ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Phenotypic Profiling of Circulating Tumor Cells in Metastatic Prostate Cancer Patients Using Nanoparticle-Mediated Ranking

  • Brenda J. Green
    Brenda J. Green
    Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
  • Vivian Nguyen
    Vivian Nguyen
    Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
  • Eshetu Atenafu
    Eshetu Atenafu
    Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
  • Phillip Weeber
    Phillip Weeber
    Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
  • Bill T. V. Duong
    Bill T. V. Duong
    Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
  • Punithan Thiagalingam
    Punithan Thiagalingam
    Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
  • Mahmoud Labib
    Mahmoud Labib
    Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
  • Reza M. Mohamadi
    Reza M. Mohamadi
    Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
  • Aaron R. Hansen
    Aaron R. Hansen
    Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
  • Anthony M. Joshua*
    Anthony M. Joshua
    Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
    Kinghorn Cancer Centre, St. Vincent’s Hospital Sydney, Darlinghurst, New South Wales 2010, Australia
    *E-mail: [email protected]
  • , and 
  • Shana O. Kelley*
    Shana O. Kelley
    Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
    Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
    Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
    Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
    *E-mail: [email protected]
Cite this: Anal. Chem. 2019, 91, 15, 9348–9355
Publication Date (Web):July 2, 2019
https://doi.org/10.1021/acs.analchem.9b01697
Copyright © 2019 American Chemical Society
  • Free to Read

Article Views

3462

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (3 MB)
Supporting Info (1)»

Abstract

The analysis of circulating tumor cells (CTCs) provides a means to collect information about the evolving properties of a tumor during cancer progression and treatment. For patients with metastatic prostate cancer, noninvasive serial measurements of bloodborne cells may provide a means to tailor therapeutic decisions based on an individual patient’s response. Here, we used a high-sensitivity profiling approach to monitor CTCs in patients with metastatic castrate-resistant prostate cancer (mCRPC) undergoing treatment with abiraterone and enzalutamide, two drugs used to treat advanced prostate cancer. The capture and profiling approach uses antibody-functionalized magnetic nanoparticles to sort cells according to protein expression levels. CTCs are tagged with magnetic nanoparticles conjugated to an antibody specific for the epithelial cell adhesion molecule (EpCAM) and sorted into four zones of a microfluidic device based on EpCAM expression levels. Our approach was compared to the FDA-cleared CellSearch method, and we demonstrate significantly higher capture efficiency of low-EpCAM cells compared to the commercial method. The nanoparticle-based approach detected CTCs from 86% of patients at baseline, compared to CellSearch which only detected CTCs from 60% of patients. Patients were stratified as prostate specific antigen (PSA) progressive versus responsive based on clinically acceptable definitions, and it was observed that patients with a limited response to therapy had elevated levels of androgen receptor variant 7 (ARV7) and the mesenchymal marker, N-cadherin, expressed on their CTCs. In addition, these CTCs exhibited lower EpCAM expression. The results highlight features of CTCs associated with disease progression on abiraterone or enzalutamide, including mesenchymal phenotypes and increased expression levels of ARV7. The use of a high-sensitivity method to capture and profile CTCs provides more informative data concerning the phenotypic properties of these cells as patients undergo treatment relative to an FDA-cleared method.

This publication is licensed for personal use by The American Chemical Society.

Circulating tumor cells (CTCs) are released from a primary tumor into the bloodstream. (1) These rare cells are then responsible for formation of the metastatic lesions that lead to high rates of mortality. (2) CTCs can adopt resilient phenotypes in hostile nonadherent environments to avoid programmed cell death and immune attack. (1) During cancer progression, CTCs initially released into the bloodstream may possess an epithelial phenotype and express surface proteins such as cytokeratin and epithelial cell adhesion molecule (EpCAM). As the primary tumor progresses, CTCs can lose their epithelial markers, gain mesenchymal markers (N-cadherin, vimentin, fibronectin), and undergo an epithelial-to-mesenchymal transition (EMT). (3) EMT and its role in disease progression is not definitively understood, (3−6) but the plasticity exhibited by cells undergoing EMT may be linked to metastatic potential.
CTCs are obtained via a blood draw and can provide information relating to the molecular-level properties of a tumor without requiring invasive diagnostic techniques such as tissue biopsy. (7−9) Characterizing these rare cells in serial measurements, an approach referred to as liquid biopsy, (9) may therefore provide a noninvasive means to inform treatment options and monitor patient responsiveness. However, the capture and analysis of CTCs is very challenging due to their low concentration in blood. Effective capture requires a high level of specificity and the ability to handle very low numbers of target cells from a billion-fold excess of normal cells. Microfluidic sorting technologies have the potential to improve detection of heterogeneous CTC populations. Devices featuring EpCAM-functionalized-microposts and other nanomaterials, (10−12) basement-membrane coated chips, (13) discrete cell adhesion surfaces, (14) and lateral displacement microarrays have been developed. (15) Several recent studies have profiled heterogeneous CTC populations using antibody-functionalized microfluidic structures, including capture of epithelial and EMT-like CTCs by dual- targeting of both EpCAM/CD133 and EpCAM/stem-cell marker 63B6, or single- targeting of podoplanin. (16,51,52) The deformability of CTCs as they pass through microfluidic constrictions has also been used for the isolation of these cells (17,18) and for the isolation of clusters using bifurcating traps under low shear stress conditions. (19)
In our laboratory, we developed a nanoparticle-mediated capture and profiling approach that allows CTCs to be isolated from blood on the basis of markers including surface proteins (20) and mRNAs. (21) This approach exhibits high levels of sensitivity and can report on low levels of CTCs in patient samples, and the phenotypic and genotypic properties of these rare cells.
The analysis of CTCs in prostate cancer (PCa) patients is an important capability that may lead to new approaches for treatment monitoring. (8,22−26) PCa CTCs with an EMT phenotype have been identified in various studies, and the transition between epithelial-like and mesenchymal-like states has been linked to aggressive metastatic behavior. (27−31) CellSearch is the only FDA-cleared CTC assay presently and defines favorable or unfavorable CTC counts as <5 versus ≥5 CTC/7.5 mL of blood, respectively. (32)
Metastatic castrate resistant prostate cancer (mCRPC) is defined by biochemical, radiological, or symptomatic disease progression despite castrate testosterone level. (33) mCRPC usually retains continued androgen receptor (AR) expression and signaling, thus leading to continued dependence of AR. (34,35) Androgen deprivation therapy (ADT) is the main therapeutic approach for advanced prostate cancer, and it leads to prostate specific antigen (PSA) responses and clinical improvements in more than 90% of patients. (33) Two hormonal agents, abiraterone and enzalutamide, have demonstrated overall survival improvements in the setting of castration-resistant prostate cancer. (33,35−37) Abiraterone is a class of androgen-deprivation therapy that selectively and irreversibly inhibits the CYP17A1 enzyme, which is necessary for the synthesis of testosterone precursors in the adrenal gland. (24) Enzalutamide is an AR antagonist that binds AR with a high affinity and prevents AR translocation and DNA binding. (36) The de novo and acquired resistance to these agents may be associated with truncated AR-variants lacking the ligand binding domain (LBD). AR-variants have been detected in PCa cell lines as well as clinical samples, with the androgen receptor variant 7 (ARV7) splice variant representing the most commonly detected sequence with associated resistance. (38,39) Thus, tracking full-length androgen receptor and splice variants on mCRPC CTCs can provide relevant information to direct clinical decisions.
In this study, we captured and profiled CTCs from a cohort of mCRPC patients using a microfluidic device which stratifies cells into zones based on their expression levels of EpCAM. (40−42) Patients received either abiraterone or enzalutamide, and blood samples were analyzed from patients before treatment began (week 0 or baseline) and at a time point during treatment ranging from 9 to 22 weeks after the baseline sampling. We demonstrated that the microfluidic device captures low-EpCAM mCRPC CTCs with high efficiency relative to the commercially available CellSearch device. Over the course of treatment, patients’ CTCs exhibit decreasing EpCAM levels. These low-EpCAM CTCs display reduced epithelial properties and increased expression levels of ARV7. Progressive patients had elevated ARV7 and N-cadherin CTC protein levels relative to responsive patients, highlighting the distinct properties of resistant cells. Importantly, this study identifies subpopulations of CTCs detected from late-stage mCRPC patients which undergo phenotypic changes during enzalutamide or abiraterone treatment.

Results and Discussion

ARTICLE SECTIONS
Jump To

Confirmation of High-Efficiency Capture of Low-EpCAM CTCs

CTCs are highly heterogeneous and can display variable levels of surface proteins. Our approach to capture and analyze these cells employs a microfluidic device which stratifies cells into zones based on their expression levels of EpCAM. (40) We previously demonstrate that this device is capable of detecting low-EpCAM breast and prostate cancer cells. (42,20) Prior to using the approach to test clinical samples, the performance of the device was characterized with cultured prostate cancer cells.
To analyze spiked cells or CTCs, blood is incubated with magnetic nanoparticles conjugated to EpCAM antibodies, and target cells are stoichiometrically labeled with nanoparticles according to the number of protein molecules on the surface of the cells. X-shaped microstructures patterned within a microfluidic channel are used to increase the CTC capture efficiency in the presence of a magnetic field by creating low-flow regions (Figure 1A,B). As the cells move through the device, they experience a decrease in velocity as the channel cross-section area expands. (40) The magnetic force applied to a cell is proportional to the number of magnetic nanoparticles bound and to the number of EpCAM molecules on the cell surface. Cells with higher EpCAM expression experience a higher magnetic force and are trapped in early zones, while cells with lower EpCAM experience a lower magnetic force and are trapped in later zones. This allows for the spatial sorting of cells on the basis of EpCAM expression, which is crucial for monitoring CTCs as they progress through EMT. (34,42)

Figure 1

Figure 1. High-efficiency capture of low-EpCAM CTCs from prostate cancer patients. (A,B) Schematic of patient sample collection and processing through the microfluidic device. CTCs are captured from metastatic castrate resistant prostate cancer (mCRPC) patients (n = 36) receiving enzalutamide or abiraterone. Briefly, whole blood is incubated with magnetic nanoparticles (MNPs) conjugated to EpCAM and introduced into the device at a flow rate of 600 μL/h in the presence of an external magnetic field. CTCs are trapped in different zones based on their expression level of EpCAM. (C) LnCaP and PC3 cells were profiled with the microfluidic device. (n = 292 LnCaP cells and n = 343 PC3 cells). High-EpCAM LnCaP cells are trapped primarily in zone 1, whereas low-EpCAM expressing PC3 cells are trapped in zones 3 and 4. (D) Capture efficiency of LnCaP and PC3 cells in the microfluidic device compared to CellSearch (n = 138 LnCaP cells and n = 96 PC3 cells). Cells were spiked in 1 mL of whole blood. Statistics are performed with two-tailed t test, *p < 0.05.

To verify the performance of this approach, the capture and profiling of two prostate cancer cells lines, LnCaP and PC3, were pursued. LnCaP cells have a high level of EpCAM protein expression, while PC3 cells have a lower level. (43) The level of expression for these cell lines was reflected in the capture profile observed, with LnCaP cells trapped in the earlier zones of the device and PC3 cells trapped in the later zones of the device (Figure 1C). Despite the difference in capture profiles and EpCAM expression levels, the overall capture efficiency for both cell lines was high (∼90%) and within error (Figure 1D).
The capture efficiency and sensitivity of the nanoparticle-mediated approach was compared to that achieved with the CellSearch technology (Figure 1D). While the capture efficiency of the LnCaP cells was only slightly lower using CellSearch versus the nanoparticle-based method, a marked decrease in capture efficiency was observed for the PC3 cells. This trend indicates that CTC recovery using CellSearch is sensitive to EpCAM levels. It is noteworthy that the ∼35% of PC3 cells captured using CellSearch likely correspond to the ∼30% of cells captured in zones 1 and 2 of the microfluidic device, indicating that the low-EpCAM cells in zones 3 and 4 are those not detectable using CellSearch.

Profiling CTCs for Patients with mCRPC

To test this approach on clinical specimens, CTCs were tracked from 36 mCRPC patients over a median treatment time of 13 weeks (Table 1). Primary treatment for the patients studied included prostatectomy (39%), radiation therapy (53%), brachytherapy (6%), or focal therapy (3%). All patients received prior androgen therapy, including Luteinizing Hormone Releasing Hormone (LHRH) agonists, antiandrogens, steroid, or immune therapy (Table S1). Patients did not receive prior treatment of abiraterone, enzalutamide, nor docetaxel. At the onset of the study, patients exhibited metastatic disease in the bone (50%) or lymph nodes (22%) or both (17%) (Tables S2 and S3).
Table 1. Patient Demographicsa
patient characteristicsall patients
unique patients, no.36
age, median (range), years72 (55–93)
Gleason score, median (range)7 (6–9)
median (range) on-treatment, weeks13 (9–22)
  
Primary Treatment, No. (%)
prostatectomy6 (17)
radiation9 (25)
prostatectomy and radiation8 (22)
radiation and focal therapy1 (3)
radiation and brachytherapy1 (3)
brachytherapy1 (3)
none10 (27)
  
Prior Exposure to Life-Prolonging Therapies, No. (%)
LHRH agonists1 (3)
LHRH agonists and antiandrogens26 (72)
LHRH agonists and steroid1 (3)
LHRH agonists and antiandrogens and steroid and/or immune therapy8 (22)
  
AR Therapy, No. (%)
enzalutamide25 (69)
abiraterone acetate11 (31)
  
Metastatic Disease, No. (%)
bone only18 (50)
LN only8 (22)
visceral only1 (3)
bone and LN6 (17)
bone and visceral and/or LN3 (8)
  
Laboratory Measures Pretherapy, Median (Range)
PSA, μg/L16.46 (0.16–305.23)
Hgb, g/L132 (107–155)
ALP, U/L80 (50–381)
LDH, U/L227 (131–317)
a

Abbreviations: LHRH agonists, luteinizing hormone releasing hormone, includes triptorelin, leuprolide, goserelin, or degarelix. AA, antiandrogens, includes bicalutamide, nilutamide, or apalutamide. Steroid treatment includes prednisone. Immune therapy includes prostvac. LN, lymph node; PSA, prostate specific antigen; Hgb, hemoglobin; ALP, alkaline phosphatase; and LDH, lactic dehydrogenase.

CTCs isolated from mCRPC patients were stratified as high-EpCAM (zone 1 and zone 2) and low-EpCAM (zone 3 and zone 4) (Figure 1B). Post-capture, CTCs were identified using immunostaining with anti-cytokeratin (Ck), anti-N-cadherin (NCad), anti-AR, anti-ARV7, and anti-CD45 fluorescently tagged antibodies in separate microfluidic devices.
mCRPC CTCs were primarily (88%) trapped in low-EpCAM zones 3 and 4 of the microfluidic device (Figure 2 and Figure 3). The capture profile corresponds with zone profiles of tumorigenic PC3 cells (Figure 1C, Figure S9). The microfluidic device detected CTCs from 86% of patients at baseline (week 0) and 77% of patients undergoing treatment (9–22 weeks). In comparison, CellSearch only detected CTCs from 60% of patients at baseline and in 18% of patients during treatment.

Figure 2

Figure 2. CTC profiles from prostate cancer patients. CTC counts were profiled with the microfluidic device (CTCs/mL) and compared with CellSearch (CTCs/mL) over (A) 0 weeks and (B) 9–22 weeks on-treatment. CTCs were identified as DAPI+/CK+/CD45. Microfluidic device CTC counts were divided into CTCs captured in low-EpCAM zones 1 and 2 (light gray) and high-EpCAM zones 3 and 4 (black). CTC profiles were obtained from 36 mCRPC patients receiving enzalutamide or abiraterone. The horizontal dashed line indicates data is not available for a particular patient. No bar indicates 0 CTC count. The dotted line separates PSA responsive vs progressive patients, as defined according to PCWG3 criteria. (32) PSA response is defined as a >50% decline from baseline measured twice 3 to 4 weeks apart. PSA progression is defined as the first PSA rise that is ≥25% and ≥2 ng/mL above the nadir, confirmed 3 or more weeks later. If there is no initial decline from baseline, PSA progression is defined as ≥25% and ≥2 ng/mL after 12 weeks.

Figure 3

Figure 3. mCRPC CTCs exhibit a low-EpCAM phenotype. CTCs were profiled with the microfluidic device (CTCs/mL) and separated into (A) high-EpCAM (zone 1 and zone 2) and (B) low-EpCAM (zone 3 and zone 4) counts. (C) CellSearch CTC counts (CTCs/mL). Patients were profiled at 0 weeks and 9–22 weeks on-treatment. The dotted line separates PSA responsive vs progressive patients (refer to definition in the Materials and Methods). CTC counts were obtained from 36 mCRPC patients receiving abiraterone or enzalutamide. CTCs were identified as DAPI+/CK+/CD45. Each dot represents a patient CTC count. Box plots represent standard error of the mean. The central square represents the mean, and the line represents the median.

Patients were stratified as PSA responsive or progressive based on the Prostate Cancer Clinical Trials Working Group criteria (PCWG3), (32) (Materials and Methods, Figures S10 and S11). The dynamic change of CTC counts over disease progression is associated with a significant prognostic effect and previously correlated with PSA response. (35,29,44) In our study, we observed a detectable increase in low-EpCAM CTCs in progressive patients between the baseline measurement and treatment time point (6 ± 2 and 11 ± 3 CTCs/mL, respectively; Figure 3B). The CellSearch analysis conducted with these same samples did not exhibit the same trend, and the overall counts were very low (≤1 CTCs/mL; Figure 3C, Figure S12). These results are consistent with prior demonstration that CellSearch does not effectively detect mesenchymal CTCs with an enhanced capacity for metastasis. (25)

Low-EpCAM CTCs Exhibit Increased ARV7 Levels and Reduced Epithelial Properties Associated with Progressive Patients

To complement the EpCAM-based profiling described above, we used our microfluidic approach to study other phenotypic markers. The presence of the ARV7 androgen receptor splice variant was monitored as a function of the microfluidic capture zone for patient CTCs as shown in Figure 4. While levels of cytokeratin, an epithelial marker, decreased in later zones, the levels of ARV7 increased (Figure 4A,B). Interestingly, this observation indicates that less epithelial CTCs may harbor truncated AR.

Figure 4

Figure 4. Low-EpCAM CTCs exhibit increased ARV7 levels and reduced epithelial properties. (A) Representative immunofluorescent images obtained from patient CTCs isolated from the four zones of the microfluidic device. CTCs are identified as DAPI+/CK+/ARV7+/CD45 and obtained with a 50× objective (CD45 image is not shown in the panel). (B,C) Relative fluorescent intensity of androgen receptor variant 7 (ARV7) and cytokeratin CTCs captured in the four zones of the microfluidic device (n = 76 CTCs, n = 104 CTCs, respectively). Fluorescent intensities are obtained using immunofluorescence image analysis. (D) Percentage of androgen receptor variant 7 (ARV7) CTCs: cytokeratin positive CTCs for responsive versus progressive patients. (E) Percentage of N-cadherin positive CTCs: cytokeratin positive CTCs for responsive versus progressive patients. Zone 3 and zone 4 counts were considered for CTC ratio analysis. CTCs are captured with EpCAM-MNPs in separate microfluidic devices: in the first device, CTCs are identified as DAPI+/CK+/CD45; in the second device, CTCs are identified as DAPI+/CK+/ARV7+/CD45; and in the third device, CTCs are identified as DAPI+/NCad+/CD45. CTC counts are obtained at 0- and 9–22-weeks on-treatment. Statistics were performed with the Mann–Whitney test. *p < 0.05 is significant.

The percentage of CTCs captured in low-EpCAM zones significantly increased from 57% at baseline to 70% during treatment (Figure S4). The median zone values for baseline and 9–22 weeks of treatment are 3.3 CTCs/mL and 3.5 CTCs/mL, respectively, indicating a shift toward reduced EpCAM phenotype over the treatment period. Expression of EMT-related genes in CTCs may be associated with mCRPC, such as reduced cytokeratin levels and increased N-cadherin expression. (29) Using the microfluidic device, we have previously demonstrated that CTCs with low epithelial phenotypes exhibited invasive features, such as enhanced collagen uptake and folate-induced NAD(P)H metabolism. (41) In addition, we previously observed that CTCs in vivo were trapped in low-EpCAM zones, and mice receiving docetaxel chemotherapy exhibited a phenotypic shift in CTC profiles toward lower-EpCAM zones after 6 weeks of treatment. (45,46) Thus, the shift toward lower-EpCAM zones in mCRPC patients may suggest increased invasiveness of the residual tumor cells.
The proportion of ARV7-positive and N-cadherin-positive CTCs were assessed in progressive patients relative to responsive patients (Figure 4D,E). At baseline, the percentage of ARV7-positive CTCs relative to cytokeratin-positive CTCs was 52% and 26% for progressive vs responsive patients, respectively. In comparison, the baseline percentage of N-cadherin-positive CTCs relative to cytokeratin-positive CTCs was 213% and 66% for progressive vs responsive patients, respectively. AR-positive CTCs did not vary between progressive and responsive patients (80% and 79%, respectively) (Figure S7).
Progressive patients exhibit a higher incidence of bone metastases relative to responsive patients prior to the onset of abiraterone or enzalutamide treatment (67% vs 55%, respectively, Figure S1). The increased incidence of bone metastases prior to the administrative of abiraterone/enzalutamide may correlate with higher proportions of ARV7-positive and N-cadherin-positive CTCs detected in these patients. Increased incidence of ARV7 are considered an adaptive response to androgen deprivation therapy. (47) The two most accepted clinical assays for evaluating the presence of ARV7 in CTCs include the label-free immunofluorescent assay from Epic Sciences (47) and the mRNA-based AdnaTest platform. (48,49) Elevated ARV7 expression levels have been associated with resistance to treatment with enzalutamide or abiraterone, lower PSA response rates, and reduced overall survival. (50) Thus, tracking heterogeneous populations of CTCs at different stages of disease progression may significantly influence clinical decisions.

Conclusion

ARTICLE SECTIONS
Jump To

We profiled CTCs from 36 mCRPC patients receiving abiraterone or enzalutamide over a median treatment time of 13 weeks. CTCs were captured in a microfluidic device which trapped low-EpCAM cells with high efficiency and sorted these cells into zones based on the expression level of EpCAM. Overall, the microfluidic device was capable of tracking low-EpCAM CTCs over the treatment period, which were largely missed by CellSearch. CTCs correlate with the responsiveness to treatment and shift toward lower EpCAM levels during patient treatment with abiraterone or enzalutamide. Progressive patients had increased percentages of N-cadherin-positive and ARV7-positive CTCs compared to responsive patients. Overall, this study identifies CTC biomarkers associated with disease-progressive patients and suggests that mesenchymal properties and increased ARV7 expression levels may be linked to sustained CTC presence in circulation. The ability to profile low-EpCAM CTC subtypes provides an important capability for monitoring patients with advanced cancers.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.9b01697.

  • Materials and Methods section along with supporting data and tables (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
    • Anthony M. Joshua - Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, CanadaKinghorn Cancer Centre, St. Vincent’s Hospital Sydney, Darlinghurst, New South Wales 2010, Australia Email: [email protected]
    • Shana O. Kelley - Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, CanadaDepartment of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, CanadaDepartment of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, CanadaDepartment of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, CanadaOrcidhttp://orcid.org/0000-0003-3360-5359 Email: [email protected]
  • Authors
    • Brenda J. Green - Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
    • Vivian Nguyen - Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
    • Eshetu Atenafu - Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
    • Phillip Weeber - Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
    • Bill T. V. Duong - Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
    • Punithan Thiagalingam - Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
    • Mahmoud Labib - Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, CanadaOrcidhttp://orcid.org/0000-0003-4565-2056
    • Reza M. Mohamadi - Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
    • Aaron R. Hansen - Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

We thank the ECTI facility at the University of Toronto for their clean room facilities. We also thank the Province of Ontario (Ontario Research Fund-Research Excellence), the Natural Sciences and Engineering Council, and the Canadian Institutes of Health Research for grants that supported this work.

References

ARTICLE SECTIONS
Jump To

This article references 52 other publications.

  1. 1
    Pawelek, J. M.; Chakraborty, A. K. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat. Rev. Cancer 2008, 8 (5), 37786,  DOI: 10.1038/nrc2371
  2. 2
    Racila, E.; Euhus, D.; Weiss, A. J.; Rao, C.; McConnell, J.; Terstappen, L. W.; Uhr, J. W. Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (8), 458994,  DOI: 10.1073/pnas.95.8.4589
  3. 3
    Mehlen, P.; Puisieux, A. Metastasis: a question of life or death. Nat. Rev. Cancer 2006, 6 (6), 44958,  DOI: 10.1038/nrc1886
  4. 4
    Yu, M.; Bardia, A.; Wittner, B. S.; Stott, S. L.; Smas, M. E.; Ting, D. T.; Isakoff, S. J.; Ciciliano, J. C.; Wells, M. N.; Shah, A. M.; Concannon, K. F.; Donaldson, M. C.; Sequist, L. V.; Brachtel, E.; Sgroi, D.; Baselga, J.; Ramaswamy, S.; Toner, M.; Haber, D. A.; Maheswaran, S. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013, 339 (6119), 5804,  DOI: 10.1126/science.1228522
  5. 5
    Jin, X.; Mu, P. Targeting Breast Cancer Metastasis. Breast Cancer: Basic Clin. Res. 2015, 9s1, 2334,  DOI: 10.4137/BCBCR.S25460
  6. 6
    Green, B. J.; Panagiotakopoulou, M.; Pramotton, F. M.; Stefopoulos, G.; Kelley, S. O.; Poulikakos, D.; Ferrari, A. Pore shape defines paths of metastatic cell migration. Nano Lett. 2018, 18, 2140,  DOI: 10.1021/acs.nanolett.8b00431
  7. 7
    Green, B. J.; Saberi Safaei, T.; Mepham, A.; Labib, M.; Mohamadi, R. M.; Kelley, S. O. Beyond the Capture of Circulating Tumor Cells: Next-Generation Devices and Materials. Angew. Chem., Int. Ed. 2016, 55 (4), 125265,  DOI: 10.1002/anie.201505100
  8. 8
    Poudineh, M.; Sargent, E. H.; Pantel, K.; Kelley, S. O. Profiling circulating tumour cells and other biomarkers of invasive cancers. Nat. Biomed. Eng. 2018, 2 (2), 7284,  DOI: 10.1038/s41551-018-0190-5
  9. 9
    Alix-Panabieres, C.; Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 2014, 14 (9), 62331,  DOI: 10.1038/nrc3820
  10. 10
    Nagrath, S.; Sequist, L. V.; Maheswaran, S.; Bell, D. W.; Irimia, D.; Ulkus, L.; Smith, M. R.; Kwak, E. L.; Digumarthy, S.; Muzikansky, A.; Ryan, P.; Balis, U. J.; Tompkins, R. G.; Haber, D. A.; Toner, M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450 (7173), 12359,  DOI: 10.1038/nature06385
  11. 11
    Stott, S. L.; Hsu, C. H.; Tsukrov, D. I.; Yu, M.; Miyamoto, D. T.; Waltman, B. A.; Rothenberg, S. M.; Shah, A. M.; Smas, M. E.; Korir, G. K.; Floyd, F. P., Jr.; Gilman, A. J.; Lord, J. B.; Winokur, D.; Springer, S.; Irimia, D.; Nagrath, S.; Sequist, L. V.; Lee, R. J.; Isselbacher, K. J.; Maheswaran, S.; Haber, D. A.; Toner, M. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (43), 183927,  DOI: 10.1073/pnas.1012539107
  12. 12
    Yoon, H. J.; Kim, T. H.; Zhang, Z.; Azizi, E.; Pham, T. M.; Paoletti, C.; Lin, J.; Ramnath, N.; Wicha, M. S.; Hayes, D. F.; Simeone, D. M.; Nagrath, S. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol. 2013, 8 (10), 73541,  DOI: 10.1038/nnano.2013.194
  13. 13
    Zhang, Y.; Wu, M.; Han, X.; Wang, P.; Qin, L. High-Throughput, Label-Free Isolation of Cancer Stem Cells on the Basis of Cell Adhesion Capacity. Angew. Chem., Int. Ed. 2015, 54 (37), 1083842,  DOI: 10.1002/anie.201505294
  14. 14
    Witek, M. A.; Aufforth, R. D.; Wang, H.; Kamande, J. W.; Jackson, J. M.; Pullagurla, S. R.; Hupert, M. L.; Usary, J.; Wysham, W. Z.; Hilliard, D.; Montgomery, S.; Bae-Jump, V.; Carey, L. A.; Gehrig, P. A.; Milowsky, M. I.; Perou, C. M.; Soper, J. T.; Whang, Y. E.; Yeh, J. J.; Martin, G.; Soper, S. A. Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule. npj Precis. Oncol. 2017, 1, 24,  DOI: 10.1038/s41698-017-0028-8
  15. 15
    Liu, Z.; Lee, Y.; Jang, J.; Li, Y.; Han, X.; Yokoi, K.; Ferrari, M.; Zhou, L.; Qin, L. Microfluidic cytometric analysis of cancer cell transportability and invasiveness. Sci. Rep. 2015, 5, 14272,  DOI: 10.1038/srep14272
  16. 16
    Yoneda, K.; Kuwata, T.; Chikaishi, Y.; Mori, M.; Kanayama, M.; Takenaka, M.; Oka, S.; Hirai, A.; Imanishi, N.; Kuroda, K.; Ichiki, Y.; Ohnaga, T.; Tanaka, F. Detection of circulating tumor cells with a novel microfluidic system in malignant pleural mesothelioma. Cancer Sci. 2019, 110 (2), 726733,  DOI: 10.1111/cas.13895
  17. 17
    Byun, S.; Son, S.; Amodei, D.; Cermak, N.; Shaw, J.; Kang, J. H.; Hecht, V. C.; Winslow, M. M.; Jacks, T.; Mallick, P.; Manalis, S. R. Characterizing deformability and surface friction of cancer cells. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (19), 75805,  DOI: 10.1073/pnas.1218806110
  18. 18
    Shaw Bagnall, J.; Byun, S.; Begum, S.; Miyamoto, D. T.; Hecht, V. C.; Maheswaran, S.; Stott, S. L.; Toner, M.; Hynes, R. O.; Manalis, S. R. Deformability of Tumor Cells versus Blood Cells. Sci. Rep. 2015, 5, 18542,  DOI: 10.1038/srep18542
  19. 19
    Sarioglu, A. F.; Aceto, N.; Kojic, N.; Donaldson, M. C.; Zeinali, M.; Hamza, B.; Engstrom, A.; Zhu, H.; Sundaresan, T. K.; Miyamoto, D. T.; Luo, X.; Bardia, A.; Wittner, B. S.; Ramaswamy, S.; Shioda, T.; Ting, D. T.; Stott, S. L.; Kapur, R.; Maheswaran, S.; Haber, D. A.; Toner, M. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 2015, 12 (7), 68591,  DOI: 10.1038/nmeth.3404
  20. 20
    Poudineh, M.; Aldridge, P. M.; Ahmed, S.; Green, B. J.; Kermanshah, L.; Nguyen, V.; Tu, C.; Mohamadi, R. M.; Nam, R. K.; Hansen, A.; Sridhar, S. S.; Finelli, A.; Fleshner, N. E.; Joshua, A. M.; Sargent, E. H.; Kelley, S. O. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotechnol. 2017, 12 (3), 274281,  DOI: 10.1038/nnano.2016.239
  21. 21
    Labib, M.; Mohamadi, R. M.; Poudineh, M.; Ahmed, S. U.; Ivanov, I.; Huang, C. L.; Moosavi, M.; Sargent, E. H.; Kelley, S. O. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nat. Chem. 2018, 10 (5), 489495,  DOI: 10.1038/s41557-018-0025-8
  22. 22
    Pantel, K.; Brakenhoff, R. H.; Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 2008, 8 (5), 32940,  DOI: 10.1038/nrc2375
  23. 23
    Ligthart, S. T.; Coumans, F. A. W.; Attard, G.; Mulick Cassidy, A.; de Bono, J. S.; Terstappen, L. W. M. M. Unbiased and automated identification of a circulating tumour cell definition that associates with overall survival. PLoS One 2011, 6 (11), e27419,  DOI: 10.1371/journal.pone.0027419
  24. 24
    Watson, P. A.; Arora, V. K.; Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 2015, 15 (12), 70111,  DOI: 10.1038/nrc4016
  25. 25
    Lowes, L. E.; Goodale, D.; Xia, Y.; Postenka, C.; Piaseczny, M. M.; Paczkowski, F.; Allan, A. L. Epithelial-to-mesenchymal transition leads to disease-stage differences in circulating tumor cell detection and metastasis in pre-clinical models of prostate cancer. Oncotarget 2016, 7 (46), 7612576139,  DOI: 10.18632/oncotarget.12682
  26. 26
    Antonarakis, E. S.; Lu, C.; Luber, B.; Wang, H.; Chen, Y.; Zhu, Y.; Silberstein, J. L.; Taylor, M. N.; Maughan, B. L.; Denmeade, S. R.; Pienta, K. J.; Paller, C. J.; Carducci, M. A.; Eisenberger, M. A.; Luo, J. Clinical Significance of Androgen Receptor Splice Variant-7 mRNA Detection in Circulating Tumor Cells of Men With Metastatic Castration-Resistant Prostate Cancer Treated With First- and Second-Line Abiraterone and Enzalutamide. J. Clin. Oncol. 2017, 35 (19), 21492156,  DOI: 10.1200/JCO.2016.70.1961
  27. 27
    Satelli, A.; Batth, I.; Brownlee, Z.; Mitra, A.; Zhou, S.; Noh, H.; Rojas, C. R.; Li, H.; Meng, Q. H.; Li, S. EMT circulating tumor cells detected by cell-surface vimentin are associated with prostate cancer progression. Oncotarget 2017, 8 (30), 4932949337,  DOI: 10.18632/oncotarget.17632
  28. 28
    Armstrong, A. J.; Marengo, M. S.; Oltean, S.; Kemeny, G.; Bitting, R. L.; Turnbull, J. D.; Herold, C. I.; Marcom, P. K.; George, D. J.; Garcia-Blanco, M. A. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol. Cancer Res. 2011, 9 (8), 9971007,  DOI: 10.1158/1541-7786.MCR-10-0490
  29. 29
    Chen, C. L.; Mahalingam, D.; Osmulski, P.; Jadhav, R. R.; Wang, C. M.; Leach, R. J.; Chang, T. C.; Weitman, S. D.; Kumar, A. P.; Sun, L.; Gaczynska, M. E.; Thompson, I. M.; Huang, T. H. Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate 2013, 73 (8), 81326,  DOI: 10.1002/pros.22625
  30. 30
    Mitra, A.; Mishra, L.; Li, S. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 2015, 6 (13), 1069710711,  DOI: 10.18632/oncotarget.4037
  31. 31
    Chang, L.; Graham, P. H.; Hao, J.; Ni, J.; Bucci, J.; Cozzi, P. J.; Kearsley, J. H.; Li, Y. Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 2013, 4, e875,  DOI: 10.1038/cddis.2013.407
  32. 32
    Scher, H. I.; Morris, M. J.; Stadler, W. M.; Higano, C.; Basch, E.; Fizazi, K.; Antonarakis, E. S.; Beer, T. M.; Carducci, M. A.; Chi, K. N.; Corn, P. G.; de Bono, J. S.; Dreicer, R.; George, D. J.; Heath, E. I.; Hussain, M.; Kelly, W. K.; Liu, G.; Logothetis, C.; Nanus, D.; Stein, M. N.; Rathkopf, D. E.; Slovin, S. F.; Ryan, C. J.; Sartor, O.; Small, E. J.; Smith, M. R.; Sternberg, C. N.; Taplin, M. E.; Wilding, G.; Nelson, P. S.; Schwartz, L. H.; Halabi, S.; Kantoff, P. W.; Armstrong, A. J. Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. J. Clin. Oncol. 2016, 34 (12), 140218,  DOI: 10.1200/JCO.2015.64.2702
  33. 33
    Tucci, M.; Scagliotti, G. V.; Vignani, F. Metastatic castration-resistant prostate cancer: time for innovation. Future Oncol. 2015, 11 (1), 91106,  DOI: 10.2217/fon.14.145
  34. 34
    Liu, W.; Yin, B.; Wang, X.; Yu, P.; Duan, X.; Liu, C.; Wang, B.; Tao, Z. Circulating tumor cells in prostate cancer: Precision diagnosis and therapy. Oncol. Lett. 2017, 14 (2), 12231232,  DOI: 10.3892/ol.2017.6332
  35. 35
    De Laere, B.; Oeyen, S.; Van Oyen, P.; Ghysel, C.; Ampe, J.; Ost, P.; Demey, W.; Hoekx, L.; Schrijvers, D.; Brouwers, B.; Lybaert, W.; Everaert, E.; Van Kerckhove, P.; De Maeseneer, D.; Strijbos, M.; Bols, A.; Fransis, K.; Beije, N.; de Kruijff, I.; van Dam, V.; Brouwer, A.; van Dam, P. J.; Van den Eynden, G.; Rutten, A.; Sleijfer, S.; Vandebroek, J.; Van Laere, S.; Dirix, L. Circulating tumor cells and survival in abiraterone- and enzalutamide-treated patients with castration-resistant prostate cancer. Prostate 2018, 78 (6), 435445,  DOI: 10.1002/pros.23488
  36. 36
    Scher, H. I.; Fizazi, K.; Saad, F.; Taplin, M. E.; Sternberg, C. N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K. N.; Shore, N. D.; Armstrong, A. J.; Flaig, T. W.; Flechon, A.; Mainwaring, P.; Fleming, M.; Hainsworth, J. D.; Hirmand, M.; Selby, B.; Seely, L.; de Bono, J. S. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 2012, 367 (13), 118797,  DOI: 10.1056/NEJMoa1207506
  37. 37
    Loriot, Y.; Bianchini, D.; Ileana, E.; Sandhu, S.; Patrikidou, A.; Pezaro, C.; Albiges, L.; Attard, G.; Fizazi, K.; De Bono, J. S.; Massard, C. Antitumour activity of abiraterone acetate against metastatic castration-resistant prostate cancer progressing after docetaxel and enzalutamide (MDV3100). Ann. Oncol. 2013, 24 (7), 180712,  DOI: 10.1093/annonc/mdt136
  38. 38
    Brand, L. J.; Dehm, S. M. Androgen receptor gene rearrangements: new perspectives on prostate cancer progression. Curr. Drug Targets 2013, 14 (4), 441449,  DOI: 10.2174/1389450111314040005
  39. 39
    van der Steen, T.; Tindall, D. J.; Huang, H. Posttranslational modification of the androgen receptor in prostate cancer. Int. J. Mol. Sci. 2013, 14 (7), 1483359,  DOI: 10.3390/ijms140714833
  40. 40
    Mohamadi, R. M.; Besant, J. D.; Mepham, A.; Green, B.; Mahmoudian, L.; Gibbs, T.; Ivanov, I.; Malvea, A.; Stojcic, J.; Allan, A. L.; Lowes, L. E.; Sargent, E. H.; Nam, R. K.; Kelley, S. O. Nanoparticle-mediated binning and profiling of heterogeneous circulating tumor cell subpopulations. Angew. Chem., Int. Ed. 2015, 54 (1), 13943,  DOI: 10.1002/anie.201409376
  41. 41
    Green, B. J.; Kermanshah, L.; Labib, M.; Ahmed, S. U.; Silva, P. N.; Mahmoudian, L.; Chang, I. H.; Mohamadi, R. M.; Rocheleau, J. V.; Kelley, S. O. Isolation of Phenotypically Distinct Cancer Cells Using Nanoparticle-Mediated Sorting. ACS Appl. Mater. Interfaces 2017, 9 (24), 2043520443,  DOI: 10.1021/acsami.7b05253
  42. 42
    Poudineh, M.; Labib, M.; Ahmed, S.; Nguyen, L. N.; Kermanshah, L.; Mohamadi, R. M.; Sargent, E. H.; Kelley, S. O. Profiling Functional and Biochemical Phenotypes of Circulating Tumor Cells Using a Two-Dimensional Sorting Device. Angew. Chem., Int. Ed. 2017, 56 (1), 163168,  DOI: 10.1002/anie.201608983
  43. 43
    Xu, Y.; Zhao, H.; Hou, J. Correlation between overexpression of EpCAM in prostate tissues and genesis of androgen-dependent prostate cancer. Tumor Biol. 2014, 35 (7), 6695700,  DOI: 10.1007/s13277-014-1892-2
  44. 44
    Wilbaux, M.; Tod, M.; De Bono, J.; Lorente, D.; Mateo, J.; Freyer, G.; You, B.; Henin, E. A Joint Model for the Kinetics of CTC Count and PSA Concentration During Treatment in Metastatic Castration-Resistant Prostate Cancer. CPT: Pharmacometrics Syst. Pharmacol. 2015, 4 (5), 27785,  DOI: 10.1002/psp4.34
  45. 45
    Kermanshah, L.; Poudineh, M.; Ahmed, S.; Nguyen, L. N. M.; Srikant, S.; Makonnen, R.; Pena Cantu, F.; Corrigan, M.; Kelley, S. O. Dynamic CTC phenotypes in metastatic prostate cancer models visualized using magnetic ranking cytometry. Lab Chip 2018, 18 (14), 20552064,  DOI: 10.1039/C8LC00310F
  46. 46
    Muhanna, N.; Mepham, A.; Mohamadi, R. M.; Chan, H.; Khan, T.; Akens, M.; Besant, J. D.; Irish, J.; Kelley, S. O. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine 2015, 11 (7), 161320,  DOI: 10.1016/j.nano.2015.04.017
  47. 47
    Scher, H. I.; Lu, D.; Schreiber, N. A.; Louw, J.; Graf, R. P.; Vargas, H. A.; Johnson, A.; Jendrisak, A.; Bambury, R.; Danila, D.; McLaughlin, B.; Wahl, J.; Greene, S. B.; Heller, G.; Marrinucci, D.; Fleisher, M.; Dittamore, R. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol 2016, 2 (11), 14411449,  DOI: 10.1001/jamaoncol.2016.1828
  48. 48
    Antonarakis, E. S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J. C.; Chen, Y.; Mohammad, T. A.; Chen, Y.; Fedor, H. L.; Lotan, T. L.; Zheng, Q.; De Marzo, A. M.; Isaacs, J. T.; Isaacs, W. B.; Nadal, R.; Paller, C. J.; Denmeade, S. R.; Carducci, M. A.; Eisenberger, M. A.; Luo, J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 2014, 371 (11), 102838,  DOI: 10.1056/NEJMoa1315815
  49. 49
    Antonarakis, E. S.; Lu, C.; Luber, B.; Wang, H.; Chen, Y.; Nakazawa, M.; Nadal, R.; Paller, C. J.; Denmeade, S. R.; Carducci, M. A.; Eisenberger, M. A.; Luo, J. Androgen Receptor Splice Variant 7 and Efficacy of Taxane Chemotherapy in Patients With Metastatic Castration-Resistant Prostate Cancer. JAMA Oncol 2015, 1 (5), 58291,  DOI: 10.1001/jamaoncol.2015.1341
  50. 50
    Crespo, M.; van Dalum, G.; Ferraldeschi, R.; Zafeiriou, Z.; Sideris, S.; Lorente, D.; Bianchini, D.; Rodrigues, D. N.; Riisnaes, R.; Miranda, S.; Figueiredo, I.; Flohr, P.; Nowakowska, K.; de Bono, J. S.; Terstappen, L. W.; Attard, G. Androgen receptor expression in circulating tumour cells from castration-resistant prostate cancer patients treated with novel endocrine agents. Br. J. Cancer 2015, 112 (7), 116674,  DOI: 10.1038/bjc.2015.63
  51. 51
    Zeinali, M.; Murlidhar, V.; Fouladdel, S.; Shao, S.; Zhao, L.; Cameron, H.; Bankhead, A., III; Shi, J.; Cuneo, K. C.; Sahai, V.; Azizi, E.; Wicha, M. S.; Hafner, M.; Simeone, D. M.; Nagrath, S. Profiling heterogeneous circulating tumor cells (CTC) populations in pancreatic cancer using a serial microfluidic CTC carpet chip. Adv. Biosystems 2018, 2 (12), 1800228,  DOI: 10.1002/adbi.201800228
  52. 52
    Kang, Y.-T.; Kim, Y. J.; Bu, J.; Chen, S.; Cho, Y.-H.; Lee, H. M.; Ryu, C. J.; Lim, Y.; Han, S.-W. Epithelial and mesenchymal circulating tumor cell isolation and discrimination using dual-immunopatterned device with newly-developed anti-63B6 and anti-EpCAM. Sens. Actuators, B 2018, 260, 320330,  DOI: 10.1016/j.snb.2017.12.157

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 26 publications.

  1. Songwei Lv, Dong Zheng, Zhaoxian Chen, Bin Jia, Peng Zhang, Jiaxuan Yan, Wanlan Jiang, Xiubo Zhao, Jing-Juan Xu. Near-Infrared Light-Responsive Size-Selective Lateral Flow Chip for Single-Cell Manipulation of Circulating Tumor Cells. Analytical Chemistry 2023, 95 (2) , 1201-1209. https://doi.org/10.1021/acs.analchem.2c03947
  2. Zongjie Wang, Hansen Wang, Sichun Lin, Sharif Ahmed, Stephane Angers, Edward H. Sargent, Shana O. Kelley. Nanoparticle Amplification Labeling for High-Performance Magnetic Cell Sorting. Nano Letters 2022, 22 (12) , 4774-4783. https://doi.org/10.1021/acs.nanolett.2c01018
  3. Pi Ding, Zhili Wang, Zeen Wu, Mingchao Hu, Weipei Zhu, Na Sun, Renjun Pei. Tannic Acid (TA)-Functionalized Magnetic Nanoparticles for EpCAM-Independent Circulating Tumor Cell (CTC) Isolation from Patients with Different Cancers. ACS Applied Materials & Interfaces 2021, 13 (3) , 3694-3700. https://doi.org/10.1021/acsami.0c20916
  4. Aynur Abdulla, Ting Zhang, Khan Zara Ahmad, Shanhe Li, Jiatao Lou, Xianting Ding. Label-free Separation of Circulating Tumor Cells Using a Self-Amplified Inertial Focusing (SAIF) Microfluidic Chip. Analytical Chemistry 2020, 92 (24) , 16170-16179. https://doi.org/10.1021/acs.analchem.0c03920
  5. Mahmoud Labib, David N. Philpott, Zongjie Wang, Carine Nemr, Jenise B. Chen, Edward H. Sargent, Shana O. Kelley. Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level. Accounts of Chemical Research 2020, 53 (8) , 1445-1457. https://doi.org/10.1021/acs.accounts.0c00179
  6. Malgorzata A. Witek, Ian M. Freed, Steven A. Soper. Cell Separations and Sorting. Analytical Chemistry 2020, 92 (1) , 105-131. https://doi.org/10.1021/acs.analchem.9b05357
  7. Peng Miao, Yuguo Tang. Gold Nanoparticles-Based Multipedal DNA Walker for Ratiometric Detection of Circulating Tumor Cell. Analytical Chemistry 2019, 91 (23) , 15187-15192. https://doi.org/10.1021/acs.analchem.9b04000
  8. Kangfu Chen, Zongjie Wang. A Micropillar Array Based Microfluidic Device for Rare Cell Detection and Single-Cell Proteomics. Methods and Protocols 2023, 6 (5) , 80. https://doi.org/10.3390/mps6050080
  9. Pranav, Partha Laskar, Meena Jaggi, Subhash C. Chauhan, Murali M. Yallapu. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. Journal of Advanced Research 2023, 51 , 197-217. https://doi.org/10.1016/j.jare.2022.11.001
  10. Karl Gardner, Rutwik Joshi, Md Nayeem Hasan Kashem, Thanh Quang Pham, Qiugang Lu, Wei Li. Label free identification of different cancer cells using deep learning-based image analysis. APL Machine Learning 2023, 1 (2) https://doi.org/10.1063/5.0141730
  11. Kangfu Chen, Zongjie Wang. Micro-Magnetofluidic System for Rare Cell Analysis: From Principle to Translation. Chemosensors 2023, 11 (6) , 335. https://doi.org/10.3390/chemosensors11060335
  12. Aynur Abdulla, Xianting Ding. SAIF: Label-Free Separation of Circulating Tumor Cells Using a Self-Amplified Inertial Focusing Microfluidic Chip. 2023, 207-218. https://doi.org/10.1007/978-1-0716-3271-0_14
  13. Aynur Abdulla, Ting Zhang, Shanhe Li, Wenke Guo, Antony R. Warden, Yufang Xin, Nokuzola Maboyi, Jiatao Lou, Haiyang Xie, Xianting Ding. Integrated microfluidic single-cell immunoblotting chip enables high-throughput isolation, enrichment and direct protein analysis of circulating tumor cells. Microsystems & Nanoengineering 2022, 8 (1) https://doi.org/10.1038/s41378-021-00342-2
  14. Ya-Ting Zhang, Min Dong, Pan-Pan Xu, Jia-Hui Cai, Shi-He Liu, Ya-Biao Gao, Li-Bin Wang, Jian Li, Hong Jiang, Ji-Dong Wang, De-Song Wang. Aptamer-mediated DNA concatemer functionalized magnetic nanoparticles for reversible capture and release of circulating tumor cells. Colloids and Surfaces B: Biointerfaces 2022, 218 , 112733. https://doi.org/10.1016/j.colsurfb.2022.112733
  15. Yongwei Hu, Shixian Lv, Jiaming Wan, Chunxiong Zheng, Dan Shao, Haixia Wang, Yu Tao, Mingqiang Li, Yun Luo. Recent advances in nanomaterials for prostate cancer detection and diagnosis. Journal of Materials Chemistry B 2022, 10 (26) , 4907-4934. https://doi.org/10.1039/D2TB00448H
  16. Brenda J. Green, Margherita Marazzini, Ben Hershey, Amir Fardin, Qingsen Li, Zongjie Wang, Giovanni Giangreco, Federica Pisati, Stefano Marchesi, Andrea Disanza, Emanuela Frittoli, Emanuele Martini, Serena Magni, Galina V. Beznoussenko, Claudio Vernieri, Riccardo Lobefaro, Dario Parazzoli, Paolo Maiuri, Kristina Havas, Mahmoud Labib, Sara Sigismund, Pier Paolo Di Fiore, Rosalind H. Gunby, Shana O. Kelley, Giorgio Scita. PillarX: A Microfluidic Device to Profile Circulating Tumor Cell Clusters Based on Geometry, Deformability, and Epithelial State. Small 2022, 18 (17) https://doi.org/10.1002/smll.202106097
  17. Maziar Hakim, Leyla Kermanshah, Hesam Abouali, Hanieh Mohammad Hashemi, Alireza Yari, Farhad Khorasheh, Iran Alemzadeh, Manouchehr Vossoughi. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophysical Reviews 2022, 14 (2) , 517-543. https://doi.org/10.1007/s12551-022-00944-8
  18. Qingjin Li, Ziyi Liao, Lan Han, Linyao Li, Yang Song, Erqun Song. Isolation and Analysis of Tumor Cell Subpopulations Using Biomimetic Immuno‐Fluorescent Magnetic Multifunctional Nanoprobes. Advanced Functional Materials 2020, 30 (49) https://doi.org/10.1002/adfm.202004963
  19. Takahiro Okabe, Shinsaku Togo, Yuichi Fujimoto, Junko Watanabe, Issei Sumiyoshi, Akira Orimo, Kazuhisa Takahashi. Mesenchymal Characteristics and Predictive Biomarkers on Circulating Tumor Cells for Therapeutic Strategy. Cancers 2020, 12 (12) , 3588. https://doi.org/10.3390/cancers12123588
  20. Bill T.V. Duong, Licun Wu, Brenda J. Green, Fatemeh Bavaghar-Zaeimi, Zongjie Wang, Mahmoud Labib, Yuxiao Zhou, Fernando J.P. Cantu, Thurgaa Jeganathan, Sandra Popescu, Jennifer Pantea, Marc de Perrot, Shana O. Kelley. A liquid biopsy for detecting circulating mesothelial precursor cells: A new biomarker for diagnosis and prognosis in mesothelioma. EBioMedicine 2020, 61 , 103031. https://doi.org/10.1016/j.ebiom.2020.103031
  21. Junrong Li, Alain Wuethrich, Shuvashi Dey, Rebecca E. Lane, Abu A. I. Sina, Jing Wang, Yuling Wang, Simon Puttick, Kevin M. Koo, Matt Trau. The Growing Impact of Micro/Nanomaterial‐Based Systems in Precision Oncology: Translating “Multiomics” Technologies. Advanced Functional Materials 2020, 30 (37) https://doi.org/10.1002/adfm.201909306
  22. Hongmei Chen, Yong Li, Zhifeng Zhang, Shuangshou Wang. Immunomagnetic separation of circulating tumor cells with microfluidic chips and their clinical applications. Biomicrofluidics 2020, 14 (4) https://doi.org/10.1063/5.0005373
  23. Caiping Ding, Cuiling Zhang, Shasha Cheng, Yuezhong Xian. Multivalent Aptamer Functionalized Ag 2 S Nanodots/Hybrid Cell Membrane‐Coated Magnetic Nanobioprobe for the Ultrasensitive Isolation and Detection of Circulating Tumor Cells. Advanced Functional Materials 2020, 30 (16) https://doi.org/10.1002/adfm.201909781
  24. Mio Ikeda, Yasuhiro Koh, Shunsuke Teraoka, Koichi Sato, Kuninobu Kanai, Atsushi Hayata, Nahomi Tokudome, Hiroaki Akamatsu, Yuichi Ozawa, Keiichiro Akamatsu, Katsuya Endo, Masayuki Higuchi, Masanori Nakanishi, Hiroki Ueda, Nobuyuki Yamamoto. Detection of AXL expression in circulating tumor cells of lung cancer patients using an automated microcavity array system. Cancer Medicine 2020, 9 (6) , 2122-2133. https://doi.org/10.1002/cam4.2846
  25. Maria Hepel. Magnetic Nanoparticles for Nanomedicine. Magnetochemistry 2020, 6 (1) , 3. https://doi.org/10.3390/magnetochemistry6010003
  26. F. Raquel Maia, Rui L. Reis, Joaquim M. Oliveira. Finding the perfect match between nanoparticles and microfluidics to respond to cancer challenges. Nanomedicine: Nanotechnology, Biology and Medicine 2020, 24 , 102139. https://doi.org/10.1016/j.nano.2019.102139
  • Abstract

    Figure 1

    Figure 1. High-efficiency capture of low-EpCAM CTCs from prostate cancer patients. (A,B) Schematic of patient sample collection and processing through the microfluidic device. CTCs are captured from metastatic castrate resistant prostate cancer (mCRPC) patients (n = 36) receiving enzalutamide or abiraterone. Briefly, whole blood is incubated with magnetic nanoparticles (MNPs) conjugated to EpCAM and introduced into the device at a flow rate of 600 μL/h in the presence of an external magnetic field. CTCs are trapped in different zones based on their expression level of EpCAM. (C) LnCaP and PC3 cells were profiled with the microfluidic device. (n = 292 LnCaP cells and n = 343 PC3 cells). High-EpCAM LnCaP cells are trapped primarily in zone 1, whereas low-EpCAM expressing PC3 cells are trapped in zones 3 and 4. (D) Capture efficiency of LnCaP and PC3 cells in the microfluidic device compared to CellSearch (n = 138 LnCaP cells and n = 96 PC3 cells). Cells were spiked in 1 mL of whole blood. Statistics are performed with two-tailed t test, *p < 0.05.

    Figure 2

    Figure 2. CTC profiles from prostate cancer patients. CTC counts were profiled with the microfluidic device (CTCs/mL) and compared with CellSearch (CTCs/mL) over (A) 0 weeks and (B) 9–22 weeks on-treatment. CTCs were identified as DAPI+/CK+/CD45. Microfluidic device CTC counts were divided into CTCs captured in low-EpCAM zones 1 and 2 (light gray) and high-EpCAM zones 3 and 4 (black). CTC profiles were obtained from 36 mCRPC patients receiving enzalutamide or abiraterone. The horizontal dashed line indicates data is not available for a particular patient. No bar indicates 0 CTC count. The dotted line separates PSA responsive vs progressive patients, as defined according to PCWG3 criteria. (32) PSA response is defined as a >50% decline from baseline measured twice 3 to 4 weeks apart. PSA progression is defined as the first PSA rise that is ≥25% and ≥2 ng/mL above the nadir, confirmed 3 or more weeks later. If there is no initial decline from baseline, PSA progression is defined as ≥25% and ≥2 ng/mL after 12 weeks.

    Figure 3

    Figure 3. mCRPC CTCs exhibit a low-EpCAM phenotype. CTCs were profiled with the microfluidic device (CTCs/mL) and separated into (A) high-EpCAM (zone 1 and zone 2) and (B) low-EpCAM (zone 3 and zone 4) counts. (C) CellSearch CTC counts (CTCs/mL). Patients were profiled at 0 weeks and 9–22 weeks on-treatment. The dotted line separates PSA responsive vs progressive patients (refer to definition in the Materials and Methods). CTC counts were obtained from 36 mCRPC patients receiving abiraterone or enzalutamide. CTCs were identified as DAPI+/CK+/CD45. Each dot represents a patient CTC count. Box plots represent standard error of the mean. The central square represents the mean, and the line represents the median.

    Figure 4

    Figure 4. Low-EpCAM CTCs exhibit increased ARV7 levels and reduced epithelial properties. (A) Representative immunofluorescent images obtained from patient CTCs isolated from the four zones of the microfluidic device. CTCs are identified as DAPI+/CK+/ARV7+/CD45 and obtained with a 50× objective (CD45 image is not shown in the panel). (B,C) Relative fluorescent intensity of androgen receptor variant 7 (ARV7) and cytokeratin CTCs captured in the four zones of the microfluidic device (n = 76 CTCs, n = 104 CTCs, respectively). Fluorescent intensities are obtained using immunofluorescence image analysis. (D) Percentage of androgen receptor variant 7 (ARV7) CTCs: cytokeratin positive CTCs for responsive versus progressive patients. (E) Percentage of N-cadherin positive CTCs: cytokeratin positive CTCs for responsive versus progressive patients. Zone 3 and zone 4 counts were considered for CTC ratio analysis. CTCs are captured with EpCAM-MNPs in separate microfluidic devices: in the first device, CTCs are identified as DAPI+/CK+/CD45; in the second device, CTCs are identified as DAPI+/CK+/ARV7+/CD45; and in the third device, CTCs are identified as DAPI+/NCad+/CD45. CTC counts are obtained at 0- and 9–22-weeks on-treatment. Statistics were performed with the Mann–Whitney test. *p < 0.05 is significant.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 52 other publications.

    1. 1
      Pawelek, J. M.; Chakraborty, A. K. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat. Rev. Cancer 2008, 8 (5), 37786,  DOI: 10.1038/nrc2371
    2. 2
      Racila, E.; Euhus, D.; Weiss, A. J.; Rao, C.; McConnell, J.; Terstappen, L. W.; Uhr, J. W. Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (8), 458994,  DOI: 10.1073/pnas.95.8.4589
    3. 3
      Mehlen, P.; Puisieux, A. Metastasis: a question of life or death. Nat. Rev. Cancer 2006, 6 (6), 44958,  DOI: 10.1038/nrc1886
    4. 4
      Yu, M.; Bardia, A.; Wittner, B. S.; Stott, S. L.; Smas, M. E.; Ting, D. T.; Isakoff, S. J.; Ciciliano, J. C.; Wells, M. N.; Shah, A. M.; Concannon, K. F.; Donaldson, M. C.; Sequist, L. V.; Brachtel, E.; Sgroi, D.; Baselga, J.; Ramaswamy, S.; Toner, M.; Haber, D. A.; Maheswaran, S. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013, 339 (6119), 5804,  DOI: 10.1126/science.1228522
    5. 5
      Jin, X.; Mu, P. Targeting Breast Cancer Metastasis. Breast Cancer: Basic Clin. Res. 2015, 9s1, 2334,  DOI: 10.4137/BCBCR.S25460
    6. 6
      Green, B. J.; Panagiotakopoulou, M.; Pramotton, F. M.; Stefopoulos, G.; Kelley, S. O.; Poulikakos, D.; Ferrari, A. Pore shape defines paths of metastatic cell migration. Nano Lett. 2018, 18, 2140,  DOI: 10.1021/acs.nanolett.8b00431
    7. 7
      Green, B. J.; Saberi Safaei, T.; Mepham, A.; Labib, M.; Mohamadi, R. M.; Kelley, S. O. Beyond the Capture of Circulating Tumor Cells: Next-Generation Devices and Materials. Angew. Chem., Int. Ed. 2016, 55 (4), 125265,  DOI: 10.1002/anie.201505100
    8. 8
      Poudineh, M.; Sargent, E. H.; Pantel, K.; Kelley, S. O. Profiling circulating tumour cells and other biomarkers of invasive cancers. Nat. Biomed. Eng. 2018, 2 (2), 7284,  DOI: 10.1038/s41551-018-0190-5
    9. 9
      Alix-Panabieres, C.; Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 2014, 14 (9), 62331,  DOI: 10.1038/nrc3820
    10. 10
      Nagrath, S.; Sequist, L. V.; Maheswaran, S.; Bell, D. W.; Irimia, D.; Ulkus, L.; Smith, M. R.; Kwak, E. L.; Digumarthy, S.; Muzikansky, A.; Ryan, P.; Balis, U. J.; Tompkins, R. G.; Haber, D. A.; Toner, M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450 (7173), 12359,  DOI: 10.1038/nature06385
    11. 11
      Stott, S. L.; Hsu, C. H.; Tsukrov, D. I.; Yu, M.; Miyamoto, D. T.; Waltman, B. A.; Rothenberg, S. M.; Shah, A. M.; Smas, M. E.; Korir, G. K.; Floyd, F. P., Jr.; Gilman, A. J.; Lord, J. B.; Winokur, D.; Springer, S.; Irimia, D.; Nagrath, S.; Sequist, L. V.; Lee, R. J.; Isselbacher, K. J.; Maheswaran, S.; Haber, D. A.; Toner, M. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (43), 183927,  DOI: 10.1073/pnas.1012539107
    12. 12
      Yoon, H. J.; Kim, T. H.; Zhang, Z.; Azizi, E.; Pham, T. M.; Paoletti, C.; Lin, J.; Ramnath, N.; Wicha, M. S.; Hayes, D. F.; Simeone, D. M.; Nagrath, S. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol. 2013, 8 (10), 73541,  DOI: 10.1038/nnano.2013.194
    13. 13
      Zhang, Y.; Wu, M.; Han, X.; Wang, P.; Qin, L. High-Throughput, Label-Free Isolation of Cancer Stem Cells on the Basis of Cell Adhesion Capacity. Angew. Chem., Int. Ed. 2015, 54 (37), 1083842,  DOI: 10.1002/anie.201505294
    14. 14
      Witek, M. A.; Aufforth, R. D.; Wang, H.; Kamande, J. W.; Jackson, J. M.; Pullagurla, S. R.; Hupert, M. L.; Usary, J.; Wysham, W. Z.; Hilliard, D.; Montgomery, S.; Bae-Jump, V.; Carey, L. A.; Gehrig, P. A.; Milowsky, M. I.; Perou, C. M.; Soper, J. T.; Whang, Y. E.; Yeh, J. J.; Martin, G.; Soper, S. A. Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule. npj Precis. Oncol. 2017, 1, 24,  DOI: 10.1038/s41698-017-0028-8
    15. 15
      Liu, Z.; Lee, Y.; Jang, J.; Li, Y.; Han, X.; Yokoi, K.; Ferrari, M.; Zhou, L.; Qin, L. Microfluidic cytometric analysis of cancer cell transportability and invasiveness. Sci. Rep. 2015, 5, 14272,  DOI: 10.1038/srep14272
    16. 16
      Yoneda, K.; Kuwata, T.; Chikaishi, Y.; Mori, M.; Kanayama, M.; Takenaka, M.; Oka, S.; Hirai, A.; Imanishi, N.; Kuroda, K.; Ichiki, Y.; Ohnaga, T.; Tanaka, F. Detection of circulating tumor cells with a novel microfluidic system in malignant pleural mesothelioma. Cancer Sci. 2019, 110 (2), 726733,  DOI: 10.1111/cas.13895
    17. 17
      Byun, S.; Son, S.; Amodei, D.; Cermak, N.; Shaw, J.; Kang, J. H.; Hecht, V. C.; Winslow, M. M.; Jacks, T.; Mallick, P.; Manalis, S. R. Characterizing deformability and surface friction of cancer cells. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (19), 75805,  DOI: 10.1073/pnas.1218806110
    18. 18
      Shaw Bagnall, J.; Byun, S.; Begum, S.; Miyamoto, D. T.; Hecht, V. C.; Maheswaran, S.; Stott, S. L.; Toner, M.; Hynes, R. O.; Manalis, S. R. Deformability of Tumor Cells versus Blood Cells. Sci. Rep. 2015, 5, 18542,  DOI: 10.1038/srep18542
    19. 19
      Sarioglu, A. F.; Aceto, N.; Kojic, N.; Donaldson, M. C.; Zeinali, M.; Hamza, B.; Engstrom, A.; Zhu, H.; Sundaresan, T. K.; Miyamoto, D. T.; Luo, X.; Bardia, A.; Wittner, B. S.; Ramaswamy, S.; Shioda, T.; Ting, D. T.; Stott, S. L.; Kapur, R.; Maheswaran, S.; Haber, D. A.; Toner, M. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 2015, 12 (7), 68591,  DOI: 10.1038/nmeth.3404
    20. 20
      Poudineh, M.; Aldridge, P. M.; Ahmed, S.; Green, B. J.; Kermanshah, L.; Nguyen, V.; Tu, C.; Mohamadi, R. M.; Nam, R. K.; Hansen, A.; Sridhar, S. S.; Finelli, A.; Fleshner, N. E.; Joshua, A. M.; Sargent, E. H.; Kelley, S. O. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotechnol. 2017, 12 (3), 274281,  DOI: 10.1038/nnano.2016.239
    21. 21
      Labib, M.; Mohamadi, R. M.; Poudineh, M.; Ahmed, S. U.; Ivanov, I.; Huang, C. L.; Moosavi, M.; Sargent, E. H.; Kelley, S. O. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nat. Chem. 2018, 10 (5), 489495,  DOI: 10.1038/s41557-018-0025-8
    22. 22
      Pantel, K.; Brakenhoff, R. H.; Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 2008, 8 (5), 32940,  DOI: 10.1038/nrc2375
    23. 23
      Ligthart, S. T.; Coumans, F. A. W.; Attard, G.; Mulick Cassidy, A.; de Bono, J. S.; Terstappen, L. W. M. M. Unbiased and automated identification of a circulating tumour cell definition that associates with overall survival. PLoS One 2011, 6 (11), e27419,  DOI: 10.1371/journal.pone.0027419
    24. 24
      Watson, P. A.; Arora, V. K.; Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 2015, 15 (12), 70111,  DOI: 10.1038/nrc4016
    25. 25
      Lowes, L. E.; Goodale, D.; Xia, Y.; Postenka, C.; Piaseczny, M. M.; Paczkowski, F.; Allan, A. L. Epithelial-to-mesenchymal transition leads to disease-stage differences in circulating tumor cell detection and metastasis in pre-clinical models of prostate cancer. Oncotarget 2016, 7 (46), 7612576139,  DOI: 10.18632/oncotarget.12682
    26. 26
      Antonarakis, E. S.; Lu, C.; Luber, B.; Wang, H.; Chen, Y.; Zhu, Y.; Silberstein, J. L.; Taylor, M. N.; Maughan, B. L.; Denmeade, S. R.; Pienta, K. J.; Paller, C. J.; Carducci, M. A.; Eisenberger, M. A.; Luo, J. Clinical Significance of Androgen Receptor Splice Variant-7 mRNA Detection in Circulating Tumor Cells of Men With Metastatic Castration-Resistant Prostate Cancer Treated With First- and Second-Line Abiraterone and Enzalutamide. J. Clin. Oncol. 2017, 35 (19), 21492156,  DOI: 10.1200/JCO.2016.70.1961
    27. 27
      Satelli, A.; Batth, I.; Brownlee, Z.; Mitra, A.; Zhou, S.; Noh, H.; Rojas, C. R.; Li, H.; Meng, Q. H.; Li, S. EMT circulating tumor cells detected by cell-surface vimentin are associated with prostate cancer progression. Oncotarget 2017, 8 (30), 4932949337,  DOI: 10.18632/oncotarget.17632
    28. 28
      Armstrong, A. J.; Marengo, M. S.; Oltean, S.; Kemeny, G.; Bitting, R. L.; Turnbull, J. D.; Herold, C. I.; Marcom, P. K.; George, D. J.; Garcia-Blanco, M. A. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol. Cancer Res. 2011, 9 (8), 9971007,  DOI: 10.1158/1541-7786.MCR-10-0490
    29. 29
      Chen, C. L.; Mahalingam, D.; Osmulski, P.; Jadhav, R. R.; Wang, C. M.; Leach, R. J.; Chang, T. C.; Weitman, S. D.; Kumar, A. P.; Sun, L.; Gaczynska, M. E.; Thompson, I. M.; Huang, T. H. Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate 2013, 73 (8), 81326,  DOI: 10.1002/pros.22625
    30. 30
      Mitra, A.; Mishra, L.; Li, S. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 2015, 6 (13), 1069710711,  DOI: 10.18632/oncotarget.4037
    31. 31
      Chang, L.; Graham, P. H.; Hao, J.; Ni, J.; Bucci, J.; Cozzi, P. J.; Kearsley, J. H.; Li, Y. Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 2013, 4, e875,  DOI: 10.1038/cddis.2013.407
    32. 32
      Scher, H. I.; Morris, M. J.; Stadler, W. M.; Higano, C.; Basch, E.; Fizazi, K.; Antonarakis, E. S.; Beer, T. M.; Carducci, M. A.; Chi, K. N.; Corn, P. G.; de Bono, J. S.; Dreicer, R.; George, D. J.; Heath, E. I.; Hussain, M.; Kelly, W. K.; Liu, G.; Logothetis, C.; Nanus, D.; Stein, M. N.; Rathkopf, D. E.; Slovin, S. F.; Ryan, C. J.; Sartor, O.; Small, E. J.; Smith, M. R.; Sternberg, C. N.; Taplin, M. E.; Wilding, G.; Nelson, P. S.; Schwartz, L. H.; Halabi, S.; Kantoff, P. W.; Armstrong, A. J. Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. J. Clin. Oncol. 2016, 34 (12), 140218,  DOI: 10.1200/JCO.2015.64.2702
    33. 33
      Tucci, M.; Scagliotti, G. V.; Vignani, F. Metastatic castration-resistant prostate cancer: time for innovation. Future Oncol. 2015, 11 (1), 91106,  DOI: 10.2217/fon.14.145
    34. 34
      Liu, W.; Yin, B.; Wang, X.; Yu, P.; Duan, X.; Liu, C.; Wang, B.; Tao, Z. Circulating tumor cells in prostate cancer: Precision diagnosis and therapy. Oncol. Lett. 2017, 14 (2), 12231232,  DOI: 10.3892/ol.2017.6332
    35. 35
      De Laere, B.; Oeyen, S.; Van Oyen, P.; Ghysel, C.; Ampe, J.; Ost, P.; Demey, W.; Hoekx, L.; Schrijvers, D.; Brouwers, B.; Lybaert, W.; Everaert, E.; Van Kerckhove, P.; De Maeseneer, D.; Strijbos, M.; Bols, A.; Fransis, K.; Beije, N.; de Kruijff, I.; van Dam, V.; Brouwer, A.; van Dam, P. J.; Van den Eynden, G.; Rutten, A.; Sleijfer, S.; Vandebroek, J.; Van Laere, S.; Dirix, L. Circulating tumor cells and survival in abiraterone- and enzalutamide-treated patients with castration-resistant prostate cancer. Prostate 2018, 78 (6), 435445,  DOI: 10.1002/pros.23488
    36. 36
      Scher, H. I.; Fizazi, K.; Saad, F.; Taplin, M. E.; Sternberg, C. N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K. N.; Shore, N. D.; Armstrong, A. J.; Flaig, T. W.; Flechon, A.; Mainwaring, P.; Fleming, M.; Hainsworth, J. D.; Hirmand, M.; Selby, B.; Seely, L.; de Bono, J. S. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 2012, 367 (13), 118797,  DOI: 10.1056/NEJMoa1207506
    37. 37
      Loriot, Y.; Bianchini, D.; Ileana, E.; Sandhu, S.; Patrikidou, A.; Pezaro, C.; Albiges, L.; Attard, G.; Fizazi, K.; De Bono, J. S.; Massard, C. Antitumour activity of abiraterone acetate against metastatic castration-resistant prostate cancer progressing after docetaxel and enzalutamide (MDV3100). Ann. Oncol. 2013, 24 (7), 180712,  DOI: 10.1093/annonc/mdt136
    38. 38
      Brand, L. J.; Dehm, S. M. Androgen receptor gene rearrangements: new perspectives on prostate cancer progression. Curr. Drug Targets 2013, 14 (4), 441449,  DOI: 10.2174/1389450111314040005
    39. 39
      van der Steen, T.; Tindall, D. J.; Huang, H. Posttranslational modification of the androgen receptor in prostate cancer. Int. J. Mol. Sci. 2013, 14 (7), 1483359,  DOI: 10.3390/ijms140714833
    40. 40
      Mohamadi, R. M.; Besant, J. D.; Mepham, A.; Green, B.; Mahmoudian, L.; Gibbs, T.; Ivanov, I.; Malvea, A.; Stojcic, J.; Allan, A. L.; Lowes, L. E.; Sargent, E. H.; Nam, R. K.; Kelley, S. O. Nanoparticle-mediated binning and profiling of heterogeneous circulating tumor cell subpopulations. Angew. Chem., Int. Ed. 2015, 54 (1), 13943,  DOI: 10.1002/anie.201409376
    41. 41
      Green, B. J.; Kermanshah, L.; Labib, M.; Ahmed, S. U.; Silva, P. N.; Mahmoudian, L.; Chang, I. H.; Mohamadi, R. M.; Rocheleau, J. V.; Kelley, S. O. Isolation of Phenotypically Distinct Cancer Cells Using Nanoparticle-Mediated Sorting. ACS Appl. Mater. Interfaces 2017, 9 (24), 2043520443,  DOI: 10.1021/acsami.7b05253
    42. 42
      Poudineh, M.; Labib, M.; Ahmed, S.; Nguyen, L. N.; Kermanshah, L.; Mohamadi, R. M.; Sargent, E. H.; Kelley, S. O. Profiling Functional and Biochemical Phenotypes of Circulating Tumor Cells Using a Two-Dimensional Sorting Device. Angew. Chem., Int. Ed. 2017, 56 (1), 163168,  DOI: 10.1002/anie.201608983
    43. 43
      Xu, Y.; Zhao, H.; Hou, J. Correlation between overexpression of EpCAM in prostate tissues and genesis of androgen-dependent prostate cancer. Tumor Biol. 2014, 35 (7), 6695700,  DOI: 10.1007/s13277-014-1892-2
    44. 44
      Wilbaux, M.; Tod, M.; De Bono, J.; Lorente, D.; Mateo, J.; Freyer, G.; You, B.; Henin, E. A Joint Model for the Kinetics of CTC Count and PSA Concentration During Treatment in Metastatic Castration-Resistant Prostate Cancer. CPT: Pharmacometrics Syst. Pharmacol. 2015, 4 (5), 27785,  DOI: 10.1002/psp4.34
    45. 45
      Kermanshah, L.; Poudineh, M.; Ahmed, S.; Nguyen, L. N. M.; Srikant, S.; Makonnen, R.; Pena Cantu, F.; Corrigan, M.; Kelley, S. O. Dynamic CTC phenotypes in metastatic prostate cancer models visualized using magnetic ranking cytometry. Lab Chip 2018, 18 (14), 20552064,  DOI: 10.1039/C8LC00310F
    46. 46
      Muhanna, N.; Mepham, A.; Mohamadi, R. M.; Chan, H.; Khan, T.; Akens, M.; Besant, J. D.; Irish, J.; Kelley, S. O. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine 2015, 11 (7), 161320,  DOI: 10.1016/j.nano.2015.04.017
    47. 47
      Scher, H. I.; Lu, D.; Schreiber, N. A.; Louw, J.; Graf, R. P.; Vargas, H. A.; Johnson, A.; Jendrisak, A.; Bambury, R.; Danila, D.; McLaughlin, B.; Wahl, J.; Greene, S. B.; Heller, G.; Marrinucci, D.; Fleisher, M.; Dittamore, R. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol 2016, 2 (11), 14411449,  DOI: 10.1001/jamaoncol.2016.1828
    48. 48
      Antonarakis, E. S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J. C.; Chen, Y.; Mohammad, T. A.; Chen, Y.; Fedor, H. L.; Lotan, T. L.; Zheng, Q.; De Marzo, A. M.; Isaacs, J. T.; Isaacs, W. B.; Nadal, R.; Paller, C. J.; Denmeade, S. R.; Carducci, M. A.; Eisenberger, M. A.; Luo, J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 2014, 371 (11), 102838,  DOI: 10.1056/NEJMoa1315815
    49. 49
      Antonarakis, E. S.; Lu, C.; Luber, B.; Wang, H.; Chen, Y.; Nakazawa, M.; Nadal, R.; Paller, C. J.; Denmeade, S. R.; Carducci, M. A.; Eisenberger, M. A.; Luo, J. Androgen Receptor Splice Variant 7 and Efficacy of Taxane Chemotherapy in Patients With Metastatic Castration-Resistant Prostate Cancer. JAMA Oncol 2015, 1 (5), 58291,  DOI: 10.1001/jamaoncol.2015.1341
    50. 50
      Crespo, M.; van Dalum, G.; Ferraldeschi, R.; Zafeiriou, Z.; Sideris, S.; Lorente, D.; Bianchini, D.; Rodrigues, D. N.; Riisnaes, R.; Miranda, S.; Figueiredo, I.; Flohr, P.; Nowakowska, K.; de Bono, J. S.; Terstappen, L. W.; Attard, G. Androgen receptor expression in circulating tumour cells from castration-resistant prostate cancer patients treated with novel endocrine agents. Br. J. Cancer 2015, 112 (7), 116674,  DOI: 10.1038/bjc.2015.63
    51. 51
      Zeinali, M.; Murlidhar, V.; Fouladdel, S.; Shao, S.; Zhao, L.; Cameron, H.; Bankhead, A., III; Shi, J.; Cuneo, K. C.; Sahai, V.; Azizi, E.; Wicha, M. S.; Hafner, M.; Simeone, D. M.; Nagrath, S. Profiling heterogeneous circulating tumor cells (CTC) populations in pancreatic cancer using a serial microfluidic CTC carpet chip. Adv. Biosystems 2018, 2 (12), 1800228,  DOI: 10.1002/adbi.201800228
    52. 52
      Kang, Y.-T.; Kim, Y. J.; Bu, J.; Chen, S.; Cho, Y.-H.; Lee, H. M.; Ryu, C. J.; Lim, Y.; Han, S.-W. Epithelial and mesenchymal circulating tumor cell isolation and discrimination using dual-immunopatterned device with newly-developed anti-63B6 and anti-EpCAM. Sens. Actuators, B 2018, 260, 320330,  DOI: 10.1016/j.snb.2017.12.157
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.9b01697.

    • Materials and Methods section along with supporting data and tables (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect