Structure Annotation of All Mass Spectra in Untargeted Metabolomics
- Ivana BlaženovićIvana BlaženovićWest Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United StatesMore by Ivana Blaženović
- ,
- Tobias KindTobias KindWest Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United StatesMore by Tobias Kind
- ,
- Michael R. SaMichael R. SaWest Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United StatesMore by Michael R. Sa
- ,
- Jian JiJian JiSchool of Food Science, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 330047, ChinaMore by Jian Ji
- ,
- Arpana VaniyaArpana VaniyaWest Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United StatesMore by Arpana Vaniya
- ,
- Benjamin WancewiczBenjamin WancewiczWest Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United StatesMore by Benjamin Wancewicz
- ,
- Bryan S. RobertsBryan S. RobertsWest Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United StatesMore by Bryan S. Roberts
- ,
- Hrvoje Torbašinović
- ,
- Tack LeeTack LeeDepartment of Urology, Inha University College of Medicine, Incheon 22212, South KoreaMore by Tack Lee
- ,
- Sajjan S. MehtaSajjan S. MehtaWest Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United StatesMore by Sajjan S. Mehta
- ,
- Megan R. ShowalterMegan R. ShowalterWest Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United StatesMore by Megan R. Showalter
- ,
- Hosook SongHosook SongDepartment of Urology, Inha University College of Medicine, Incheon 22212, South KoreaMore by Hosook Song
- ,
- Jessica KwokJessica KwokWest Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United StatesMore by Jessica Kwok
- ,
- Dieter JahnDieter JahnInstitute of Microbiology, Technische Universität Braunschweig, Braunschweig 38106, GermanyBraunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig 38106, GermanyMore by Dieter Jahn
- ,
- Jayoung KimJayoung KimDepartments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United StatesDepartment of Medicine, University of California Los Angeles, Los Angeles, California 90095, United StatesSamuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United StatesDepartment of Urology, Ga Cheon University College of Medicine, Incheon 22212, South KoreaMore by Jayoung Kim
- , and
- Oliver Fiehn*Oliver Fiehn*Phone +1-530-754-8258 (office), +1-530-752-9922 (lab), +1-530-723-4450 (cell). Corresponding author address: NIH West Coast Metabolomics Center, UC Davis Genome Center, Room 1313, 451 Health Sci Drive, Davis, CA 95616.West Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United StatesMore by Oliver Fiehn
Abstract

Urine metabolites are used in many clinical and biomedical studies but usually only for a few classic compounds. Metabolomics detects vastly more metabolic signals that may be used to precisely define the health status of individuals. However, many compounds remain unidentified, hampering biochemical conclusions. Here, we annotate all metabolites detected by two untargeted metabolomic assays, hydrophilic interaction chromatography (HILIC)-Q Exactive HF mass spectrometry and charged surface hybrid (CSH)-Q Exactive HF mass spectrometry. Over 9,000 unique metabolite signals were detected, of which 42% triggered MS/MS fragmentations in data-dependent mode. On the highest Metabolomics Standards Initiative (MSI) confidence level 1, we identified 175 compounds using authentic standards with precursor mass, retention time, and MS/MS matching. An additional 578 compounds were annotated by precursor accurate mass and MS/MS matching alone, MSI level 2, including a novel library specifically geared at acylcarnitines (CarniBlast). The rest of the metabolome is usually left unannotated. To fill this gap, we used the in silico fragmentation tool CSI:FingerID and the new NIST hybrid search to annotate all further compounds (MSI level 3). Testing the top-ranked metabolites in CSI:Finger ID annotations yielded 40% accuracy when applied to the MSI level 1 identified compounds. We classified all MSI level 3 annotations by the NIST hybrid search using the ClassyFire ontology into 21 superclasses that were further distinguished into 184 chemical classes. ClassyFire annotations showed that the previously unannotated urine metabolome consists of 28% derivatives of organic acids, 16% heterocyclics, and 16% lipids as major classes.
Cited By
This article is cited by 105 publications.
- Lichuang Huang, Qiyuan Shan, Qiang Lyu, Shuosheng Zhang, Lu Wang, Gang Cao. MCnebula: Critical Chemical Classes for the Classification and Boost Identification by Visualization for Untargeted LC–MS/MS Data Analysis. Analytical Chemistry 2023, 95 (26) , 9940-9948. https://doi.org/10.1021/acs.analchem.3c01072
- Shuzhao Li, Shujian Zheng. Generalized Tree Structure to Annotate Untargeted Metabolomics and Stable Isotope Tracing Data. Analytical Chemistry 2023, 95 (15) , 6212-6217. https://doi.org/10.1021/acs.analchem.2c05810
- Chih-Wei Chang, Jen-Yi Hsu, Ping-Zu Hsiao, Yuan-Chih Chen, Pao-Chi Liao. Identifying Hair Biomarker Candidates for Alzheimer’s Disease Using Three High Resolution Mass Spectrometry-Based Untargeted Metabolomics Strategies. Journal of the American Society for Mass Spectrometry 2023, 34 (4) , 550-561. https://doi.org/10.1021/jasms.2c00294
- Depanjan Sarkar, Eleanor Sinclair, Sze Hway Lim, Caitlin Walton-Doyle, Kaneez Jafri, Joy Milne, Johannes P.C. Vissers, Keith Richardson, Drupad K. Trivedi, Monty Silverdale, Perdita Barran. Paper Spray Ionization Ion Mobility Mass Spectrometry of Sebum Classifies Biomarker Classes for the Diagnosis of Parkinson’s Disease. JACS Au 2022, 2 (9) , 2013-2022. https://doi.org/10.1021/jacsau.2c00300
- Ryan A. Groves, Maryam Mapar, Raied Aburashed, Luis F. Ponce, Stephanie L. Bishop, Thomas Rydzak, Marija Drikic, Dominique G. Bihan, Hallgrimur Benediktsson, Fiona Clement, Daniel B. Gregson, Ian A. Lewis. Methods for Quantifying the Metabolic Boundary Fluxes of Cell Cultures in Large Cohorts by High-Resolution Hydrophilic Liquid Chromatography Mass Spectrometry. Analytical Chemistry 2022, 94 (25) , 8874-8882. https://doi.org/10.1021/acs.analchem.2c00078
- Uri Keshet, Tobias Kind, Xinchen Lu, Sarita Devi, Oliver Fiehn. Acyl-CoA Identification in Mouse Liver Samples Using the In Silico CoA-Blast Tandem Mass Spectral Library. Analytical Chemistry 2022, 94 (6) , 2732-2739. https://doi.org/10.1021/acs.analchem.1c03272
- Yuan-Chih Chen, Hsin-Yi Wu, Chih-Wei Chang, Pao-Chi Liao. Post-Deconvolution MS/MS Spectra Extraction with Data-Independent Acquisition for Comprehensive Profiling of Urinary Glucuronide-Conjugated Metabolome. Analytical Chemistry 2022, 94 (6) , 2740-2748. https://doi.org/10.1021/acs.analchem.1c03557
- Xue-Chao Song, Nicola Dreolin, Tito Damiani, Elena Canellas, Cristina Nerin. Prediction of Collision Cross Section Values: Application to Non-Intentionally Added Substance Identification in Food Contact Materials. Journal of Agricultural and Food Chemistry 2022, 70 (4) , 1272-1281. https://doi.org/10.1021/acs.jafc.1c06989
- Brady G. Anderson, Alexander Raskind, Hani Habra, Robert T. Kennedy, Charles R. Evans. Modifying Chromatography Conditions for Improved Unknown Feature Identification in Untargeted Metabolomics. Analytical Chemistry 2021, 93 (48) , 15840-15849. https://doi.org/10.1021/acs.analchem.1c02149
- Alexander Kensert, Robbin Bouwmeester, Kyriakos Efthymiadis, Peter Van Broeck, Gert Desmet, Deirdre Cabooter. Graph Convolutional Networks for Improved Prediction and Interpretability of Chromatographic Retention Data. Analytical Chemistry 2021, 93 (47) , 15633-15641. https://doi.org/10.1021/acs.analchem.1c02988
- Evan L. Pannkuk, Evagelia C. Laiakis, Michael Girgis, Guy Y. Garty, Shad R. Morton, Monica Pujol-Canadell, Shanaz A. Ghandhi, Sally A. Amundson, David J. Brenner, Albert J. Fornace, Jr.. Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator. Journal of Proteome Research 2021, 20 (11) , 5145-5155. https://doi.org/10.1021/acs.jproteome.1c00638
- Fausto Carnevale Neto, Daniel Raftery. Expanding Urinary Metabolite Annotation through Integrated Mass Spectral Similarity Networking. Analytical Chemistry 2021, 93 (35) , 12001-12010. https://doi.org/10.1021/acs.analchem.1c02041
- Michaela Schwaiger-Haber, Ethan Stancliffe, Valerie Arends, Bharat Thyagarajan, Miriam Sindelar, Gary J. Patti. A Workflow to Perform Targeted Metabolomics at the Untargeted Scale on a Triple Quadrupole Mass Spectrometer. ACS Measurement Science Au 2021, 1 (1) , 35-45. https://doi.org/10.1021/acsmeasuresciau.1c00007
- William Chih-Wei Chang, Hsin-Yi Wu, Hung-Lin Kan, Ying-Chi Lin, Pei-Jane Tsai, Yun-Chieh Chen, Yu-Yi Pan, Pao-Chi Liao. Discovery of Spoilage Markers for Chicken Eggs Using Liquid Chromatography-High Resolution Mass Spectrometry-Based Untargeted and Targeted Foodomics. Journal of Agricultural and Food Chemistry 2021, 69 (14) , 4331-4341. https://doi.org/10.1021/acs.jafc.1c01009
- Shipei Xing, Yibo Jiao, Melody Salehzadeh, Kiran K. Soma, Tao Huan. SteroidXtract: Deep Learning-Based Pattern Recognition Enables Comprehensive and Rapid Extraction of Steroid-Like Metabolic Features for Automated Biology-Driven Metabolomics. Analytical Chemistry 2021, 93 (14) , 5735-5743. https://doi.org/10.1021/acs.analchem.0c04834
- Hani Habra, Maureen Kachman, Kevin Bullock, Clary Clish, Charles R. Evans, Alla Karnovsky. metabCombiner: Paired Untargeted LC-HRMS Metabolomics Feature Matching and Concatenation of Disparately Acquired Data Sets. Analytical Chemistry 2021, 93 (12) , 5028-5036. https://doi.org/10.1021/acs.analchem.0c03693
- Corey D. Broeckling, Linxing Yao, Giorgis Isaac, Marisa Gioioso, Valentin Ianchis, Johannes P.C. Vissers. Application of Predicted Collisional Cross Section to Metabolome Databases to Probabilistically Describe the Current and Future Ion Mobility Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2021, 32 (3) , 661-669. https://doi.org/10.1021/jasms.0c00375
- Shipei Xing, Yan Hu, Zixuan Yin, Min Liu, Xiaoyu Tang, Mingliang Fang, Tao Huan. Retrieving and Utilizing Hypothetical Neutral Losses from Tandem Mass Spectra for Spectral Similarity Analysis and Unknown Metabolite Annotation. Analytical Chemistry 2020, 92 (21) , 14476-14483. https://doi.org/10.1021/acs.analchem.0c02521
- Romel Dator, Peter W. Villalta, Nicole Thomson, Joni Jensen, Dorothy K. Hatsukami, Irina Stepanov, Benedikt Warth, Silvia Balbo. Metabolomics Profiles of Smokers from Two Ethnic Groups with Differing Lung Cancer Risk. Chemical Research in Toxicology 2020, 33 (8) , 2087-2098. https://doi.org/10.1021/acs.chemrestox.0c00064
- Biswapriya B. Misra, Michael Olivier. High Resolution GC-Orbitrap-MS Metabolomics Using Both Electron Ionization and Chemical Ionization for Analysis of Human Plasma. Journal of Proteome Research 2020, 19 (7) , 2717-2731. https://doi.org/10.1021/acs.jproteome.9b00774
- Paolo Bonini, Tobias Kind, Hiroshi Tsugawa, Dinesh Kumar Barupal, Oliver Fiehn. Retip: Retention Time Prediction for Compound Annotation in Untargeted Metabolomics. Analytical Chemistry 2020, 92 (11) , 7515-7522. https://doi.org/10.1021/acs.analchem.9b05765
- Dehua Li, Binghang Liu, Hancheng Zheng, Xu Xiao, Zhenyu Li, Enhui Luan, Wei Li, Yaling Yang, Yalan Wang, Qiaoyun Long, Jiaping Song, Gong Zhang. XY-Meta: A High-Efficiency Search Engine for Large-Scale Metabolome Annotation with Accurate FDR Estimation. Analytical Chemistry 2020, 92 (8) , 5701-5707. https://doi.org/10.1021/acs.analchem.9b03355
- Brian T. Cooper, Xinjian Yan, Yamil Simón-Manso, Dmitrii V. Tchekhovskoi, Yuri A. Mirokhin, Stephen E. Stein. Hybrid Search: A Method for Identifying Metabolites Absent from Tandem Mass Spectrometry Libraries. Analytical Chemistry 2019, 91 (21) , 13924-13932. https://doi.org/10.1021/acs.analchem.9b03415
- Paul D. Hutchins, Jason D. Russell, Joshua J. Coon. Accelerating Lipidomic Method Development through in Silico Simulation. Analytical Chemistry 2019, 91 (15) , 9698-9706. https://doi.org/10.1021/acs.analchem.9b01234
- Inae Jang, Jae-ung Lee, Jung-min Lee, Beom Hee Kim, Bongjin Moon, Jongki Hong, Han Bin Oh. LC–MS/MS Software for Screening Unknown Erectile Dysfunction Drugs and Analogues: Artificial Neural Network Classification, Peak-Count Scoring, Simple Similarity Search, and Hybrid Similarity Search Algorithms. Analytical Chemistry 2019, 91 (14) , 9119-9128. https://doi.org/10.1021/acs.analchem.9b01643
- Ronald A. Hites, , Karl J. Jobst. Response to “Letter to the Editor: Optimism for Nontarget Analysis in Environmental Chemistry”. Environmental Science & Technology 2019, 53 (10) , 5531-5533. https://doi.org/10.1021/acs.est.9b02473
- Hyo Sub Choi, Ajay Bhat, Marshall B. Howington, Megan L. Schaller, Rebecca L. Cox, Shijiao Huang, Safa Beydoun, Hillary A. Miller, Angela M. Tuckowski, Joy Mecano, Elizabeth S. Dean, Lindy Jensen, Daniel A. Beard, Charles R. Evans, Scott F. Leiser. FMO rewires metabolism to promote longevity through tryptophan and one carbon metabolism in C. elegans. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36181-0
- Aivett Bilbao, Nathalie Munoz, Joonhoon Kim, Daniel J. Orton, Yuqian Gao, Kunal Poorey, Kyle R. Pomraning, Karl Weitz, Meagan Burnet, Carrie D. Nicora, Rosemarie Wilton, Shuang Deng, Ziyu Dai, Ethan Oksen, Aaron Gee, Rick A. Fasani, Anya Tsalenko, Deepti Tanjore, James Gardner, Richard D. Smith, Joshua K. Michener, John M. Gladden, Erin S. Baker, Christopher J. Petzold, Young-Mo Kim, Alex Apffel, Jon K. Magnuson, Kristin E. Burnum-Johnson. PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-37031-9
- Melanie Nguyen, Maxime Le Mignon, Alisa Schnellbächer, Maria Wehsling, Julian Braun, Jens Baumgaertner, Martina Grabner, Aline Zimmer. Mechanistic insights into the biological activity of S-Sulfocysteine in CHO cells using a multi-omics approach. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1230422
- Nguyen Thi Hai Yen, Nguyen Ky Anh, Rannissa Puspita Jayanti, Nguyen Ky Phat, Dinh Hoa Vu, Jong-Lyul Ghim, Sangzin Ahn, Jae-Gook Shin, Jee Youn Oh, Nguyen Phuoc Long, Dong Hyun Kim. Multimodal plasma metabolomics and lipidomics in elucidating metabolic perturbations in tuberculosis patients with concurrent type 2 diabetes. Biochimie 2023, 211 , 153-163. https://doi.org/10.1016/j.biochi.2023.04.009
- Raquel Cumeras, Tong Shen, Luis Valdiviez, Zakery Tippins, Bennett D. Haffner, Oliver Fiehn. Differences in the Stool Metabolome between Vegans and Omnivores: Analyzing the NIST Stool Reference Material. Metabolites 2023, 13 (8) , 921. https://doi.org/10.3390/metabo13080921
- Eunwoo Choi, Won Jun Yoo, Hwa-Yong Jang, Tae-Young Kim, Sung Ki Lee, Han Bin Oh. Machine learning liquid chromatography retention time prediction model augments the dansylation strategy for metabolite analysis of urine samples. Journal of Chromatography A 2023, 1705 , 464167. https://doi.org/10.1016/j.chroma.2023.464167
- Lorenzo Favilli, Corey M. Griffith, Emma L. Schymanski, Carole L. Linster. High-throughput Saccharomyces cerevisiae cultivation method for credentialing-based untargeted metabolomics. Analytical and Bioanalytical Chemistry 2023, 415 (17) , 3415-3434. https://doi.org/10.1007/s00216-023-04724-5
- Shipei Xing, Sam Shen, Banghua Xu, Xiaoxiao Li, Tao Huan. BUDDY: molecular formula discovery via bottom-up MS/MS interrogation. Nature Methods 2023, 20 (6) , 881-890. https://doi.org/10.1038/s41592-023-01850-x
- Hen Tian, Jiao Zhang, Tao Lin, Qiwan Li, Xiangzhong Huang, Hongcheng Liu. Metabolite of chiral cycloxaprid in solvent and in the raw of Puer tea. Food Chemistry: X 2023, 18 , 100654. https://doi.org/10.1016/j.fochx.2023.100654
- Sergey Girel, Davy Guillarme, Szabolcs Fekete, Serge Rudaz, Víctor González-Ruiz. Investigation of several chromatographic approaches for untargeted profiling of central carbon metabolism. Journal of Chromatography A 2023, 1697 , 463994. https://doi.org/10.1016/j.chroma.2023.463994
- Chenling Qu, Yunze Xia, Qiankui Yang, Wenhao Li, Mei Hu, Peng Lu. Novel insights into rice deterioration for nitrogen controlled atmosphere and re-aeration storage based on no-targeted metabolomics. LWT 2023, 178 , 114631. https://doi.org/10.1016/j.lwt.2023.114631
- Amelia Palermo. Metabolomics- and systems-biology-guided discovery of metabolite lead compounds and druggable targets. Drug Discovery Today 2023, 28 (2) , 103460. https://doi.org/10.1016/j.drudis.2022.103460
- Gerardo Alvarez-Rivera, Alberto Valdés, Alejandro Cifuentes. Metabolomic Characterization of the Antiproliferative Activity of Bioactive Compounds from Fruit By-Products Against Colon Cancer Cells. 2023, 45-55. https://doi.org/10.1007/978-1-0716-2699-3_5
- Alisa Schnellbächer, Aline Zimmer. Stability and Requirement for Thiamin in a Cell Culture Feed Used to Produce New Biological Entities. Cells 2023, 12 (2) , 334. https://doi.org/10.3390/cells12020334
- Yuping Cai, Zhiwei Zhou, Zheng-Jiang Zhu. Advanced analytical and informatic strategies for metabolite annotation in untargeted metabolomics. TrAC Trends in Analytical Chemistry 2023, 158 , 116903. https://doi.org/10.1016/j.trac.2022.116903
- Michael L. Granda, David K. Prince, Oliver Fiehn, Yan Chen, Tanya Rajabi, Catherine K. Yeung, Andrew N. Hoofnagle, Bryan Kestenbaum. Metabolomic Profiling Identifies New Endogenous Markers of Tubular Secretory Clearance. Kidney360 2023, 4 (1) , 23-31. https://doi.org/10.34067/KID.0004172022
- Chen Zhou, Gengyuan Cai, Fanming Meng, Qun Hu, Guohao Liang, Ting Gu, Enqin Zheng, Zicong Li, Zhenfang Wu, Linjun Hong. Urinary metabolomics reveals the biological characteristics of early pregnancy in pigs. Porcine Health Management 2022, 8 (1) https://doi.org/10.1186/s40813-022-00256-z
- Yoon Keun Cho, Young Cheol Yoon, Hyeonyeong Im, Yeonho Son, Minsu Kim, Abhirup Saha, Cheoljun Choi, Jaewon Lee, Sumin Lee, Jae Hyun Kim, Yun Pyo Kang, Young-Suk Jung, Hong Koo Ha, Je Kyung Seong, James G. Granneman, Sung Won Kwon, Yun-Hee Lee. Adipocyte lysoplasmalogenase TMEM86A regulates plasmalogen homeostasis and protein kinase A-dependent energy metabolism. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31805-3
- Alberto Valdés, Lorena Ortega Moreno, Silvia Rojo Rello, Antonio Orduña, David Bernardo, Alejandro Cifuentes. Metabolomics study of COVID-19 patients in four different clinical stages. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-05667-0
- Kévin Contrepois, Songjie Chen, Mohammad S. Ghaemi, Ronald J. Wong, Fyezah Jehan, Sunil Sazawal, Abdullah H. Baqui, Jeffrey S. A. Stringer, Anisur Rahman, Muhammad I. Nisar, Usha Dhingra, Rasheda Khanam, Muhammad Ilyas, Arup Dutta, Usma Mehmood, Saikat Deb, Aneeta Hotwani, Said M. Ali, Sayedur Rahman, Ambreen Nizar, Shaali M. Ame, Sajid Muhammad, Aishwarya Chauhan, Waqasuddin Khan, Rubhana Raqib, Sayan Das, Salahuddin Ahmed, Tarik Hasan, Javairia Khalid, Mohammed H. Juma, Nabidul H. Chowdhury, Furqan Kabir, Fahad Aftab, Abdul Quaiyum, Alexander Manu, Sachiyo Yoshida, Rajiv Bahl, Jesmin Pervin, Joan T. Price, Monjur Rahman, Margaret P. Kasaro, James A. Litch, Patrick Musonda, Bellington Vwalika, , Fyezah Jehan, Sunil Sazawal, Abdullah H. Baqui, Muhammad I. Nisar, Usha Dhingra, Rasheda Khanam, Muhammad Ilyas, Arup Dutta, Usma Mehmood, Saikat Deb, Aneeta Hotwani, Said M. Ali, Sayedur Rahman, Ambreen Nizar, Shaali M. Ame, Sajid Muhammad, Aishwarya Chauhan, Waqasuddin Khan, Rubhana Raqib, Sayan Das, Salahuddin Ahmed, Tarik Hasan, Javairia Khalid, Mohammed H. Juma, Nabidul H. Chowdhury, Furqan Kabir, Fahad Aftab, Abdul Quaiyum, Alexander Manu, Sachiyo Yoshida, Rajiv Bahl, , Anisur Rahman, Jesmin Pervin, Joan T. Price, Monjur Rahman, Margaret P. Kasaro, James A. Litch, Patrick Musonda, Bellington Vwalika, Jeffrey S. A. Stringer, Gary Shaw, David K. Stevenson, Nima Aghaeepour, Michael P. Snyder. Prediction of gestational age using urinary metabolites in term and preterm pregnancies. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-11866-6
- Maria Isabel Landim Neves, Bárbara Socas-Rodríguez, Alberto Valdés, Eric Keven Silva, Alejandro Cifuentes, Maria Angela A. Meireles, Elena Ibáñez. Synergic effect of natural deep eutectic solvent and high-intensity ultrasound on obtaining a ready-to-use genipin extract: Crosslinking and anti-neurodegenerative properties. Food Chemistry: X 2022, 16 , 100489. https://doi.org/10.1016/j.fochx.2022.100489
- Eric Bach, Emma L. Schymanski, Juho Rousu. Joint structural annotation of small molecules using liquid chromatography retention order and tandem mass spectrometry data. Nature Machine Intelligence 2022, 4 (12) , 1224-1237. https://doi.org/10.1038/s42256-022-00577-2
- Jieying Lai, Lichuang Huang, Yini Bao, Lu Wang, Qiang Lyu, Haodan Kuang, Kuilong Wang, Xianan Sang, Qiao Yang, Qiyuan Shan, Gang Cao. A deep clustering-based mass spectral data visualization strategy for anti-renal fibrotic lead compound identification from natural products. The Analyst 2022, 147 (21) , 4739-4751. https://doi.org/10.1039/D2AN01185A
- Nguyen Hoang Anh, Young Cheol Yoon, Young Jin Min, Nguyen Phuoc Long, Cheol Woon Jung, Sun Jo Kim, Suk Won Kim, Eun Goo Lee, Daijie Wang, Xiao Wang, Sung Won Kwon. Caenorhabditis elegans deep lipidome profiling by using integrative mass spectrometry acquisitions reveals significantly altered lipid networks. Journal of Pharmaceutical Analysis 2022, 12 (5) , 743-754. https://doi.org/10.1016/j.jpha.2022.06.006
- Choon-myung Lee, Ken H. Liu, Grant Singer, Gary W. Miller, Shuzhao Li, Dean P. Jones, Edward T. Morgan. High-Throughput Production of Diverse Xenobiotic Metabolites with Cytochrome P450–Transduced Huh7 Hepatoma Cell Lines. Drug Metabolism and Disposition 2022, 50 (9) , 1182-1189. https://doi.org/10.1124/dmd.122.000900
- Shuai Fu, Ziheng An, Liangliang Wu, Zilei Xiang, Zixin Deng, Ran Liu, Tiangang Liu. Evaluation and optimization of analytical procedure and sample preparation for polar Streptomyces albus J1074 metabolome profiling. Synthetic and Systems Biotechnology 2022, 7 (3) , 949-957. https://doi.org/10.1016/j.synbio.2022.05.004
- Maija Dambrova, Marina Makrecka-Kuka, Janis Kuka, Reinis Vilskersts, Didi Nordberg, Misty M. Attwood, Stefan Smesny, Zumrut Duygu Sen, An Chi Guo, Eponine Oler, Siyang Tian, Jiamin Zheng, David S. Wishart, Edgars Liepinsh, Helgi B. Schiöth, . Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacological Reviews 2022, 74 (3) , 506-551. https://doi.org/10.1124/pharmrev.121.000408
- Alisa B. Nelson, Lisa S. Chow, Curtis C. Hughey, Peter A. Crawford, Patrycja Puchalska. Artifactual FA dimers mimic FAHFA signals in untargeted metabolomics pipelines. Journal of Lipid Research 2022, 63 (5) , 100201. https://doi.org/10.1016/j.jlr.2022.100201
- Peng Zhong, Xiaoqun Wei, Xiangmei Li, Xiaoyi Wei, Shaozong Wu, Weijuan Huang, Anastasios Koidis, Zhenlin Xu, Hongtao Lei. Untargeted metabolomics by liquid chromatography‐mass spectrometry for food authentication: A review. Comprehensive Reviews in Food Science and Food Safety 2022, 21 (3) , 2455-2488. https://doi.org/10.1111/1541-4337.12938
- Giovanni Berardi, Laura Frey-Law, Kathleen A. Sluka, Emine O. Bayman, Christopher S. Coffey, Dixie Ecklund, Carol G. T. Vance, Dana L. Dailey, John Burns, Asokumar Buvanendran, Robert J. McCarthy, Joshua Jacobs, Xiaohong Joe Zhou, Richard Wixson, Tessa Balach, Chad M. Brummett, Daniel Clauw, Douglas Colquhoun, Steven E. Harte, Richard E. Harris, David A. Williams, Andrew C. Chang, Jennifer Waljee, Kathleen M. Fisch, Kristen Jepsen, Louise C. Laurent, Michael Olivier, Carl D. Langefeld, Timothy D. Howard, Oliver Fiehn, Jon M. Jacobs, Panshak Dakup, Wei-Jun Qian, Adam C. Swensen, Anna Lokshin, Martin Lindquist, Brian S. Caffo, Ciprian Crainiceanu, Scott Zeger, Ari Kahn, Tor Wager, Margaret Taub, James Ford, Stephani P. Sutherland, Laura D. Wandner. Multi-Site Observational Study to Assess Biomarkers for Susceptibility or Resilience to Chronic Pain: The Acute to Chronic Pain Signatures (A2CPS) Study Protocol. Frontiers in Medicine 2022, 9 https://doi.org/10.3389/fmed.2022.849214
- Cecilia Dauber, Tatiana Carreras, Laura González, Adriana Gámbaro, Alberto Valdés, Elena Ibañez, Ignacio Vieitez. Characterization and incorporation of extracts from olive leaves obtained through maceration and supercritical extraction in Canola oil: Oxidative stability evaluation. LWT 2022, 160 , 113274. https://doi.org/10.1016/j.lwt.2022.113274
- Florence Anne Castelli, Giulio Rosati, Christian Moguet, Celia Fuentes, Jose Marrugo-Ramírez, Thibaud Lefebvre, Hervé Volland, Arben Merkoçi, Stéphanie Simon, François Fenaille, Christophe Junot. Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests. Analytical and Bioanalytical Chemistry 2022, 414 (2) , 759-789. https://doi.org/10.1007/s00216-021-03586-z
- Xingli Zhang, Mengli Xia, Jingyi Zhao, Zhiguo Cao, Wei Zou, Qixing Zhou. Photoaging enhanced the adverse effects of polyamide microplastics on the growth, intestinal health, and lipid absorption in developing zebrafish. Environment International 2022, 158 , 106922. https://doi.org/10.1016/j.envint.2021.106922
- Frank Kiyimba, Surendranath P. Suman, Morgan Pfeiffer, Gretchen Mafi, Ranjith Ramanathan. Applications of metabolomics in meat research. 2022https://doi.org/10.1016/B978-0-323-85125-1.00057-0
- Zhitao Tian, Fangzhou Liu, Dongqin Li, Alisdair R. Fernie, Wei Chen. Strategies for structure elucidation of small molecules based on LC–MS/MS data from complex biological samples. Computational and Structural Biotechnology Journal 2022, 20 , 5085-5097. https://doi.org/10.1016/j.csbj.2022.09.004
- Alberto Valdés, Francisco J. Lucio-Cazaña, María Castro-Puyana, Coral García-Pastor, Oliver Fiehn, María Luisa Marina. Comprehensive metabolomic study of the response of HK-2 cells to hyperglycemic hypoxic diabetic-like milieu. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-84590-2
- Christoph A Krettler, Gerhard G Thallinger. A map of mass spectrometry-based in silico fragmentation prediction and compound identification in metabolomics. Briefings in Bioinformatics 2021, 22 (6) https://doi.org/10.1093/bib/bbab073
- Li Chen, Wenyun Lu, Lin Wang, Xi Xing, Ziyang Chen, Xin Teng, Xianfeng Zeng, Antonio D. Muscarella, Yihui Shen, Alexis Cowan, Melanie R. McReynolds, Brandon J. Kennedy, Ashley M. Lato, Shawn R. Campagna, Mona Singh, Joshua D. Rabinowitz. Metabolite discovery through global annotation of untargeted metabolomics data. Nature Methods 2021, 18 (11) , 1377-1385. https://doi.org/10.1038/s41592-021-01303-3
- Rocío Gallego, Zully J. Suárez-Montenegro, Elena Ibáñez, Miguel Herrero, Alberto Valdés, Alejandro Cifuentes. In vitro Neuroprotective Potential and Lipidomics Study of Olive Leaves Extracts Enriched in Triterpenoids. Frontiers in Nutrition 2021, 8 https://doi.org/10.3389/fnut.2021.769218
- Yu He, Binghuan Yuan, Yao Lu, Xia Zhao, Cunsi Shen, Jianjian Ji, Lili Lin, Jianya Xu, Tong Xie, Jinjun Shan. In-silico-library-based method enables rapid and comprehensive annotation of cardiolipins and cardiolipin oxidation products using high resolution tandem mass spectrometer. Analytica Chimica Acta 2021, 1180 , 338879. https://doi.org/10.1016/j.aca.2021.338879
- Alvaro Luis Lamas Cassago, Mateus Manfrin Artêncio, Janaina de Moura Engracia Giraldi, Fernando Batista Da Costa. Metabolomics as a marketing tool for geographical indication products: a literature review. European Food Research and Technology 2021, 247 (9) , 2143-2159. https://doi.org/10.1007/s00217-021-03782-2
- Lu Zhang, Wen Zheng, Xin Li, Shisheng Wang, Ming Xiao, Rui Xiao, Dingkun Zhang, Nengwen Ke, Huawei Cai, Jingqiu Cheng, Xiaolei Chen, Meng Gong. A merged method for targeted analysis of amino acids and derivatives using parallel reaction monitoring combined with untargeted profiling by HILIC-Q-Orbitrap HRMS. Journal of Pharmaceutical and Biomedical Analysis 2021, 203 , 114208. https://doi.org/10.1016/j.jpba.2021.114208
- Tong Xie, Jinjun Shan, Jun Jiang, Xia Zhao, Yu He, Wenjun Tong. A post processing strategy to score and rank the annotation confidence of saponins in natural products by integrating MS2 spectral similarity and fragment interpretation. Journal of Pharmaceutical and Biomedical Analysis 2021, 204 , 114291. https://doi.org/10.1016/j.jpba.2021.114291
- Hyung Min Kim, Jong Seong Kang. Metabolomic Studies for the Evaluation of Toxicity Induced by Environmental Toxicants on Model Organisms. Metabolites 2021, 11 (8) , 485. https://doi.org/10.3390/metabo11080485
- Saleh Alseekh, Asaph Aharoni, Yariv Brotman, Kévin Contrepois, John D’Auria, Jan Ewald, Jennifer C. Ewald, Paul D. Fraser, Patrick Giavalisco, Robert D. Hall, Matthias Heinemann, Hannes Link, Jie Luo, Steffen Neumann, Jens Nielsen, Leonardo Perez de Souza, Kazuki Saito, Uwe Sauer, Frank C. Schroeder, Stefan Schuster, Gary Siuzdak, Aleksandra Skirycz, Lloyd W. Sumner, Michael P. Snyder, Huiru Tang, Takayuki Tohge, Yulan Wang, Weiwei Wen, Si Wu, Guowang Xu, Nicola Zamboni, Alisdair R. Fernie. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods 2021, 18 (7) , 747-756. https://doi.org/10.1038/s41592-021-01197-1
- Alisa Schnellbaecher, Anton Lindig, Maxime Le Mignon, Tim Hofmann, Brit Pardon, Stephanie Bellmaine, Aline Zimmer. Degradation Products of Tryptophan in Cell Culture Media: Contribution to Color and Toxicity. International Journal of Molecular Sciences 2021, 22 (12) , 6221. https://doi.org/10.3390/ijms22126221
- Sun Jo Kim, Nguyen Phuoc Long, Cheol Woon Jung, Nguyen Hoang Anh, Jung Eun Min, Hyung Min Kim, Sung Won Kwon. Exposure to nano-polystyrene induces metabolic alteration in lipid homeostasis in Caco-2. Environmental Science: Nano 2021, 8 (5) , 1408-1424. https://doi.org/10.1039/D1EN00145K
- Simony C. Mendonça, Rosineide C. Simas, Daniel L. Reis Simas, Suzana G. Leitão, Gilda G. Leitão. Mass spectrometry as a tool for the dereplication of saponins from Ampelozizyphus amazonicus Ducke bark and wood. Phytochemical Analysis 2021, 32 (3) , 262-282. https://doi.org/10.1002/pca.2972
- Dagny Aurich, Owen Miles, Emma L Schymanski. Historical exposomics and high resolution mass spectrometry. Exposome 2021, 1 (1) https://doi.org/10.1093/exposome/osab007
- Kai Dührkop, Louis-Félix Nothias, Markus Fleischauer, Raphael Reher, Marcus Ludwig, Martin A. Hoffmann, Daniel Petras, William H. Gerwick, Juho Rousu, Pieter C. Dorrestein, Sebastian Böcker. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nature Biotechnology 2021, 39 (4) , 462-471. https://doi.org/10.1038/s41587-020-0740-8
- Kelly H. Telu, Ramesh Marupaka, Nirina R. Andriamaharavo, Yamil Simón‐Manso, Yuxue Liang, Yuri A. Mirokhin, Tallat H. Bukhari, Renae J. Preston, Lila Kashi, Zvi Kelman, Stephen E. Stein. Creation and filtering of a recurrent spectral library of CHO cell metabolites and media components. Biotechnology and Bioengineering 2021, 118 (4) , 1491-1510. https://doi.org/10.1002/bit.27661
- Kristian Peters, Gerd Balcke, Niklas Kleinenkuhnen, Hendrik Treutler, Steffen Neumann. Untargeted In Silico Compound Classification—A Novel Metabolomics Method to Assess the Chemodiversity in Bryophytes. International Journal of Molecular Sciences 2021, 22 (6) , 3251. https://doi.org/10.3390/ijms22063251
- Zhuoer Xie, Christina R. Ferreira, Alessandra A. Virequ, R. Graham Cooks. Multiple reaction monitoring profiling (MRM profiling): Small molecule exploratory analysis guided by chemical functionality. Chemistry and Physics of Lipids 2021, 235 , 105048. https://doi.org/10.1016/j.chemphyslip.2021.105048
- John L. Chodkowski, Ashley Shade, . Exometabolite Dynamics over Stationary Phase Reveal Strain-Specific Responses. mSystems 2020, 5 (6) https://doi.org/10.1128/mSystems.00493-20
- Richard B. Cole, Parisa Bayat, Jane S. Murray, Christian Albers, Dorith Brombach. “Conformation pinning” by anion attachment enabling separation of isomeric steroid monomers by ion mobility spectrometry. Journal of Mass Spectrometry 2020, 55 (12) https://doi.org/10.1002/jms.4657
- Paolo Bonini, Youssef Rouphael, Begoña Miras-Moreno, Byungha Lee, Mariateresa Cardarelli, Gorka Erice, Veronica Cirino, Luigi Lucini, Giuseppe Colla. A Microbial-Based Biostimulant Enhances Sweet Pepper Performance by Metabolic Reprogramming of Phytohormone Profile and Secondary Metabolism. Frontiers in Plant Science 2020, 11 https://doi.org/10.3389/fpls.2020.567388
- Julian Pezzatti, Víctor González-Ruiz, Julien Boccard, Davy Guillarme, Serge Rudaz. Evaluation of Different Tandem MS Acquisition Modes to Support Metabolite Annotation in Human Plasma Using Ultra High-Performance Liquid Chromatography High-Resolution Mass Spectrometry for Untargeted Metabolomics. Metabolites 2020, 10 (11) , 464. https://doi.org/10.3390/metabo10110464
- Yuanlong Hou, Dandan He, Ling Ye, Guangji Wang, Qiuling Zheng, Haiping Hao. An improved detection and identification strategy for untargeted metabolomics based on UPLC-MS. Journal of Pharmaceutical and Biomedical Analysis 2020, 191 , 113531. https://doi.org/10.1016/j.jpba.2020.113531
- Thomas Züllig, Martina Zandl-Lang, Martin Trötzmüller, Jürgen Hartler, Barbara Plecko, Harald C. Köfeler. A Metabolomics Workflow for Analyzing Complex Biological Samples Using a Combined Method of Untargeted and Target-List Based Approaches. Metabolites 2020, 10 (9) , 342. https://doi.org/10.3390/metabo10090342
- Francesca Luziatelli, Anna Grazia Ficca, Paolo Bonini, Rosario Muleo, Lorenzo Gatti, Massimiliano Meneghini, Michele Tronati, Francesca Melini, Maurizio Ruzzi. A Genetic and Metabolomic Perspective on the Production of Indole-3-Acetic Acid by Pantoea agglomerans and Use of Their Metabolites as Biostimulants in Plant Nurseries. Frontiers in Microbiology 2020, 11 https://doi.org/10.3389/fmicb.2020.01475
- G. Erice, F. Colosimo, L. Lucini, Y. Rouphael, G. Colla, V. Cirino, P. Bonini. Artichoke inoculation with Rhizoglomus irregulare, Funneliformis mosseae, and Trichoderma koningii changes metabolic profile of heads. Acta Horticulturae 2020, (1284) , 85-92. https://doi.org/10.17660/ActaHortic.2020.1284.11
- Chun Kiang Chua, Yunbo Lv, Wen Zhao, Yi Ren, Hua Jun Zhang. Improving annotation of known-unknowns with accurately reconstructed mass spectra. International Journal of Mass Spectrometry 2020, 451 , 116321. https://doi.org/10.1016/j.ijms.2020.116321
- Julian Pezzatti, Julien Boccard, Santiago Codesido, Yoric Gagnebin, Abhinav Joshi, Didier Picard, Víctor González-Ruiz, Serge Rudaz. Implementation of liquid chromatography–high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples: A tutorial. Analytica Chimica Acta 2020, 1105 , 28-44. https://doi.org/10.1016/j.aca.2019.12.062
- B. L. Milman, I. K. Zhurkovich. Big Data in Modern Chemical Analysis. Journal of Analytical Chemistry 2020, 75 (4) , 443-452. https://doi.org/10.1134/S1061934820020124
- Keiron O’Shea, Biswapriya B. Misra. Software tools, databases and resources in metabolomics: updates from 2018 to 2019. Metabolomics 2020, 16 (3) https://doi.org/10.1007/s11306-020-01657-3
- Alexander P. Petrov, Lindy M. Sherman, Jon P. Camden, Norman J. Dovichi. Database of free solution mobilities for 276 metabolites. Talanta 2020, 209 , 120545. https://doi.org/10.1016/j.talanta.2019.120545
- Qiushi Sun, Teresa W-M. Fan, Andrew N. Lane, Richard M. Higashi. Applications of chromatography-ultra high-resolution MS for stable isotope-resolved metabolomics (SIRM) reconstruction of metabolic networks. TrAC Trends in Analytical Chemistry 2020, 123 , 115676. https://doi.org/10.1016/j.trac.2019.115676
- Nguyen Phuoc Long, Tran Diem Nghi, Yun Pyo Kang, Nguyen Hoang Anh, Hyung Min Kim, Sang Ki Park, Sung Won Kwon. Toward a Standardized Strategy of Clinical Metabolomics for the Advancement of Precision Medicine. Metabolites 2020, 10 (2) , 51. https://doi.org/10.3390/metabo10020051
- Zhiwu Dan, Yunping Chen, Weibo Zhao, Qiong Wang, Wenchao Huang. Metabolome-based prediction of yield heterosis contributes to the breeding of elite rice. Life Science Alliance 2020, 3 (1) , e201900551. https://doi.org/10.26508/lsa.201900551
- Nichole A. Reisdorph, Scott Walmsley, Rick Reisdorph. A Perspective and Framework for Developing Sample Type Specific Databases for LC/MS-Based Clinical Metabolomics. Metabolites 2020, 10 (1) , 8. https://doi.org/10.3390/metabo10010008
- Julijana Ivanisevic, Elizabeth J. Want. From Samples to Insights into Metabolism: Uncovering Biologically Relevant Information in LC-HRMS Metabolomics Data. Metabolites 2019, 9 (12) , 308. https://doi.org/10.3390/metabo9120308
- Xiaotao Shen, Ruohong Wang, Xin Xiong, Yandong Yin, Yuping Cai, Zaijun Ma, Nan Liu, Zheng-Jiang Zhu. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09550-x
- Xavier Domingo-Almenara, Carlos Guijas, Elizabeth Billings, J. Rafael Montenegro-Burke, Winnie Uritboonthai, Aries E. Aisporna, Emily Chen, H. Paul Benton, Gary Siuzdak. The METLIN small molecule dataset for machine learning-based retention time prediction. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-13680-7
- Ian J. Miller, Sean R. Peters, Katherine A. Overmyer, Brett R. Paulson, Michael S. Westphall, Joshua J. Coon. Real-time health monitoring through urine metabolomics. npj Digital Medicine 2019, 2 (1) https://doi.org/10.1038/s41746-019-0185-y