LipidMS: An R Package for Lipid Annotation in Untargeted Liquid Chromatography-Data Independent Acquisition-Mass Spectrometry Lipidomics
- María Isabel Alcoriza-BalaguerMaría Isabel Alcoriza-BalaguerBiomarkers and Precision Medicine Unit and Analytical Unit, Instituto de Investigación Sanitaria Fundación Hospital La Fe, Valencia 46026, SpainMore by María Isabel Alcoriza-Balaguer,
- Juan Carlos García-CañaverasJuan Carlos García-CañaverasBiomarkers and Precision Medicine Unit and Analytical Unit, Instituto de Investigación Sanitaria Fundación Hospital La Fe, Valencia 46026, SpainMore by Juan Carlos García-Cañaveras,
- Adrián LópezAdrián LópezBiomarkers and Precision Medicine Unit and Analytical Unit, Instituto de Investigación Sanitaria Fundación Hospital La Fe, Valencia 46026, SpainMore by Adrián López,
- Isabel CondeIsabel CondeHepatology Unit, Department of Digestive Medicine, Hospital Universitari i Politècnic La Fe, Valencia 46026, SpainMore by Isabel Conde,
- Oscar JuanOscar JuanDepartment of Medical Oncology, Hospital Universitari i Politècnic La Fe, Valencia 46026, SpainBiomarkers and Precision Medicine Unit and Analytical Unit, Instituto de Investigación Sanitaria Fundación Hospital La Fe, Valencia 46026, SpainMore by Oscar Juan,
- Julián CarreteroJulián CarreteroDepartment of Physiology, University of Valencia, Burjassot 4100, SpainMore by Julián Carretero, and
- Agustín Lahoz*Agustín Lahoz*Mailing Address: Agustín Lahoz, Biomarkers and Precision Medicine Unit and Analytical Unit, Instituto de Investigación Sanitaria Fundación Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia 46026, Spain; E-mail: [email protected]; Tel: 961246652; Fax: 961246620.Biomarkers and Precision Medicine Unit and Analytical Unit, Instituto de Investigación Sanitaria Fundación Hospital La Fe, Valencia 46026, SpainMore by Agustín Lahoz
Abstract

High resolution LC-MS untargeted lipidomics using data independent acquisition (DIA) has the potential to increase lipidome coverage, as it enables the continuous and unbiased acquisition of all eluting ions. However, the loss of the link between the precursor and the product ions combined with the high dimensionality of DIA data sets hinder accurate feature annotation. Here, we present LipidMS, an R package aimed to confidently identify lipid species in untargeted LC-DIA-MS. To this end, LipidMS combines a coelution score, which links precursor and fragment ions with fragmentation and intensity rules. Depending on the MS evidence reached by the identification function survey, LipidMS provides three levels of structural annotations: (i) “subclass level”, e.g., PG(34:1); (ii) “fatty acyl level”, e.g., PG(16:0_18:1); and (iii) “fatty acyl position level”, e.g., PG(16:0/18:1). The comparison of LipidMS with freely available data dependent acquisition (DDA) and DIA identification tools showed that LipidMS provides significantly more accurate and structural informative lipid identifications. Finally, to exemplify the utility of LipidMS, we investigated the lipidomic serum profile of patients diagnosed with nonalcoholic steatohepatitis (NASH), which is the progressive form of nonalcoholic fatty liver disease, a disorder underlying a strong lipid dysregulation. As previously published, a significant decrease in lysophosphatidylcholines, phosphatidylcholines and cholesterol esters and an increase in phosphatidylethanolamines were observed in NASH patients. Remarkably, LipidMS allowed the identification of a new set of lipids that may be used for NASH diagnosis. Altogether, LipidMS has been validated as a tool to assist lipid identification in the LC-DIA-MS untargeted analysis of complex biological samples.
Cited By
This article is cited by 9 publications.
- Hiroshi Tsugawa, Kazutaka Ikeda, Mikiko Takahashi, Aya Satoh, Yoshifumi Mori, Haruki Uchino, Nobuyuki Okahashi, Yutaka Yamada, Ipputa Tada, Paolo Bonini, Yasuhiro Higashi, Yozo Okazaki, Zhiwei Zhou, Zheng-Jiang Zhu, Jeremy Koelmel, Tomas Cajka, Oliver Fiehn, Kazuki Saito, Masanori Arita, Makoto Arita. A lipidome atlas in MS-DIAL 4. Nature Biotechnology 2020, 38 (10) , 1159-1163. https://doi.org/10.1038/s41587-020-0531-2
- Tong Sun, Xincen Wang, Peixu Cong, Jie Xu, Changhu Xue. Mass spectrometry‐based lipidomics in food science and nutritional health: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 2020, 19 (5) , 2530-2558. https://doi.org/10.1111/1541-4337.12603
- Natália Carolina Vieira, Patrícia Cardoso Cortelo, Ian Castro-Gamboa. Rapid qualitative profiling of metabolites present in Fusarium solani , a rhizospheric fungus derived from Senna spectabilis, using GC/MS and UPLC-QTOF/MS E techniques assisted by UNIFI information system. European Journal of Mass Spectrometry 2020, 26 (4) , 281-291. https://doi.org/10.1177/1469066720922424
- Nguyen Phuoc Long, Seongoh Park, Nguyen Hoang Anh, Sun Jo Kim, Hyung Min Kim, Sang Jun Yoon, Johan Lim, Sung Won Kwon. Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead. Journal of Analysis and Testing 2020, 4 (3) , 183-197. https://doi.org/10.1007/s41664-020-00135-y
- Thomas Züllig, Martin Trötzmüller, Harald C. Köfeler. Lipidomics from sample preparation to data analysis: a primer. Analytical and Bioanalytical Chemistry 2020, 412 (10) , 2191-2209. https://doi.org/10.1007/s00216-019-02241-y
- He Tian, Zhiyang Zhou, Guanghou Shui, Sin Man Lam. Extensive Profiling of Polyphenols from two Trollius Species Using a Combination of Untargeted and Targeted Approaches. Metabolites 2020, 10 (3) , 119. https://doi.org/10.3390/metabo10030119
- Alaa Khedr, Maan T Khayat, Ahdab N Khayyat. A new approach for characterization of phosphatidylcholines and lyso phosphatidylcholine in human plasma. Bioanalysis 2020, 12 (3) , 191-204. https://doi.org/10.4155/bio-2019-0280
- Jan Stanstrup, Corey Broeckling, Rick Helmus, Nils Hoffmann, Ewy Mathé, Thomas Naake, Luca Nicolotti, Kristian Peters, Johannes Rainer, Reza Salek, Tobias Schulze, Emma Schymanski, Michael Stravs, Etienne Thévenot, Hendrik Treutler, Ralf Weber, Egon Willighagen, Michael Witting, Steffen Neumann. The metaRbolomics Toolbox in Bioconductor and beyond. Metabolites 2019, 9 (10) , 200. https://doi.org/10.3390/metabo9100200
- Yunyun Yang, Jiewei Deng, Yaohui Liu, Kaili He, Zhangmin Xiang, Tiangang Luan. A microscale solid-phase microextraction probe for the in situ analysis of perfluoroalkyl substances and lipids in biological tissues using mass spectrometry. The Analyst 2019, 144 (18) , 5637-5645. https://doi.org/10.1039/C9AN01195A




