ACS Publications. Most Trusted. Most Cited. Most Read
Novel Ru(bpy)2(cpaphen)2+/TPrA/TiO2 Ternary ECL System: An Efficient Platform for the Detection of Glutathione with Mn2+ as Substitute Target
My Activity
    Article

    Novel Ru(bpy)2(cpaphen)2+/TPrA/TiO2 Ternary ECL System: An Efficient Platform for the Detection of Glutathione with Mn2+ as Substitute Target
    Click to copy article linkArticle link copied!

    • Rui Zhang
      Rui Zhang
      Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
      More by Rui Zhang
    • Xia Zhong
      Xia Zhong
      Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
      More by Xia Zhong
    • An-Yi Chen
      An-Yi Chen
      Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
      More by An-Yi Chen
    • Jia-Li Liu
      Jia-Li Liu
      Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
      More by Jia-Li Liu
    • Sheng-Kai Li
      Sheng-Kai Li
      Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
      More by Sheng-Kai Li
    • Ya-Qin Chai
      Ya-Qin Chai
      Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
      More by Ya-Qin Chai
    • Ying Zhuo*
      Ying Zhuo
      Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
      *Tel.: +86 23 68253172. Fax: +86 23 68253172. E-mail: [email protected] (Y.Z.).
      More by Ying Zhuo
    • Ruo Yuan
      Ruo Yuan
      Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
      More by Ruo Yuan
    Other Access OptionsSupporting Information (1)

    Analytical Chemistry

    Cite this: Anal. Chem. 2019, 91, 5, 3681–3686
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.analchem.8b05795
    Published January 30, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A sensitive electrochemiluminescence (ECL) biosensor was developed for glutathione (GSH) detection based on a novel Ru(bpy)2(cpaphen)2+/TPrA/TiO2 ternary ECL system with Mn2+ as substitute target for signal amplification. Specifically, the TiO2 nanoneedles (TiO2 NNs) were used as the coreaction accelerator for the first time to promote the oxidation process of coreactant tripropylamine (TPrA) in the anode and significantly increase the ECL signal of Ru(bpy)2(cpaphen)2+ for an amplified initial signal. Meanwhile, a novel target conversion strategy for GSH was developed by reducing MnO2 nanosheets to Mn2+ as a substitute target, which played the role of a coenzyme factor for cleaving DNA double strands intercalated with Ru(bpy)2(cpaphen)2+ to markedly weaken initial signal. As a result, the novel “on–off” biosensor achieved a sensitive detection of GSH range from 5 μM to 215 μM with a detection limit of 0.33 μM. Importantly, the proposed strategy enriched the application of Ru complex and TPrA ECL system in bioanalytical applications, and provided a new signal amplification strategy for bioactive small molecules.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.8b05795.

    • Reagents and samples, instrumentation, preparation of Pt NPs, preparation of MnO2 nanosheets, procedures of GSH detection, selection of the scan rate, optimal conditions for the ECL biosensor, CV characterization of the biosensor and comparison of different methods for GSH detection (DOC)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 82 publications.

    1. Jing-Yi Bao, Wen Liu, Can Chen, Hao-Tian Zhu, Ai-Jun Wang, Pei-Xin Yuan, Jiu-Ju Feng. Automated ECL Aptasensing Platform from an Intrarticular Radical Annihilation Route for Distinguishing Glioma Stages. Analytical Chemistry 2024, 96 (40) , 16063-16071. https://doi.org/10.1021/acs.analchem.4c03890
    2. Yu Du, Faying Li, Xiang Ren, Dan Wu, Hongmin Ma, Xuan Kuang, Jingshuai Li, Rui Feng, Qin Wei. Framework-Induced Electrochemiluminescence Enhancement of an AIEgen-Based MOF Coupled with Heterostructured TiO2@Ag NPs as an Efficient Coreaction Accelerator for Sensitive Biosensing. Analytical Chemistry 2024, 96 (37) , 14926-14934. https://doi.org/10.1021/acs.analchem.4c02991
    3. Cheng Tan, Xinyue Qian, Kang Wu, Anping Deng, Xinjian Feng, Jianguo Li. Aggregation-Induced ECL Immunosensor Using Ligand-Mediated Highly Stable Tetraphenylethene-Based Zinc Metal–Organic Frameworks for the Detection of 5-Fluorouracil. ACS Applied Nano Materials 2024, 7 (14) , 15958-15967. https://doi.org/10.1021/acsanm.4c00488
    4. Ziwang Mao, Yibo Zhao, Junli Jia, Yaoyao Xu, Liangzhi Li, Yuyang Zhou. Ultrasensitive Electrochemiluminescence Biosensor to Detect Ampicillin Resistance Gene (ARGAMP) Based on a Novel Near-Infrared Ruthenium Carbene Complex/TPrA/PEI Ternary ECL System. Analytical Chemistry 2024, 96 (2) , 934-942. https://doi.org/10.1021/acs.analchem.3c05367
    5. Hui Dong, Shanghua Liu, Qing Liu, Yueyuan Li, Zhen Xu, Yueyun Li, Qin Wei. Mixed-Ligand-Regulated Self-Enhanced Luminous Eu-MOF as an ECL Signal Probe for an Oriented Antibody-Decorated Biosensing Platform. Analytical Chemistry 2022, 94 (37) , 12852-12859. https://doi.org/10.1021/acs.analchem.2c02852
    6. Yixin Nie, Peilin Wang, Qiang Ma, Xingguang Su. Confined Gold Single Atoms–MXene Heterostructure-Based Electrochemiluminescence Functional Material and Its Sensing Application. Analytical Chemistry 2022, 94 (31) , 11016-11022. https://doi.org/10.1021/acs.analchem.2c01480
    7. Hongying Jia, Jingshuai Li, Lei Yang, Dawei Fan, Xuan Kuang, Xu Sun, Qin Wei, Huangxian Ju. Hollow Double-Shell CuCo2O4@Cu2O Heterostructures as a Highly Efficient Coreaction Accelerator for Amplifying NIR Electrochemiluminescence of Gold Nanoclusters in Immunoassay. Analytical Chemistry 2022, 94 (19) , 7132-7139. https://doi.org/10.1021/acs.analchem.2c01162
    8. Zhongnan Huang, Sunxing Yu, Meili Jian, Zhimin Weng, Haohua Deng, Huaping Peng, Wei Chen. Ultrasensitive Glutathione-Mediated Facile Split-Type Electrochemiluminescence Nanoswitch Sensing Platform. Analytical Chemistry 2022, 94 (4) , 2341-2347. https://doi.org/10.1021/acs.analchem.1c05198
    9. Zihui Liang, Junyi Zhao, Peilin Wang, Yixin Nie, Shuping Xu, Qiang Ma. Gold Nanorod Vertical Array-Based Electrochemiluminescence Polarization Assay for Triple-Negative Breast Cancer Detection. Analytical Chemistry 2022, 94 (2) , 1221-1229. https://doi.org/10.1021/acs.analchem.1c04413
    10. Lei Yang, Tingting Wu, Yu Du, Nuo Zhang, Ruiqing Feng, Hongmin Ma, Qin Wei. PEGylation Improved Electrochemiluminescence Supramolecular Assembly of Iridium(III) Complexes in Apoferritin for Immunoassays Using 2D/2D MXene/TiO2 Hybrids as Signal Amplifiers. Analytical Chemistry 2021, 93 (50) , 16906-16914. https://doi.org/10.1021/acs.analchem.1c04006
    11. Linzhi Li, Xing Liu, Saijun He, Hongmei Cao, Benchao Su, Tianzeng Huang, Qi Chen, Minghuan Liu, Da-Peng Yang. Electrochemiluminescence Immunosensor Based on Nanobody and Au/CaCO3 Synthesized Using Waste Eggshells for Ultrasensitive Detection of Ochratoxin A. ACS Omega 2021, 6 (44) , 30148-30156. https://doi.org/10.1021/acsomega.1c05213
    12. Jinna Guo, Mingsen Xie, Peiyao Du, Yu Liu, Xiaoquan Lu. Signal Amplification Strategy Using Atomically Gold-Supported VO2 Nanobelts as a Co-reaction Accelerator for Ultrasensitive Electrochemiluminescent Sensor Construction Based on the Resonance Energy Transfer Platform. Analytical Chemistry 2021, 93 (30) , 10619-10626. https://doi.org/10.1021/acs.analchem.1c01891
    13. Qiuxia Hao, Qingzhang Xu, Shuyan Niu, Caifeng Ding, Xiliang Luo. Anti-Fouling Magnetic Beads Combined with Signal Amplification Strategies for Ultra-Sensitive and Selective Electrochemiluminescence Detection of MicroRNAs in Complex Biological Media. Analytical Chemistry 2021, 93 (30) , 10679-10687. https://doi.org/10.1021/acs.analchem.1c02186
    14. Mengxia Yan, Jianhui Xin, Libing Fan, Jing Ye, Ting Xiao, Jianshe Huang, Xiurong Yang. Electrochemistry and Electrochemiluminescence of Coumarin Derivative Microrods: Mechanism Insights. Analytical Chemistry 2021, 93 (7) , 3461-3469. https://doi.org/10.1021/acs.analchem.0c04783
    15. Jin-Ling Zhang, Yang Yang, Wen-Bin Liang, Li-Ying Yao, Ruo Yuan, Dong-Rong Xiao. Highly Stable Covalent Organic Framework Nanosheets as a New Generation of Electrochemiluminescence Emitters for Ultrasensitive MicroRNA Detection. Analytical Chemistry 2021, 93 (6) , 3258-3265. https://doi.org/10.1021/acs.analchem.0c04931
    16. Jing Ma, Wenjing Wang, Yun Li, Zhicheng Lu, Xuecai Tan, Heyou Han. Novel Porphyrin Zr Metal–Organic Framework (PCN-224)-Based Ultrastable Electrochemiluminescence System for PEDV Sensing. Analytical Chemistry 2021, 93 (4) , 2090-2096. https://doi.org/10.1021/acs.analchem.0c03836
    17. Cheng Ma, Yue Cao, Xiaodan Gou, Jun-Jie Zhu. Recent Progress in Electrochemiluminescence Sensing and Imaging. Analytical Chemistry 2020, 92 (1) , 431-454. https://doi.org/10.1021/acs.analchem.9b04947
    18. Junjun Ge, Yu Zhao, Xiaoshan Gao, Hongkun Li, Guifen Jie. Versatile Electrochemiluminescence and Photoelectrochemical Detection of Glutathione Using Mn2+ Substitute Target by DNA-Walker-Induced Allosteric Switch and Signal Amplification. Analytical Chemistry 2019, 91 (21) , 14117-14124. https://doi.org/10.1021/acs.analchem.9b03990
    19. Xinya Jiang, Huijun Wang, Yaqin Chai, Hang Li, Wenbing Shi, Ruo Yuan. DNA Cascade Reaction with High-Efficiency Target Conversion for Ultrasensitive Electrochemiluminescence microRNA Detection. Analytical Chemistry 2019, 91 (15) , 10258-10265. https://doi.org/10.1021/acs.analchem.9b02404
    20. Sara M. Ragab, Mohamed M. Aboelnga, Elhossein A. Moawed, Rana R. El Sadda, Gasser M. Khairy. Enhanced glutathione sensing in clinical samples with Bovine Serum Albumin-stabilized copper nanoclusters: A novel fluorescent probe. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2025, 328 , 125465. https://doi.org/10.1016/j.saa.2024.125465
    21. Xinyu Liu, Dongyu Han, Feng Jiang, Shanghua Liu, Yueyuan Li, Zhen Xu, Qing Liu, Yueyun Li, Qin Wei. Enhanced electrochemiluminescence of CdS QDs encapsulated in IRMOF-3 for sensitive detection of human epithelial protein 4. Talanta 2025, 282 , 127052. https://doi.org/10.1016/j.talanta.2024.127052
    22. Liqi Liu, Yu Qiu, Yi Zou, Xujing Feng, Yu Gu, Nan Hao, Kun Wang. A visual biosensor chip based on the enhanced electrochemiluminescence with low triggered potential for ochratoxin A detection. Sensors and Actuators B: Chemical 2024, 420 , 136461. https://doi.org/10.1016/j.snb.2024.136461
    23. Nastaran Arab, Morteza Hosseini, Guobao Xu. Emerging trends and recent advances in MXene/MXene-based nanocomposites toward electrochemiluminescence sensing and biosensing. Biosensors and Bioelectronics 2024, 265 , 116623. https://doi.org/10.1016/j.bios.2024.116623
    24. Fei Yin, Xiaohe Zhou, Mingming Zhang, Qian Sun, Jinjin Zhao, Guoqiu Wu, Yuanjian Zhang, Yanfei Shen. Biocompatible WSe 2 @BSA Dots with Merged Catalyst and Coreactant for Efficient Electrochemiluminescence. Small 2024, 20 (49) https://doi.org/10.1002/smll.202406374
    25. Jiajia Zhi, Wenchang Wang, Longmei Yao, Qingyi Li, Ding Jiang, Xueling Shan, Xiaohui Chen, Zhidong Chen. An ECL sensor based on Ag+@Eu-MOF/HOF luminophore and CdS@Au-cDNA resonance energy transfer for sensitive and specific detection of acetamiprid. Microchemical Journal 2024, 22 , 112386. https://doi.org/10.1016/j.microc.2024.112386
    26. Jialian Ding, Bin Su. Dual‐Coreactants Enhanced Electrochemiluminescence. Chemistry – A European Journal 2024, 191 https://doi.org/10.1002/chem.202403804
    27. Xiaohu Ma, Peiyu Jiang, Jingbo Geng, Xinyi Li, Yan Jin, Baoxin Li, Wei Liu. Magnetic nanoparticle-decorated metal organic frameworks for chemiluminescence detection of glutathione. Microchimica Acta 2024, 191 (10) https://doi.org/10.1007/s00604-024-06686-6
    28. Hamed Mohtasham, Delnia Bahari, Amir Homayoun Keihan, Abdollah Salimi, Reza Tarbiat Mehrebani, Mehdi Rahimi-Nasrabadi. Magnetic N-doped carbon derived from mixed ligands MOF as effective electrochemiluminescence coreactor for performance enhancement of SARS-CoV-2 immunosensor. Talanta 2024, 277 , 126252. https://doi.org/10.1016/j.talanta.2024.126252
    29. Hongkun Li, Qianqian Cai, Yangyang Guan, Zhikang Li, Guifen Jie, Hong Zhou. Multimode sensing and imaging platform for versatile detection of GSH based on surface modification strategy of Ru(bpy)32+ doped SiO2 nanoparticles. Sensors and Actuators B: Chemical 2024, 412 , 135781. https://doi.org/10.1016/j.snb.2024.135781
    30. Weiqin Zhao, Ruichen Zhai, Qianxiao Chen, Chun Huang, Haojia Li, Youyu Zhu, Yingfeng Duan, Jie Gao. Detection of GSH with a dual-mode biosensor based on carbon quantum dots prepared from dragon fruit peel and the T-Hg( ii )-T mismatch. Analytical Methods 2024, 16 (29) , 4951-4959. https://doi.org/10.1039/D4AY00904E
    31. Beibei Wang, Lu Zhao, Hongmin Ma, Xiang Ren, Huan Wang, Dawei Fan, Dan Wu, Qin Wei. One master and two servants: One Zr(Ⅳ) with two ligands of TCPP and NH2-BDC form the MOF as the electrochemiluminescence emitter for the biosensing application. Talanta 2024, 266 , 124961. https://doi.org/10.1016/j.talanta.2023.124961
    32. Zuhao Zhang, Lu Zhang, Shujing Wang, Ruifang Liu, Li Li, Peini Zhao, Chaomin Gao, Fengming Chen, Shenguang Ge, Jinghua Yu. Programming DNA walker and DNA tetrahedral nanostructures mediated CRISPR/Cas12a electrochemiluminescence biosystem and its biosensing application. Sensors and Actuators B: Chemical 2023, 396 , 134644. https://doi.org/10.1016/j.snb.2023.134644
    33. Ziying Zhong, Yun Tang, Yanran Chen, Chunfang Wang, Faqiong Zhao, Baizhao Zeng. Molecularly imprinted poly(o-phenylenediamine) coated ZIF-5-Ru(bpy)32+ composite for the sensitive and selective ECL detection of tetracycline. Microchemical Journal 2023, 195 , 109494. https://doi.org/10.1016/j.microc.2023.109494
    34. Xue Mei, Wenchang Wang, Liyin Bu, Qingyi Li, Ding Jiang, Minxian Wu, Zhidong Chen. A mini-review on the applications of conductive polymers in electrochemiluminescent sensors. Microchemical Journal 2023, 195 , 109451. https://doi.org/10.1016/j.microc.2023.109451
    35. Shumin Yu, Jiangru Wang, Yue Sun, Qingqing Wang, Qi Kang, Dazhong Shen. A differential strategy to enhance the anti-interference ability of molecularly imprinted electrochemiluminescence sensor with a semi-logarithmic calibration curve. Analytica Chimica Acta 2023, 1280 , 341875. https://doi.org/10.1016/j.aca.2023.341875
    36. Dong Han, Kui Yang, Shiguo Sun, Jia Wen. Signal amplification strategies in electrochemiluminescence biosensors. Chemical Engineering Journal 2023, 476 , 146688. https://doi.org/10.1016/j.cej.2023.146688
    37. Wei Xiang, Haifeng Yao, Yongping Dong. Ionic liquid modified SiO2 nanoparticles as coreactant of Ru(bpy)32+ ECL and its application in the detection of glutathione. Journal of Photochemistry and Photobiology A: Chemistry 2023, 444 , 114975. https://doi.org/10.1016/j.jphotochem.2023.114975
    38. Shyang Pei Hong, Natasha Ann Keasberry, Minhaz Uddin Ahmed. Development of a gliadin immunosensor incorporating gold nanourchin, molybdenum disulfide, titanium dioxide, and Nafion for enhanced electrochemiluminescence. Microchemical Journal 2023, 193 , 109059. https://doi.org/10.1016/j.microc.2023.109059
    39. Lihong Gao, Yitian Huang, Huizhu Ren, Sisi Chen, Shupei Zhang, Hong Dai. Nanocomplexes with anchored Ru bpy 3 2 + -tetraethylene pentamine electrochemiluminescence system: Self-enhanced coupled photothermal strategy detection of thyroglobulin. Journal of Electroanalytical Chemistry 2023, 947 , 117767. https://doi.org/10.1016/j.jelechem.2023.117767
    40. Zejing Xing, Xiaodan Gou, Li‐Ping Jiang, Jun‐Jie Zhu, Cheng Ma. An In Situ Investigation of the Protein Corona Formation Kinetics of Single Nanomedicine Carriers by Self‐Regulated Electrochemiluminescence Microscopy. Angewandte Chemie 2023, 135 (39) https://doi.org/10.1002/ange.202308950
    41. Zejing Xing, Xiaodan Gou, Li‐Ping Jiang, Jun‐Jie Zhu, Cheng Ma. An In Situ Investigation of the Protein Corona Formation Kinetics of Single Nanomedicine Carriers by Self‐Regulated Electrochemiluminescence Microscopy. Angewandte Chemie International Edition 2023, 62 (39) https://doi.org/10.1002/anie.202308950
    42. Hongding Zhang, Sifei Wu, Yihan Li, Beibei Tao, Ningning Wu, Hai-Bo Wang, Linxia Fang. Etching triangular silver nanoparticles to initiate the fluorescent response of Ru@SiO2 for sensitive detection of glutathione. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 671 , 131686. https://doi.org/10.1016/j.colsurfa.2023.131686
    43. Xuan Wang, Yuanlong Qin, Xinyu Zhang, Yumin Leng, Zhengbo Chen. Au/TiO2 nanorod arrays-based electrochemical aptasensor for ultrasensitive detection of adenosine. Microchemical Journal 2023, 190 , 108695. https://doi.org/10.1016/j.microc.2023.108695
    44. Jingjing Zhang, Jingfeng Zhu, Jie Chao. Recent advances in DNA-based electrogenerated chemiluminescence biosensors. Sensors & Diagnostics 2023, 2 (3) , 582-599. https://doi.org/10.1039/D3SD00027C
    45. Shuqi Xia, Jiangfei Pan, Deshen Dai, Zong Dai, Mengsu Yang, Changqing Yi. Design of portable electrochemiluminescence sensing systems for point-of-care-testing applications. Chinese Chemical Letters 2023, 34 (5) , 107799. https://doi.org/10.1016/j.cclet.2022.107799
    46. Yu-Ling Wang, Yi-Zhuo Fu, Hui-Jin Xiao, Pan Wu, Shu-Wei Ren, Jun-Tao Cao, Yan-Ming Liu. An “off–on”-type electrochemiluminescent immunosensor based on resonance energy transfer and a liposome-assisted strategy for signal amplification. New Journal of Chemistry 2023, 47 (15) , 7198-7204. https://doi.org/10.1039/D3NJ00178D
    47. Xuemei Wang, Chuantao Hou, Feifei Zhang, Jianfei Xia, Zonghua Wang. Highly sensitive electrochemiluminescence biosensor based on novel TiO2-porphyrin organic framework with self-enhanced luminescent property. Sensors and Actuators B: Chemical 2023, 379 , 133229. https://doi.org/10.1016/j.snb.2022.133229
    48. Tingting Xu, Panpan Xu, Guilin Xu, Mengyao Liu, Yinggui Zhu. A Signal Amplification Strategy Using ATP as a Co‐Reaction Accelerator for the Electrochemiluminescence of Ru(bpy) 3 2+ /HEPES System and Detection of Iodide Anions**. ChemistrySelect 2023, 8 (5) https://doi.org/10.1002/slct.202204363
    49. Chulei Zhao, Zhenzhen Xie, Chaoyun Ma, Xiling Deng, Chenglin Hong, Shiguo Sun. Highly stable hybrid ligand Double-Enhanced electrochemiluminescence for sensitive detection of Cu2+. Microchemical Journal 2023, 185 , 108237. https://doi.org/10.1016/j.microc.2022.108237
    50. Xiaoyi Lv, Fei Tan, Tian Miao, Bo Cui, Jianguo Zhang, Yishan Fang, Yizhong Shen. In situ generated PtNPs to enhance electrochemiluminescence of multifunctional nanoreactor COP T4VTP6 for AFB1 detection. Food Chemistry 2023, 399 , 134002. https://doi.org/10.1016/j.foodchem.2022.134002
    51. Dongyan Li, Huaiyue Xia, Yingying Sun, Wenjie Liu, Wen Liu, Jianna Yu, Guoxing Jing, Jian Zhang, Wenshan Li. Colorimetric aptasensor for the sensitive detection of ochratoxin A based on a triple cascade amplification strategy. Analytica Chimica Acta 2023, 1237 , 340616. https://doi.org/10.1016/j.aca.2022.340616
    52. Hongding Zhang, Sifei Wu, Mengwei Sun, Jiaoyu Wang, Man Gao, Hai-Bo Wang, Linxia Fang. In-situ formation of MnO2 nanoparticles on Ru@SiO2 nanospheres as a fluorescent probe for sensitive and rapid detection of glutathione. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 283 , 121724. https://doi.org/10.1016/j.saa.2022.121724
    53. Chengpei Du, Yi Wang, Kanglin Pei, Di Wu, Wenjing Qi. An electrochemiluminescence dual “turn-on” strategy for alkaline phosphatase detection using a dual quenching Ru(bpy) 3 2+ encapsulated zeolite imidazole metal organic framework. Chemical Communications 2022, 58 (86) , 12114-12117. https://doi.org/10.1039/D2CC04270C
    54. Shuang He, Qiaoling Liu, Yu Ji, Pei Zhang, Chusen Huang, Jing Sun, Yao Lu, Da-Peng Yang, Nengqin Jia. An ultrasensitive cathodic electrochemiluminescence immunoassay for thrombomodulin based on Ru(bpy) 3 2+ encapsulated by MIL-NH 2 -101(Al) nanocomposites. Journal of Materials Chemistry B 2022, 10 (38) , 7789-7796. https://doi.org/10.1039/D2TB01076C
    55. Shyang Pei Hong, Syazana Abdullah Lim, Natasha Ann Keasberry, Minhaz Uddin Ahmed. Novel nanocomposite of spiky-shaped gold nanourchins/ titanium dioxide/nafion for amplified signal and efficient electrochemiluminescence detection of ovomucoid. Bioelectrochemistry 2022, 147 , 108172. https://doi.org/10.1016/j.bioelechem.2022.108172
    56. Linlin Song, Wenqiang Gao, Qinru Han, Yiping Huang, Lin Cui, Chun-yang Zhang. Construction of an aggregation-induced electrochemiluminescent sensor based on an aminal-linked covalent organic framework for sensitive detection of glutathione in human serum. Chemical Communications 2022, 58 (75) , 10524-10527. https://doi.org/10.1039/D2CC03753J
    57. Wen-Jing Qi, Hong-Kun He, Xue Tian, Yi Song, Xue-Ni Li, Rong Li, Ping-Ping Hu, Xiao-Mei Huang. Fluorescence “turn-on” Sensing Platform for Glutathione Detection Using Chitosan-Based Glutaraldehyde Non-conjugated Polymers. Journal of Analysis and Testing 2022, 6 (3) , 327-334. https://doi.org/10.1007/s41664-021-00173-0
    58. Ying LUO, Yingshi HUANG, Yanqing LI, Jun FENG. Development of Electrochemiluminecence Sensor for Verapamil Hydrochloride Based on TiO2 sol/ZnO@Ag/Silica sol-Ru(bpy)32+ Modified Pyrolytic Graphite Electrode. Electrochemistry 2022, 90 (7) , 077005-077005. https://doi.org/10.5796/electrochemistry.22-00042
    59. Xiaoyi Lv, Qiong Hu, Tian Miao, YanPing Li, Bo Cui, Yishan Fang. An efficient aggregation-induced electrochemiluminescent immunosensor by using TiO2 nanoparticles as coreaction accelerator and energy donor for aflatoxin B1 detection. Analytical and Bioanalytical Chemistry 2022, 414 (17) , 4837-4847. https://doi.org/10.1007/s00216-022-04106-3
    60. Wanqing Liu, Wei Duan, Liqun Jia, Siyu Wang, Yuan Guo, Guoqing Zhang, Baolin Zhu, Weiping Huang, Shoumin Zhang. Surface Plasmon-Enhanced Photoelectrochemical Sensor Based on Au Modified TiO2 Nanotubes. Nanomaterials 2022, 12 (12) , 2058. https://doi.org/10.3390/nano12122058
    61. Ting-Ting Tu, Yuan Sun, Yan-Mei Lei, Ya-Qin Chai, Ying Zhuo, Ruo Yuan. Pyrenecarboxaldehyde encapsulated porous TiO 2 nanoreactors for monitoring cellular GSH levels. Nanoscale 2022, 14 (15) , 5751-5757. https://doi.org/10.1039/D2NR00784C
    62. Shuang He, Pei Zhang, Jing Sun, Yu Ji, Chusen Huang, Nengqin Jia. Integrating potential-resolved electrochemiluminescence with molecularly imprinting immunoassay for simultaneous detection of dual acute myocardial infarction markers. Biosensors and Bioelectronics 2022, 201 , 113962. https://doi.org/10.1016/j.bios.2022.113962
    63. Min Li, Qi Yue, Jinglong Fang, Caihong Wang, Wei Cao, Qin Wei. Au modified spindle-shaped cerium phosphate as an efficient co-reaction accelerator to amplify electrochemiluminescence signal of carbon quantum dots for ultrasensitive analysis of aflatoxin B1. Electrochimica Acta 2022, 407 , 139912. https://doi.org/10.1016/j.electacta.2022.139912
    64. Liying Zhang, Chuanrui Zhao, Yujiao Bai, Qian Wang, Pan Ma, Xiaojie Ma, Peihua Zhu. Electrochemiluminescence Enhanced by the Synergetic Effect of Porphyrin and Multi‐walled Carbon Nanotubes for Uric Acid Detection. Electroanalysis 2022, 34 (2) , 302-309. https://doi.org/10.1002/elan.202100287
    65. Shyang Pei Hong, Syazana Abdullah Lim, Natasha Ann Keasberry, Minhaz Uddin Ahmed. Novel Nanocomposite of Spiky-Shaped Gold Nanourchins/ Titanium Dioxide/Nafion for Amplified Signal and Efficient Electrochemiluminescence Detection of Ovomucoid. SSRN Electronic Journal 2022, 126 https://doi.org/10.2139/ssrn.4067025
    66. Haijun Wang, Rui Zhang, Ying Zhuo, Ruo Yuan. Sensitive electrochemiluminescence biosensor for glutathione using MnO2 nanoflower as novel co-reaction accelerator for Ru complex/tripropylamine system. Analytica Chimica Acta 2021, 1188 , 339181. https://doi.org/10.1016/j.aca.2021.339181
    67. Yingying Sun, Yan Qin, Jun Zhang, Qunxiang Ren. Electrochemiluminescent determination of prostate-specific antigen using Au@(MoS2/GO/o-MWNTs) nanohybrids as co-reaction accelerator and hyperbranched hybridization chain reaction for signal amplification. Microchimica Acta 2021, 188 (9) https://doi.org/10.1007/s00604-021-04957-0
    68. Hyun Seung No, Taemin Kim, Jong-In Hong. Iridium(Ⅲ) complex-based phosphorescent and electrochemiluminescent dual sensor for selective detection of glutathione. Sensors and Actuators B: Chemical 2021, 342 , 129868. https://doi.org/10.1016/j.snb.2021.129868
    69. Pavlos Nikolaou, Giovanni Valenti, Francesco Paolucci. Nano-structured materials for the electrochemiluminescence signal enhancement. Electrochimica Acta 2021, 388 , 138586. https://doi.org/10.1016/j.electacta.2021.138586
    70. Haiyan Wang. Advances in electrochemiluminescence co-reaction accelerator and its analytical applications. Analytical and Bioanalytical Chemistry 2021, 413 (16) , 4119-4135. https://doi.org/10.1007/s00216-021-03247-1
    71. Yue Cao, Cheng Ma, Jun-Jie Zhu. DNA Technology-assisted Signal Amplification Strategies in Electrochemiluminescence Bioanalysis. Journal of Analysis and Testing 2021, 5 (2) , 95-111. https://doi.org/10.1007/s41664-021-00175-y
    72. Xi Zhou, Doudou Zhang, Ying Yan, Hailun He, Yukui Zhou, Changbei Ma. A Label-Free Fluorometric Glutathione Assay Based on a Conformational Switch of G-quadruplex. Molecules 2021, 26 (9) , 2743. https://doi.org/10.3390/molecules26092743
    73. Xuemei Wang, Lei Yu, Qi Kang, Lu Chen, Yuchen Jin, Guizheng Zou, Dazhong Shen. Enhancing electrochemiluminescence of FAPbBr3 nanocrystals by using carbon nanotubes and TiO2 nanoparticles as conductivity and co-reaction accelerator for dopamine determination. Electrochimica Acta 2020, 360 , 136992. https://doi.org/10.1016/j.electacta.2020.136992
    74. Delnia Bahari, Bahareh Babamiri, Abdollah Salimi, Rahman Hallaj, S. Mojtaba Amininasab. A self-enhanced ECL-RET immunosensor for the detection of CA19-9 antigen based on Ru(bpy)2(phen-NH2)2+ - Amine-rich nitrogen-doped carbon nanodots as probe and graphene oxide grafted hyperbranched aromatic polyamide as platform. Analytica Chimica Acta 2020, 1132 , 55-65. https://doi.org/10.1016/j.aca.2020.07.023
    75. Yue Cao, Wenlei Zhu, Lingling Li, Ziyi Zhang, Zixuan Chen, Yuehe Lin, Jun-Jie Zhu. Size-selected and surface-passivated CsPbBr 3 perovskite nanocrystals for self-enhanced electrochemiluminescence in aqueous media. Nanoscale 2020, 12 (13) , 7321-7329. https://doi.org/10.1039/D0NR00179A
    76. Xiangui Ma, Chao Wang, Fengxia Wu, Yiran Guan, Guobao Xu. TiO2 Nanomaterials in Photoelectrochemical and Electrochemiluminescent Biosensing. Topics in Current Chemistry 2020, 378 (2) https://doi.org/10.1007/s41061-020-0291-y
    77. Luxiao Wang, Bin Xing, Xiang Ren, Xun Hu, Huan Wang, Dan Wu, Qin Wei. Mo2C combined with carbon material nanosphere as an electrochemiluminescence super-enhancer and antibody label for ultrasensitive detection of cardiac troponin I. Biosensors and Bioelectronics 2020, 150 , 111910. https://doi.org/10.1016/j.bios.2019.111910
    78. Dandan Fang, Shupei Zhang, Hong Dai, Zhensheng Hong, Yanyu Lin. A self-enhanced renewable electrochemiluminescence biosensing platform for ultrasensitive detection of sialic acid. Electrochimica Acta 2019, 326 , 134956. https://doi.org/10.1016/j.electacta.2019.134956
    79. Zhu Han, Danyang Nan, Huan Yang, Qianqian Sun, Shuang Pan, Hui Liu, Xiaoli Hu. Carbon quantum dots based ratiometric fluorescence probe for sensitive and selective detection of Cu2+ and glutathione. Sensors and Actuators B: Chemical 2019, 298 , 126842. https://doi.org/10.1016/j.snb.2019.126842
    80. Imran Mahmood Khan, Sobia Niazi, Muhammad Kashif Iqbal Khan, Imran Pasha, Ali Mohsin, Junaid Haider, Muhammad Waheed Iqbal, Abdur Rehman, Lin Yue, Zhouping Wang. Recent advances and perspectives of aggregation-induced emission as an emerging platform for detection and bioimaging. TrAC Trends in Analytical Chemistry 2019, 119 , 115637. https://doi.org/10.1016/j.trac.2019.115637
    81. Atsuko Konishi, Shigehiko Takegami, Tatsuya Kitade. A Molecularly Imprinted Polymer-modified Potentiometric Sensor for the Detection of Glutathione. Analytical Sciences 2019, 35 (10) , 1111-1115. https://doi.org/10.2116/analsci.19P166
    82. Jing Lu, Ling Wang, Xia Xu, Xiangxiang Qin, Xia Qiu, Zhu Yinggui. Electrochemiluminescence and analytical applications of terbium thiophene carboxylic acid complexes. Analytical Methods 2019, 11 (29) , 3727-3735. https://doi.org/10.1039/C9AY01062A

    Analytical Chemistry

    Cite this: Anal. Chem. 2019, 91, 5, 3681–3686
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.analchem.8b05795
    Published January 30, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    3827

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.