follow pipeline that combines the MS-cleavable cross-linker DSBU (disuccinimidyl dibutyric urea), a Q-Exactive mass spectrometer, and the dedicated software MeroX for data analysis to make cross-linking MS accessible to structural biology and biochemistry laboratories. In experiments focusing on kinetochore subcomplexes containing 4–10 subunits (so-called KMN network), one-step peptide purification, and enrichment by size-exclusion chromatography yielded identification of 135–228 non-redundant cross-links (577–820 cross-linked peptides) from each experiment. Notably, half of the non-redundant cross-links identified were not lysine–lysine cross-links and involved side chains with hydroxy groups. The new pipeline has a comparable potential toward the identification of protein–protein interactions as previously used pipelines based on isotope-labeled cross-linkers. A newly identified cross-link enabled us to improve our 3D-model of the KMN, emphasizing the power of cross-linking data for evaluation of low-resolution EM maps. In sum, our optimized experimental scheme represents a viable shortcut toward obtaining reliable cross-link data sets.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.8b02593.

    • Table S1 and additional information (PDF).

    • Table S2: distribution of cross-links over SEC fractions (XLSX).

    • Table S3: all identified cross-links (XLSX).

    • Table S4: non-redundant cross-links (XLSX).

    • MeroX results files 1: zhrm and csv files (ZIP).

    • MeroX result files 2: zhrm and csv files (ZIP).

    • Python script for analysis (ZIP).

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 30 publications.

    1. Lili Cui, Yongge Ma, Ming Li, Zhonglin Wei, Yanfu Huan, Hongmei Li, Qiang Fei, Lianyou Zheng. Tyrosine-Reactive Cross-Linker for Probing Protein Three-Dimensional Structures. Analytical Chemistry 2021, 93 (10) , 4434-4440. https://doi.org/10.1021/acs.analchem.0c04337
    2. Rong Huang, Xiuxia Gao, Zili Xu, Wei Zhu, Ding Wei, Biao Jiang, Hongli Chen, Wenzhang Chen. Decision Tree Searching Strategy to Boost the Identification of Cross-Linked Peptides. Analytical Chemistry 2020, 92 (20) , 13702-13710. https://doi.org/10.1021/acs.analchem.0c00452
    3. Christian H. Ihling, Patrizia Springorum, Claudio Iacobucci, Christoph Hage, Michael Götze, Mathias Schäfer, Andrea Sinz. The Isotope-Labeled, MS-Cleavable Cross-Linker Disuccinimidyl Dibutyric Urea for Improved Cross-Linking/Mass Spectrometry Studies. Journal of the American Society for Mass Spectrometry 2020, 31 (2) , 183-189. https://doi.org/10.1021/jasms.9b00008
    4. Tara K. Bartolec, Daniela-Lee Smith, Chi Nam Ignatius Pang, You Dan Xu, Joshua J. Hamey, Marc R. Wilkins. Cross-linking Mass Spectrometry Analysis of the Yeast Nucleus Reveals Extensive Protein–Protein Interactions Not Detected by Systematic Two-Hybrid or Affinity Purification-Mass Spectrometry. Analytical Chemistry 2020, 92 (2) , 1874-1882. https://doi.org/10.1021/acs.analchem.9b03975
    5. Michael Götze, Claudio Iacobucci, Christian H. Ihling, Andrea Sinz. A Simple Cross-Linking/Mass Spectrometry Workflow for Studying System-wide Protein Interactions. Analytical Chemistry 2019, 91 (15) , 10236-10244. https://doi.org/10.1021/acs.analchem.9b02372
    6. Dana Felker, Kanghyun Lee, Thomas H. Pospiech, Yoshihiro Morishima, Haoming Zhang, Miranda Lau, Daniel Southworth, Yoichi Osawa. Mapping interactions of calmodulin and neuronal NO synthase by crosslinking and mass spectrometry. Journal of Biological Chemistry 2023, 268 , 105464. https://doi.org/10.1016/j.jbc.2023.105464
    7. Soumitra Polley, Helen Müschenborn, Melina Terbeck, Anna De Antoni, Ingrid R Vetter, Marileen Dogterom, Andrea Musacchio, Vladimir A Volkov, Pim J Huis in 't Veld. Stable kinetochore‐microtubule attachment requires loop‐dependent Ndc80‐Ndc80 binding. The EMBO Journal 2023, 42 (13) https://doi.org/10.15252/embj.2022112504
    8. Jing Chen, Qun Zhao, Hang Gao, Lili Zhao, Huiying Chu, Yichu Shan, Zhen Liang, Yukui Zhang, Lihua Zhang. A Glycosidic‐Bond‐Based Mass‐Spectrometry‐Cleavable Cross‐linker Enables In Vivo Cross‐linking for Protein Complex Analysis. Angewandte Chemie International Edition 2023, 62 (24) https://doi.org/10.1002/anie.202212860
    9. Jing Chen, Qun Zhao, Hang Gao, Lili Zhao, Huiying Chu, Yichu Shan, Zhen Liang, Yukui Zhang, Lihua Zhang. A Glycosidic‐Bond‐Based Mass‐Spectrometry‐Cleavable Cross‐linker Enables In Vivo Cross‐linking for Protein Complex Analysis. Angewandte Chemie 2023, 135 (24) https://doi.org/10.1002/ange.202212860
    10. Veronika Altmannova, Magdalena Firlej, Franziska Müller, Petra Janning, Rahel Rauleder, Dorota Rousova, Andreas Schäffler, Tanja Bange, John R Weir. Biochemical characterisation of Mer3 helicase interactions and the protection of meiotic recombination intermediates. Nucleic Acids Research 2023, 51 (9) , 4363-4384. https://doi.org/10.1093/nar/gkad175
    11. Zeynep Kabakci, Heidi E. Reichle, Bianca Lemke, Dorota Rousova, Samir Gupta, Joe Weber, Alexander Schleiffer, John R. Weir, Christian F. Lehner, . Homologous chromosomes are stably conjoined for Drosophila male meiosis I by SUM, a multimerized protein assembly with modules for DNA-binding and for separase-mediated dissociation co-opted from cohesin. PLOS Genetics 2022, 18 (12) , e1010547. https://doi.org/10.1371/journal.pgen.1010547
    12. Alexander R. van Vliet, George N. Chiduza, Sarah L. Maslen, Valerie E. Pye, Dhira Joshi, Stefano De Tito, Harold B.J. Jefferies, Evangelos Christodoulou, Chloë Roustan, Emma Punch, Javier H. Hervás, Nicola O’Reilly, J. Mark Skehel, Peter Cherepanov, Sharon A. Tooze. ATG9A and ATG2A form a heteromeric complex essential for autophagosome formation. Molecular Cell 2022, 82 (22) , 4324-4339.e8. https://doi.org/10.1016/j.molcel.2022.10.017
    13. Ennio A. d’Amico, Misbha Ud Din Ahmad, Verena Cmentowski, Mathias Girbig, Franziska Müller, Sabine Wohlgemuth, Andreas Brockmeyer, Stefano Maffini, Petra Janning, Ingrid R. Vetter, Andrew P. Carter, Anastassis Perrakis, Andrea Musacchio. . Journal of Cell Biology 2022https://doi.org/10.1083/jcb.202206131
    14. Dorota Rousová, Vaishnavi Nivsarkar, Veronika Altmannova, Vivek B Raina, Saskia K Funk, David Liedtke, Petra Janning, Franziska Müller, Heidi Reichle, Gerben Vader, John R Weir. Novel mechanistic insights into the role of Mer2 as the keystone of meiotic DNA break formation. eLife 2021, 10 https://doi.org/10.7554/eLife.72330
    15. Johannes van den Boom, Anja F. Kueck, Bojana Kravic, Helen Müschenborn, Maike Giesing, Dongqing Pan, Farnusch Kaschani, Markus Kaiser, Andrea Musacchio, Hemmo Meyer. Targeted substrate loop insertion by VCP/p97 during PP1 complex disassembly. Nature Structural & Molecular Biology 2021, 28 (12) , 964-971. https://doi.org/10.1038/s41594-021-00684-5
    16. Jacque L. Faylo, Trevor van Eeuwen, Hee Jong Kim, Jose J. Gorbea Colón, Benjamin A. Garcia, Kenji Murakami, David W. Christianson. Structural insight on assembly-line catalysis in terpene biosynthesis. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23589-9
    17. Kumar Yugandhar, Qiuye Zhao, Shobhita Gupta, Dapeng Xiong, Haiyuan Yu. Progress in methodologies and quality‐control strategies in protein cross‐linking mass spectrometry. PROTEOMICS 2021, 21 (23-24) https://doi.org/10.1002/pmic.202100145
    18. Dieter Waschbüsch, Kerryn Berndsen, Pawel Lis, Axel Knebel, Yuko PY Lam, Dario R Alessi, Amir R Khan. Structural basis for the specificity of PPM1H phosphatase for Rab GTPases. EMBO reports 2021, 22 (11) https://doi.org/10.15252/embr.202152675
    19. Pieter-Jan Vermeire, Giel Stalmans, Anastasia V. Lilina, Jan Fiala, Petr Novak, Harald Herrmann, Sergei V. Strelkov. Molecular Interactions Driving Intermediate Filament Assembly. Cells 2021, 10 (9) , 2457. https://doi.org/10.3390/cells10092457
    20. Kai Walstein, Arsen Petrovic, Dongqing Pan, Birte Hagemeier, Dorothee Vogt, Ingrid R. Vetter, Andrea Musacchio. Assembly principles and stoichiometry of a complete human kinetochore module. Science Advances 2021, 7 (27) https://doi.org/10.1126/sciadv.abg1037
    21. Valentina Piano, Amal Alex, Patricia Stege, Stefano Maffini, Gerardo A. Stoppiello, Pim J. Huis in ’t Veld, Ingrid R. Vetter, Andrea Musacchio. CDC20 assists its catalytic incorporation in the mitotic checkpoint complex. Science 2021, 371 (6524) , 67-71. https://doi.org/10.1126/science.abc1152
    22. Ilaria Iacobucci, Vittoria Monaco, Flora Cozzolino, Maria Monti. From classical to new generation approaches: An excursus of -omics methods for investigation of protein-protein interaction networks. Journal of Proteomics 2021, 230 , 103990. https://doi.org/10.1016/j.jprot.2020.103990
    23. SeHee Park, Erin E. Doherty, Yixuan Xie, Anil K. Padyana, Fang Fang, Yue Zhang, Agya Karki, Carlito B. Lebrilla, Justin B. Siegel, Peter A. Beal. High-throughput mutagenesis reveals unique structural features of human ADAR1. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-18862-2
    24. María Ascensión Villar-Fernández, Richard Cardoso da Silva, Magdalena Firlej, Dongqing Pan, Elisabeth Weir, Annika Sarembe, Vivek B Raina, Tanja Bange, John R Weir, Gerben Vader. Biochemical and functional characterization of a meiosis-specific Pch2/ORC AAA+ assembly. Life Science Alliance 2020, 3 (11) , e201900630. https://doi.org/10.26508/lsa.201900630
    25. Muwen Kong, Erin E. Cutts, Dongqing Pan, Fabienne Beuron, Thangavelu Kaliyappan, Chaoyou Xue, Edward P. Morris, Andrea Musacchio, Alessandro Vannini, Eric C. Greene. Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA. Molecular Cell 2020, 79 (1) , 99-114.e9. https://doi.org/10.1016/j.molcel.2020.04.026
    26. Foteini Tzakoniati, Hui Xu, Tianbo Li, Natalie Garcia, Christine Kugel, Jian Payandeh, Christopher M. Koth, Edward W. Tate. Development of Photocrosslinking Probes Based on Huwentoxin-IV to Map the Site of Interaction on Nav1.7. Cell Chemical Biology 2020, 27 (3) , 306-313.e4. https://doi.org/10.1016/j.chembiol.2019.10.011
    27. Christoph Hage, Claudio Iacobucci, Michael Götze, Andrea Sinz. A biuret‐derived, MS‐cleavable cross‐linking reagent for protein structural analysis: A proof‐of‐principle study. Journal of Mass Spectrometry 2020, 55 (1) https://doi.org/10.1002/jms.4449
    28. Pim J Huis in 't Veld, Vladimir A Volkov, Isabelle D Stender, Andrea Musacchio, Marileen Dogterom. Molecular determinants of the Ska-Ndc80 interaction and their influence on microtubule tracking and force-coupling. eLife 2019, 8 https://doi.org/10.7554/eLife.49539
    29. Dongqing Pan, Kai Walstein, Annika Take, David Bier, Nadine Kaiser, Andrea Musacchio. Mechanism of centromere recruitment of the CENP-A chaperone HJURP and its implications for centromere licensing. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-12019-6
    30. Rong Huang, Wei Zhu, Yue Wu, Jiakang Chen, Jianghui Yu, Biao Jiang, Hongli Chen, Wenzhang Chen. A novel mass spectrometry-cleavable, phosphate-based enrichable and multi-targeting protein cross-linker. Chemical Science 2019, 10 (26) , 6443-6447. https://doi.org/10.1039/C9SC00893D

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect