ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

18F-Based Pretargeted PET Imaging Based on Bioorthogonal Diels–Alder Click Chemistry

View Author Information
Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
MabVax Therapeutics, 11588 Sorrento Valley Road Suite 20, San Diego, California 92121, United States
§ Department of Chemistry, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, United States
The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
Cite this: Bioconjugate Chem. 2016, 27, 2, 298–301
Publication Date (Web):October 19, 2015
https://doi.org/10.1021/acs.bioconjchem.5b00504

Copyright © 2015 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

7213

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (1 MB)
Supporting Info (1)»

Abstract

A first-of-its-kind 18F pretargeted PET imaging approach based on the bioorthogonal inverse electron demand Diels–Alder (IEDDA) reaction between tetrazine (Tz) and trans-cyclooctene (TCO) is presented. As proof-of-principle, a TCO-bearing immunoconjugate of the anti-CA19.9 antibody 5B1 and an Al[18F]NOTA-labeled tetrazine radioligand were harnessed for the visualization of CA19.9-expressing BxPC3 pancreatic cancer xenografts. Biodistribution and 18F-PET imaging data clearly demonstrate that this methodology effectively delineates tumor mass with activity concentrations up to 6.4 %ID/g at 4 h after injection of the radioligand.

SPECIAL ISSUE

This article is part of the Molecular Imaging Probe Chemistry special issue.

Over the past two decades, pretargeting strategies linking antibody targeting vectors and small molecule radioligands have emerged as powerful tools for the in vivo positron emission tomography (PET) of cancer. (1) These methods effectively leverage the principal advantages of both species while skirting their inherent limitations. (2) Despite their slow pharmacokinetics, antibodies possess remarkable specificity and affinity for tumor biomarkers, and thus immunoconjugates bearing click chemistry moieties can provide excellent targeted platforms for in vivo bioorthogonal reactions. (3) In most pretargeting methodologies, the in vivo hapten is a radiolabeled small molecule with rapid pharmacokinetics. Without question, the most important facet of pretargeting strategies is the ability to radiolabel the antibody after it has reached the tumor, a trait which facilitates the use of short-lived radioisotopes that would normally be incompatible with the multiday biological half-lives of IgG vectors. This, in turn, dramatically reduces the radiation doses to healthy tissues compared to traditional radioimmunoconjugates directly labeled with long-lived radioisotopes such as 124I (t1/2 = 4.2 d) or 89Zr (t1/2 = 3.2 d). (4)

The IEDDA reaction between a 1,2,4,5-tetrazine (Tz) and a trans-cyclooctene (TCO) is one of the most rapid bioorthogonal click ligations and, as such, is remarkably well suited for pretargeting strategies. (5-9) Indeed, pretargeted imaging based on the IEDDA reaction has already been proven to be feasible in vivo. (3, 6-10) For example, the human A33 (huA33) antibody and a 64Cu-labeled radioligand have recently been successfully employed for the pretargeted PET imaging of SW1222 human colorectal cancer xenografts. (3, 11) In this case, it was shown that the pretargeted approach visualized the malignant tissue with comparable tumor-to-background contrast at only a fraction of the off-target radiation dose to healthy tissue, when compared to traditional radioimmunoconjugation approaches.

With this in mind, it follows that the creation of a pretargeting strategy featuring an even shorter-lived radionuclide such as 18F (t1/2 = 109.8 min) is the next logical step, as this could exploit the dosimetric advantages of pretargeting even further. The aluminum-[18F]fluoride-NOTA-complex (12-14) (Al[18F]-NOTA) has previously been shown to be a stable and synthetically efficient methodology for the radiolabeling of both biomolecules (15, 16) and small molecules (17) with [18F]fluoride. Considering the well-documented instability of tetrazines under the alkaline conditions required for nucleophilic 18F-fluorination reactions, the Al[18F]-NOTA approach seems to be particularly appropriate for the synthesis of 18F-labeled tetrazine radioligands. (18-20) Despite known procedures for the radiosynthesis of 18F-labeled TCO, (21, 22) we chose to apply the Al[18F]-NOTA-approach to tetrazines in order to be able to use readily available TCO-modified 5B1 for in vivo pretargeting of CA19.9.

Herein, we report the development of a novel Tz/TCO-based pretargeting strategy using an Al[18F]-NOTA-labeled tetrazine radioligand. For our proof-of-concept system, we selected the 5B1 antibody, a fully human IgG that targets a promising biomarker for pancreatic ductal adenocarcinoma: carbohydrate antigen 19.9 (CA19.9). (23, 24) In order to arm the antibody with the reactive bioorthogonal moiety, purified 5B1 was incubated with an activated succinimidyl ester of TCO (TCO-NHS, 35 equiv.) at room temperature for 1 h. The immunoconjugate was subsequently purified by gel-filtration chromatography. The precursor to the radioligand, Tz-PEG11-NOTA (1, Scheme 1), was synthesized from three commercially available building blocks: 2,5-dioxo-1-pyrrolidinyl 5-[4-(1,2,4,5-tetrazin-3-yl)benzylamino]-5-oxopentanoate (Tz-NHS), O-(2-aminoethyl)-O′-[2-(boc-amino)ethyl]decaethylene glycol (NH2-PEG11-NHBoc), and S-2-(4-isothiocyanatobenzyl)-1,4,7-triaza-cyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA). After the peptide coupling between Tz-NHS and NH2-PEG11-NHBoc and the subsequent deprotection of the terminal tert-butyloxycarbonyl protecting group, the resulting Tz-PEG11-NH2 moiety was reacted with the bifunctional p-SCN-Bn-NOTA chelator. Ultimately, the precursor was prepared in very high purity (>98%) and with an overall yield of ∼15% (n = 3).

The 18F-labeled radioligand Tz-PEG11-Al[18F]-NOTA ([18F]2) was obtained in 54–65% radiochemical yield [decay-corrected (d.c.) to the start of synthesis] in high purity (>96%) and a specific activity between 21.4 and 26.7 GBq/μmol (for more detailed experimental data, see Supporting Information). The use of metal-free solvents, the pH of the Al[18F]-NOTA complexation reaction (pH = 4), and the ratio of reaction solvents (at least 3:1 MeCN/H2O) all proved to be crucial factors in obtaining high radiochemical yields. The in vitro stability of [18F]2 was assayed by incubation in phosphate buffered saline (PBS, pH 7.4) or human serum at 37 °C, followed by analysis via radio-HPLC. In PBS, negligible decomposition could be observed after 4 h (92 ± 2.3% intact), and 79 ± 4.4% (n = 4) of the radioligand remained intact in human serum at the same time point. The in vivo stability was determined by injecting [18F]2 (150 μCi in 150 μL 0.9% sterile saline) into healthy athymic nude mice. Blood was subsequently collected via cardiac puncture and 63 ± 8.9% (n = 3) of the radioligand was found intact 4 h after injection. Given the fast reaction kinetics of the IEDDA ligation as well as the relatively short half-life of 18F, the observed degradation rate is not considered a detriment to the system, as shown for other Tz/TCO approaches. (3, 19)

Scheme 1

Scheme 1. Radiochemical Synthesis of the Radioligand Tz-PEG11-Al[18F]-NOTA ([18F]2)a

Scheme a[18F]2 was obtained in 54–56% RCY (d.c.) and high SAs (21.4–26.7 GBq/μmol) after a total synthesis time of 108 min. Purification of the crude reaction mixture using a C18-cartridge gave [18F]2 in purities >96%.

The bioorthogonal click reaction between [18F]2 and the TCO moiety on the antibody was demonstrated by incubation of equimolar amounts (1.33 nmol) of the purified radioligand with 5B1-TCO at room temperature. Analysis of the reaction via radio-TLC (mobile phase: 90% MeCN in H2O) revealed a > 94% yield for the reaction measured by the consumption of [18F]2, with the 18F-labeled click reaction product situated at the origin, while the free radioligand can be detected at the solvent front (see Supporting Information). In all experiments throughout this study, the equimolar amount of tetrazine is calculated relative to the antibody 5B1 (and not the TCO).

Ex vivo biodistribution data for Tz-PEG11-Al[18F]-NOTA were first obtained in healthy mice by injecting [18F]2 alone (1.8–2.0 MBq) via the tail vein (Figure 1). The data shows accumulation and retention of the radiotracer in the large intestines and feces with 0.32 ± 0.87% injected dose per gram (%ID/g) at 1 h after injection to 1.73 ± 0.45 %ID/g at 4 h. The uptake and retention of [18F]2 could also be observed in the kidneys (2.12 ± 0.23 %ID/g at 1 h to 1.17 ± 0.12% ID/g at 4 h), indicating dual renal and fecal elimination pathways for the radioligand. The amount of activity in the blood decreases over time, from 1.94 ± 0.23 %ID/g at 1 h to 0.78 ± 0.08 %ID/g at 4 h after injection, while the uptake in all other healthy tissues remained <1 %ID/g. Critically, the activity concentrations in the bone were particularly low (≤0.2 %ID/g), illustrating the high in vivo stability of the Al[18F]-NOTA complex. In accompanying experiments, the blood half-life of the radioligand was calculated to be 71.2 ± 5.4 min.

Figure 1

Figure 1. Biodistribution of the radioligand [18F]2 in healthy athymic nude mice. The 18F-labeled tracer (1.33 nmol, 1.8–2.0 MBq) was injected via the tail vein before the mice were euthanized, and the organs collected at the appropriate time points.

In subsequent pretargeted biodistribution experiments, nude, athymic mice bearing subcutaneous CA19.9-expressing BxPC3 xenografts were injected with 5B1-TCO (1.33 nmol of 5B1) 72 h prior to the administration of [18F]2 (1.33 nmol, 1.8–2.0 MBq) (Figure 2).

Figure 2

Figure 2. Results of the biodistribution pretargeting CA19.9 with [18F]2/5B1-TCO. Subcutaneous BxPC3 xenograft bearing mice were administered 5B1-TCO (1.33 nmol) 72 h prior to the injection of the 18F-labeled tracer (1.33 nmol, 1.8–2.0 MBq) via the tail vein before the mice were euthanized, and the organs collected at the appropriate time points.

The data revealed increasing tumoral uptake over the course of the study (3.0 ± 0.32 %ID/g at 30 min, 3.52 ± 0.67 %ID/g at 1 h, 4.81 ± 1.23 %ID/g at 2 h to 5.6 ± 0.85 %ID/g at 4 h), with the amount of radioactivity in the blood decreasing in kind, from 6.13 ± 0.86 %ID/g at 30 min to 1.75 ± 0.22 %ID/g at 4 h. In accordance with the biodistribution data obtained from healthy mice, the uptake in other tissue remained generally low (≤2 %ID/g), with the highest uptake and retention in the clearance organs: the intestines and kidneys. The clearance of radioactivity from the blood pool was generally in line with the calculated blood half-life of the radiotracer, and the steady uptake of radioactivity at the tumor suggested that the radioligand is primarily clicking with 5B1-TCO at the tumor site rather than clicking in the blood pool followed by accumulation at the tumor.

Pretargeted small animal PET imaging experiments were conducted in a similar fashion, with the only difference in the amount of radioactivity injected (18–20 MBq, 1.33 nmol of [18F]2, equimolar to 5B1-TCO) (Figure 3).

Figure 3

Figure 3. PET images of Tz-PEG11-Al[18F]-NOTA/5B1-TCO pretargeting strategy. Subcutaneous BxPC3 xenograft bearing mice were administered 5B1-TCO (1.33 nmol) 72 h prior to the injection of the 18F-labeled tracer (1.33 nmol, 18–20 MBq) via the tail vein. Transverse (top) and coronal (middle) planar images intersect the center of the tumors. The maximum intensity projections (MIPs, bottom) clearly illustrate tumor uptake after 1 h with increasing tumor-to-background ratios over the course of the experiment.

The PET images confirm the data obtained in the biodistribution study: the signal in the tumor increases with time, while the activity concentrations in the blood and intestines concomitantly decrease. This results in the clear delineation of the tumor from background tissue, with the tumor-to-background activity ratios improving over the course of the experiment. The tumoral uptake of [18F]2 is immediately evident 1 h after injection; however, the signal grows to 6.4 %ID/g at 4 h after the administration of the radioligand. Admittedly, while the tumor-to-background activity concentration ratios improve over time, the radioactivity has not cleared the intestines at 4 h postinjection. Considering the blood half-life (71.2 ± 5.4 min) of the radioligand and the observed increasing tumor uptake over the course of the experiment, it seems reasonable and interesting to include a later imaging and biodistribution time point (e.g., 6 h p.i.) in future experiments in order to evaluate whether an improved tumor-to-background ratio can be observed at later time points. In terms of control conditions, previous studies in our laboratory have shown that no tumor uptake could be observed when IgG-TCO instead of 5B1-TCO was injected into BxPC3-bearing mice, suggesting that the observed tumor uptake is a result of in vivo click reactions occurring at the tumor site. (3, 25)

In light of these results, second generation tetrazine-bearing radioligands are currently in development in our laboratory in an effort to determine whether structural alterations can increase the fraction of the radioligand that is excreted via the renal system and thus create higher tumor-to-background ratios at earlier time points. Finally, using the biodistribution data, we performed a dosimetric analysis of the pretargeting strategy that confirms that pretargeted PET imaging with Tz-PEG11-Al[18F]-NOTA and 5B1-TCO confers a significant dosimetric advantage over the use of antibodies directly labeled with long-lived radioisotopes (in this case 89Zr-DFO-5B1). The effective dose of the presented 18F-based pretargeting system (0.03 rem/mCi) is more than 60 times lower than directly labeled 89Zr-DFO-5B1 (2.02 rem/mCi; see Supporting Information).

In sum, this novel 18F-based pretargeted PET imaging system shows highly promising biodistribution results and produced tumoral activity concentrations of up to 6.4 %ID/g at 4 h postinjection. Small-animal PET imaging experiments revealed that this methodology clearly delineates CA19.9-expressing tissues with especially enticing tumor-to-background activity ratios 2 and 4 h after injection of the radiotracer.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.bioconjchem.5b00504.

  • Synthesis of the precursor 1, dosimetry calculations, and experimental details (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
    • Brian M. Zeglis - Department of Chemistry, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, United StatesThe Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States Email: [email protected]
    • Jason S. Lewis - Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United StatesMolecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States Email: [email protected]
  • Authors
    • Jan-Philip Meyer - Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
    • Jacob L. Houghton - Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
    • Paul Kozlowski - Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
    • Dalya Abdel-Atti - Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
    • Thomas Reiner - Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
    • Naga Vara Kishore Pillarsetty - Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
    • Wolfgang W. Scholz - MabVax Therapeutics, 11588 Sorrento Valley Road Suite 20, San Diego, California 92121, United States
  • Notes
    The authors declare the following competing financial interest(s): Wolfgang W. Scholz is an employee of MabVax Therapeutics and has an equity interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

The authors gratefully acknowledge the MSKCC Small Animal Imaging Core Facility as well as the Radiochemistry and Molecular Imaging Probe core, which were supported in part by NIH grant P30 CA08748. The authors also would like to thank the NIH (K25 EB016673, T.R.; F32 CA180452 and R25CA096945, J.L.H.; 4R00 CA178205-2, B.M.Z.; 2R42CA128362, MabVax). We also gratefully acknowledge Mr. William H. and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research and The Center for Experimental Therapeutics of Memorial Sloan Kettering Cancer Center.

References

ARTICLE SECTIONS
Jump To

This article references 25 other publications.

  1. 1
    Rossin, R. and Robillard, M. S. (2014) Pretargeted imaging using bioorthogonal chemistry in mice Curr. Opin. Chem. Biol. 21, 161 9 DOI: 10.1016/j.cbpa.2014.07.023
  2. 2
    Goldenberg, D. M., Sharkey, R. M., Paganelli, G., Barbet, J., and Chatal, J. F. (2006) Antibody pretargeting advances cancer radioimmmunodetection and radioimmunotherapy J. Clin. Oncol. 24, 823 34 DOI: 10.1200/JCO.2005.03.8471
  3. 3
    Zeglis, B. M., Sevak, K. K., Reiner, T., Mohindra, P., Carlin, S. D., Zanzonico, P., Weissleder, R., and Lewis, J. S. (2013) A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry J. Nucl. Med. 54, 1389 96 DOI: 10.2967/jnumed.112.115840
  4. 4
    Zhu, J., Li, S., Waengler, C., Waengler, B., Lennox, R. B., and Schirmmacher, R. (2015) Synthesis of 3-chloro-6-((4-(di-tert-butyl[18F]-fluorosilyl)-benzyl)oxy)-1,2,4,5-tetrazine ([18F]SiFA-OTz) for rapid tetrazine-based 18F-radiolabeling Chem. Commun. 51, 12415 18 DOI: 10.1039/C5CC03623B
  5. 5
    Goldenberg, D. M., Chang, C., Rossi, E. A., McBride, W. J., and Sharkey, R. M. (2012) Pretargeted Molecular Imaging and Radioimmunotherapy Theranostics 2, 523 40 DOI: 10.7150/thno.3582
  6. 6
    Van deWatering, F. C. J., Rijpkema, M., Robillard, M., Oyen, W. J. G., and Boerman, O. C. (2014) Pretargeted Imaging and Radioimmunotherapy of cancer using antibodies and bioorthogonal chemistry Front. Med. 1, 1 11 DOI: 10.3389/fmed.2014.00044
  7. 7
    Devaraj, N. K. and Weissleder, R. (2011) Biomedical Applications of tetrazine Cycloadditions Acc. Chem. Res. 44, 816 27 DOI: 10.1021/ar200037t
  8. 8
    Emmetiere, F., Irwin, C., Viola-Villegas, N. T., Longo, V., Cheal, S. M., Zanzonico, P., Pillarsetty, N., Weber, W. A., Lewis, J. S., and Reiner, T. (2013) 18F-Labeled-Bioorthogonal Liposomes for In Vivo Targeting Bioconjugate Chem. 24, 1784 89 DOI: 10.1021/bc400322h
  9. 9
    Denk, C., Svatunek, D., Filip, T., Wanek, T., Lumpi, D., Froehlich, J., Kuntner, C., and Mikula, H. (2014) Development of a 18F-labeled tetrazine with favorable pharmacokinetics for bioorthogonal PET imaging Angew. Chem., Int. Ed. 53, 9655 59 DOI: 10.1002/anie.201404277
  10. 10
    Herth, M. M., Andersen, V. L., Lehel, S., Madsen, J., Knudsen, G. M., and Kristensen, J. L. (2013) Development of a 11C-labeled tetrazine for rapidtetrazine-trans-cyclooctene ligation Chem. Commun. 49, 3805 7 DOI: 10.1039/c3cc41027g
  11. 11
    Zeglis, B. Z., Brand, C., Abdel-Atti, D., Carnazza, K. E., Cook, B. E., Carlin, S., Reiner, T., and Lewis, J. S. (2015) Optimization of a Pretargeted Strategy for the PET Imaging of Colorectal Carcinoma via the Modulation of Radioligand Pharmacokinetics Mol. Pharmaceutics 12, 3575 87 DOI: 10.1021/acs.molpharmaceut.5b00294
  12. 12
    McBride, W. J., D’Souza, C. A., Sharkey, R. M., Karacay, H., Chang, C., and Goldenberg, D. M. (2010) Improved 18F Labeling of Peptides with a Fluoride-Aluminum Chelate Complex Bioconjugate Chem. 21, 1331 40 DOI: 10.1021/bc100137x
  13. 13
    Richter, S. and Wuest, F. (2014) 18F-Labeled Peptides: The Future Is Bright Molecules 19, 20536 56 DOI: 10.3390/molecules191220536
  14. 14
    Pan, D., Yan, Y., Yang, R., Xu, Y. P., Chen, F., Wang, L., Luo, S., and Yang, M. (2014) PET imaging of prostate tumors with 18F-Al-NOTA-MATBBN Contrast Media Mol. Imaging 9, 342 8 DOI: 10.1002/cmmi.1583
  15. 15
    McBride, W. J., Sharkey, R. M., Karacay, H., D’Souza, C. A., Rossi, E. A., Laverman, P., Chang, C., Boerman, O. C., and Goldenberg, D. M. (2009) A novel method for 18F Radiolabeling for PET J. Nucl. Med. 50, 991 8 DOI: 10.2967/jnumed.108.060418
  16. 16
    McBride, W. J., D’Souza, C. A., Karacay, H., Sharkey, R. M., and Goldenberg, D. M. (2012) New Lyophilized Kit for Rapid Radiofluorination of Peptides Bioconjugate Chem. 23, 538 47 DOI: 10.1021/bc200608e
  17. 17
    Hoigebazar, L., Jeong, J. M., Lee, J., Shetty, D., Yang, B. Y., Lee, Y., Lee, D. S., Chung, J., and Lee, M. C. (2012) Syntheses of 2-Nitroimidazole Derivatives Conjugated with 1,4,7-Tiazacyclononae-N,N′-Diacetic Acid Labeled with F-18 Using an Aluminum Complex Method for Hypoxia Imaging J. Med. Chem. 55, 3155 62 DOI: 10.1021/jm201611a
  18. 18
    Zeglis, B. M., Emmetiere, F., Pillarsetty, N., Weissleder, R., Lewis, J. S., and Reiner, T. (2014) Building Blocks for the Construction of Bioorthogonally Reactive Peptides via Solid Phase Peptide Synthesis ChemistryOpen 3, 48 53 DOI: 10.1002/open.201402000
  19. 19
    Karver, M. R., Weissleder, R., and Hilderbrand, S. A. (2011) Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation Bioconjugate Chem. 22, 2263 70 DOI: 10.1021/bc200295y
  20. 20
    Reiner, T. and Zeglis, B. M. (2014) The inverse electron demand Diels-Alder click reaction in radiochemistry J. Labelled Compd. Radiopharm. 57, 285 90 DOI: 10.1002/jlcr.3149
  21. 21
    Jacobson, O., Kiesewetter, D. O., and Chen, X. (2015) Fluorine-18 Radiochemistry – Labeling Strategies and Synthetic Routes Bioconjugate Chem. 26, 1 18 DOI: 10.1021/bc500475e
  22. 22
    Wyffels, L., Thomae, D., Waldron, A., Fissers, J., Dedeurwaerdere, S., Van den Veken, P., Joossens, J., Stroobants, K., Augustyns, K., and Staelens, S. (2014) In vivo evaluation of 18F-labeled TCO for pre-targeted PET imaging in the brain Nucl. Med. Biol. 41, 513 523 DOI: 10.1016/j.nucmedbio.2014.03.023
  23. 23
    Viola-Villegas, N. T., Rice, S. L., Carlin, S., Wu, X., Evans, M. J., Sevak, K. K., Drobjnak, M., Ragupathi, G., Sawada, R., and Scholz 2013, Applying PET to broaden the diagnostic utility of the clinically validated CA19.9 serum biomarker for oncology J. Nucl. Med. 54, 1876 1882 DOI: 10.2967/jnumed.113.119867
  24. 24
    Chan, A., Prassas, I., Dimitromanolakis, A., Brand, R. E., Serra, S., Diamandis, E. P., and Blasutig, I. M. (2014) Validation of Biomarkers that complement CA19.9 in Detecting Early Pancreatic Cancer Clin. Cancer Res. 20, 5787 95 DOI: 10.1158/1078-0432.CCR-14-0289
  25. 25
    Houghton, J. L., Zeglis, B. M., Abdel-Atti, D., Sawada, R., Scholz, W. W., and Lewis, J. S. (2015) Pretargeted immunoPET imaging of CA19.9: overcoming circulating antigen and internalized targeting vector to reduce radiation doses. J. Nucl. Med. [Online early access]. DOI:  DOI: 10.2967/jnumed.115.163824 . Published Online: Oct 15, 2015. http://jnm.snmjournals.org/content/early/2015/10/14/jnumed.115.163824.long (accessed Oct 15, 2015).

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 122 publications.

  1. Tatsiana Auchynnikava, Antti Äärelä, Heidi Liljenbäck, Juulia Järvinen, Putri Andriana, Luciana Kovacs, Jarkko Rautio, Johan Rajander, Pasi Virta, Anne Roivainen, Xiang-Guo Li, Anu J. Airaksinen. Tetrazine Glycoconjugate for Pretargeted Positron Emission Tomography Imaging of trans-Cyclooctene-Functionalized Molecular Spherical Nucleic Acids. ACS Omega 2023, 8 (48) , 45326-45336. https://doi.org/10.1021/acsomega.3c04041
  2. Karuna Adhikari, Jonatan Dewulf, Christel Vangestel, Pieter Van der Veken, Sigrid Stroobants, Filipe Elvas, Koen Augustyns. Characterization of Structurally Diverse 18F-Labeled d-TCO Derivatives as a PET Probe for Bioorthogonal Pretargeted Imaging. ACS Omega 2023, 8 (41) , 38252-38262. https://doi.org/10.1021/acsomega.3c04597
  3. Ming Fang, Gangam Srikanth Kumar, Stefano Racioppi, Heyang Zhang, Johnathan D. Rabb, Eva Zurek, Qing Lin. Hydrazonyl Sultones as Stable Tautomers of Highly Reactive Nitrile Imines for Fast Bioorthogonal Ligation Reaction. Journal of the American Chemical Society 2023, 145 (18) , 9959-9964. https://doi.org/10.1021/jacs.2c12325
  4. Xinlin Zhong, Junjie Yan, Xiang Ding, Chen Su, Yuping Xu, Min Yang. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry. Bioconjugate Chemistry 2023, 34 (3) , 457-476. https://doi.org/10.1021/acs.bioconjchem.2c00583
  5. Charles A. Maitz, Samantha Delaney, Brendon E. Cook, Afaf R. Genady, Rebecca Hoerres, Marina Kuchuk, Georgios Makris, John F. Valliant, Saman Sadeghi, Jason S. Lewis, Heather M. Hennkens, Jeffrey N. Bryan, Brian M. Zeglis. Pretargeted PET of Osteodestructive Lesions in Dogs. Molecular Pharmaceutics 2022, 19 (9) , 3153-3162. https://doi.org/10.1021/acs.molpharmaceut.2c00220
  6. Dave Lumen, Danielle Vugts, Marion Chomet, Surachet Imlimthan, Mirkka Sarparanta, Ricardo Vos, Maxime Schreurs, Mariska Verlaan, Pauline A. Lang, Eero Hippeläinen, Wissam Beaino, Albert D. Windhorst, Anu J. Airaksinen. Pretargeted PET Imaging with a TCO-Conjugated Anti-CD44v6 Chimeric mAb U36 and [89Zr]Zr-DFO-PEG5-Tz. Bioconjugate Chemistry 2022, 33 (5) , 956-968. https://doi.org/10.1021/acs.bioconjchem.2c00164
  7. Umberto M. Battisti, Rocío García-Vázquez, Dennis Svatunek, Barbara Herrmann, Andreas Löffler, Hannes Mikula, Matthias Manfred Herth. Synergistic Experimental and Computational Investigation of the Bioorthogonal Reactivity of Substituted Aryltetrazines. Bioconjugate Chemistry 2022, 33 (4) , 608-624. https://doi.org/10.1021/acs.bioconjchem.2c00042
  8. Yingying Zhang, Qingyu Lin, Tingting Wang, Dai Shi, Zhequan Fu, Zhan Si, Zhan Xu, Yuan Cheng, Hongcheng Shi, Dengfeng Cheng. Targeting Infiltrating Myeloid Cells in Gastric Cancer Using a Pretargeted Imaging Strategy Based on Bio-Orthogonal Diels–Alder Click Chemistry and Comparison with 89Zr-Labeled Anti-CD11b Positron Emission Tomography Imaging. Molecular Pharmaceutics 2022, 19 (1) , 246-257. https://doi.org/10.1021/acs.molpharmaceut.1c00745
  9. Sudath Hapuarachchige, Ge Si, Colin T. Huang, Wojciech G. Lesniak, Ronnie C. Mease, Xin Guo, Kathleen Gabrielson, Dmitri Artemov. Dual-Modality PET–SPECT Image-Guided Pretargeting Delivery in HER2(+) Breast Cancer Models. Biomacromolecules 2021, 22 (11) , 4606-4617. https://doi.org/10.1021/acs.biomac.1c00918
  10. Klas Bratteby, Vladimir Shalgunov, Umberto Maria Battisti, Ida Nyman Petersen, Sara Lopes van den Broek, Tomas Ohlsson, Nic Gillings, Maria Erlandsson, Matthias M. Herth. Insights into Elution of Anion Exchange Cartridges: Opening the Path toward Aliphatic 18F-Radiolabeling of Base-Sensitive Tracers. ACS Pharmacology & Translational Science 2021, 4 (5) , 1556-1566. https://doi.org/10.1021/acsptsci.1c00133
  11. E. Johanna L. Stéen, Jesper T. Jørgensen, Christoph Denk, Umberto M. Battisti, Kamilla Nørregaard, Patricia E. Edem, Klas Bratteby, Vladimir Shalgunov, Martin Wilkovitsch, Dennis Svatunek, Christian B. M. Poulie, Lars Hvass, Marina Simón, Thomas Wanek, Raffaella Rossin, Marc Robillard, Jesper L. Kristensen, Hannes Mikula, Andreas Kjaer, Matthias M. Herth. Lipophilicity and Click Reactivity Determine the Performance of Bioorthogonal Tetrazine Tools in Pretargeted In Vivo Chemistry. ACS Pharmacology & Translational Science 2021, 4 (2) , 824-833. https://doi.org/10.1021/acsptsci.1c00007
  12. Mikhail Kondrashov, Samuel P. S. Svensson, Peter Ström, Andreas Westermark, Hanna Jacobson-Ingemyr, Akihiro Takano, Lenke Tari, Miklós Tóth, Minying Cai, Victor J. Hruby, Magnus Schou. Multiple Applications of a Novel Biarsenical Imaging Probe in Fluorescence and PET Imaging of Melanoma. Bioconjugate Chemistry 2021, 32 (3) , 497-501. https://doi.org/10.1021/acs.bioconjchem.0c00671
  13. Vera F. C. Ferreira, Bruno L. Oliveira, Alice D’Onofrio, Carlos M. Farinha, Lurdes Gano, António Paulo, Gonçalo J. L. Bernardes, Filipa Mendes. In Vivo Pretargeting Based on Cysteine-Selective Antibody Modification with IEDDA Bioorthogonal Handles for Click Chemistry. Bioconjugate Chemistry 2021, 32 (1) , 121-132. https://doi.org/10.1021/acs.bioconjchem.0c00551
  14. Beatrice Longo, Chiara Zanato, Monica Piras, Sergio Dall’Angelo, Albert D. Windhorst, Danielle J. Vugts, Massimiliano Baldassarre, Matteo Zanda. Design, Synthesis, Conjugation, and Reactivity of Novel trans,trans-1,5-Cyclooctadiene-Derived Bioorthogonal Linkers. Bioconjugate Chemistry 2020, 31 (9) , 2201-2210. https://doi.org/10.1021/acs.bioconjchem.0c00375
  15. Eduardo Ruivo, Filipe Elvas, Karuna Adhikari, Christel Vangestel, Glenn Van Haesendonck, Filip Lemière, Steven Staelens, Sigrid Stroobants, Pieter Van der Veken, Leonie wyffels, Koen Augustyns. Preclinical Evaluation of a Novel 18F-Labeled dTCO-Amide Derivative for Bioorthogonal Pretargeted Positron Emission Tomography Imaging. ACS Omega 2020, 5 (9) , 4449-4456. https://doi.org/10.1021/acsomega.9b03584
  16. Aurélie Rondon, Françoise Degoul. Antibody Pretargeting Based on Bioorthogonal Click Chemistry for Cancer Imaging and Targeted Radionuclide Therapy. Bioconjugate Chemistry 2020, 31 (2) , 159-173. https://doi.org/10.1021/acs.bioconjchem.9b00761
  17. E. Johanna L. Stéen, Jesper T. Jørgensen, Kerstin Johann, Kamilla Nørregaard, Barbara Sohr, Dennis Svatunek, Alexander Birke, Vladimir Shalgunov, Patricia E. Edem, Raffaella Rossin, Christine Seidl, Friederike Schmid, Marc S. Robillard, Jesper L. Kristensen, Hannes Mikula, Matthias Barz, Andreas Kjær, Matthias M. Herth. Trans-Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging. ACS Nano 2020, 14 (1) , 568-584. https://doi.org/10.1021/acsnano.9b06905
  18. Hong-shan Liu, Takumi Ishizuka, Makiko Kawaguchi, Ryuichi Nishii, Hiroaki Kataoka, Yan Xu. A Nucleoside Derivative 5-Vinyluridine (VrU) for Imaging RNA in Cells and Animals. Bioconjugate Chemistry 2019, 30 (11) , 2958-2966. https://doi.org/10.1021/acs.bioconjchem.9b00643
  19. Outi Keinänen, James M. Brennan, Rosemery Membreno, Kimberly Fung, Kishore Gangangari, Eric J. Dayts, Carter J. Williams, Brian M. Zeglis. Dual Radionuclide Theranostic Pretargeting. Molecular Pharmaceutics 2019, 16 (10) , 4416-4421. https://doi.org/10.1021/acs.molpharmaceut.9b00746
  20. Joshua A. Walker, John J. Bohn, Francis Ledesma, Michelle R. Sorkin, Sneha R. Kabaria, Dana N. Thornlow, Christopher A. Alabi. Substrate Design Enables Heterobifunctional, Dual “Click” Antibody Modification via Microbial Transglutaminase. Bioconjugate Chemistry 2019, 30 (9) , 2452-2457. https://doi.org/10.1021/acs.bioconjchem.9b00522
  21. Albertus W. Hensbergen, Danny M. van Willigen, Mick M. Welling, Felicia A. van der Wijk, Clarize M. de Korne, Matthias N. van Oosterom, Margret Schottelius, Hans-Jürgen Wester, Tessa Buckle, Fijs W. B. van Leeuwen. Click Chemistry in the Design and Production of Hybrid Tracers. ACS Omega 2019, 4 (7) , 12438-12448. https://doi.org/10.1021/acsomega.9b01484
  22. Zhengyuan Zhou, Nick Devoogdt, Michael R. Zalutsky, Ganesan Vaidyanathan. An Efficient Method for Labeling Single Domain Antibody Fragments with 18F Using Tetrazine-Trans-Cyclooctene Ligation and a Renal Brush Border Enzyme-Cleavable Linker. Bioconjugate Chemistry 2018, 29 (12) , 4090-4103. https://doi.org/10.1021/acs.bioconjchem.8b00699
  23. Jianwu Wang, Lingyun Zhou, Han Sun, Fengting Lv, Libing Liu, Yuguo Ma, Shu Wang. Oligo(p-phenyleneethynylene) Derivatives for Mitochondria Targeting in Living Cells through Bioorthogonal Reactions. Chemistry of Materials 2018, 30 (16) , 5544-5549. https://doi.org/10.1021/acs.chemmater.8b02672
  24. Brendon E. Cook, Rosemery Membreno, Brian M. Zeglis. Dendrimer Scaffold for the Amplification of In Vivo Pretargeting Ligations. Bioconjugate Chemistry 2018, 29 (8) , 2734-2740. https://doi.org/10.1021/acs.bioconjchem.8b00385
  25. Xudong Shi, Kai Gao, Hao Huang, and Ran Gao . Pretargeted Immuno-PET Based on Bioorthogonal Chemistry for Imaging EGFR Positive Colorectal Cancer. Bioconjugate Chemistry 2018, 29 (2) , 250-254. https://doi.org/10.1021/acs.bioconjchem.8b00023
  26. Jan-Philip Meyer, Kathryn M. Tully, James Jackson, Thomas R. Dilling, Thomas Reiner, and Jason S. Lewis . Bioorthogonal Masking of Circulating Antibody–TCO Groups Using Tetrazine-Functionalized Dextran Polymers. Bioconjugate Chemistry 2018, 29 (2) , 538-545. https://doi.org/10.1021/acs.bioconjchem.8b00028
  27. Emilie M. F. Billaud, Sarah Belderbos, Frederik Cleeren, Wim Maes, Marlies Van de Wouwer, Michel Koole, Alfons Verbruggen, Uwe Himmelreich, Nick Geukens, and Guy Bormans . Pretargeted PET Imaging Using a Bioorthogonal 18F-Labeled trans-Cyclooctene in an Ovarian Carcinoma Model. Bioconjugate Chemistry 2017, 28 (12) , 2915-2920. https://doi.org/10.1021/acs.bioconjchem.7b00635
  28. Jan-Philip Meyer, Paul Kozlowski, James Jackson, Kristen M. Cunanan, Pierre Adumeau, Thomas R. Dilling, Brian M. Zeglis, and Jason S. Lewis . Exploring Structural Parameters for Pretargeting Radioligand Optimization. Journal of Medicinal Chemistry 2017, 60 (19) , 8201-8217. https://doi.org/10.1021/acs.jmedchem.7b01108
  29. Outi Keinänen, Ermei M. Mäkilä, Rici Lindgren, Helena Virtanen, Heidi Liljenbäck, Vesa Oikonen, Mirkka Sarparanta, Carla Molthoff, Albert D. Windhorst, Anne Roivainen, Jarno J. Salonen, and Anu J. Airaksinen . Pretargeted PET Imaging of trans-Cyclooctene-Modified Porous Silicon Nanoparticles. ACS Omega 2017, 2 (1) , 62-69. https://doi.org/10.1021/acsomega.6b00269
  30. Jan-Philip Meyer, Pierre Adumeau, Jason S. Lewis, and Brian M. Zeglis . Click Chemistry and Radiochemistry: The First 10 Years. Bioconjugate Chemistry 2016, 27 (12) , 2791-2807. https://doi.org/10.1021/acs.bioconjchem.6b00561
  31. Abdolreza Yazdani, Holly Bilton, Alyssa Vito, Afaf R. Genady, Stephanie M. Rathmann, Zainab Ahmad, Nancy Janzen, Shannon Czorny, Brian M. Zeglis, Lynn C. Francesconi, and John F. Valliant . A Bone-Seeking trans-Cyclooctene for Pretargeting and Bioorthogonal Chemistry: A Proof of Concept Study Using 99mTc- and 177Lu-Labeled Tetrazines. Journal of Medicinal Chemistry 2016, 59 (20) , 9381-9389. https://doi.org/10.1021/acs.jmedchem.6b00938
  32. Brendon E. Cook, Pierre Adumeau, Rosemery Membreno, Kathryn E. Carnazza, Christian Brand, Thomas Reiner, Brian J. Agnew, Jason S. Lewis, and Brian M. Zeglis . Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate. Bioconjugate Chemistry 2016, 27 (8) , 1789-1795. https://doi.org/10.1021/acs.bioconjchem.6b00235
  33. Chiara Da Pieve, Louis Allott, Carlos D. Martins, Andrew Vardon, Daniela M. Ciobota, Gabriela Kramer-Marek, and Graham Smith . Efficient [18F]AlF Radiolabeling of ZHER3:8698 Affibody Molecule for Imaging of HER3 Positive Tumors. Bioconjugate Chemistry 2016, 27 (8) , 1839-1849. https://doi.org/10.1021/acs.bioconjchem.6b00259
  34. Raffaella Rossin, Sander M. J. van Duijnhoven, Wolter ten Hoeve, Henk M. Janssen, Laurens H. J. Kleijn, Freek J. M. Hoeben, Ron M. Versteegen, and Marc S. Robillard . Triggered Drug Release from an Antibody–Drug Conjugate Using Fast “Click-to-Release” Chemistry in Mice. Bioconjugate Chemistry 2016, 27 (7) , 1697-1706. https://doi.org/10.1021/acs.bioconjchem.6b00231
  35. Christoph Denk, Dennis Svatunek, Severin Mairinger, Johann Stanek, Thomas Filip, Dominik Matscheko, Claudia Kuntner, Thomas Wanek, and Hannes Mikula . Design, Synthesis, and Evaluation of a Low-Molecular-Weight 11C-Labeled Tetrazine for Pretargeted PET Imaging Applying Bioorthogonal in Vivo Click Chemistry. Bioconjugate Chemistry 2016, 27 (7) , 1707-1712. https://doi.org/10.1021/acs.bioconjchem.6b00234
  36. Jian Rong, Ahmed Haider, Troels E. Jeppesen, Lee Josephson, Steven H. Liang. Radiochemistry for positron emission tomography. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36377-4
  37. Martin Wilkovitsch, Dennis Svatunek, Hannes Mikula, Christoph Denk. Post-radiolabeling thioether oxidation to enhance the bioorthogonal reactivity of 18F-tetrazines. Monatshefte für Chemie - Chemical Monthly 2023, 154 (12) , 1441-1457. https://doi.org/10.1007/s00706-023-03140-w
  38. Aihua Liao, Wei Du, Huanghao Yang. The Inverse Electron Demand Diels‐Alder Reaction Between Tetrazine and Trans‐Cyclooctene for Pretargeted Bioimaging Applications. Analysis & Sensing 2023, 32 https://doi.org/10.1002/anse.202300053
  39. Umberto M. Battisti, Marius Müller, Rocío García-Vázquez, Matthias Manfred Herth. Labeling of Highly Reactive Tetrazines using [18F]SuFEx. Synlett 2023, 4 https://doi.org/10.1055/a-2147-9303
  40. Kirsten E. Martin, Joseph A. Mattocks, Dariusz Śmiłowicz, Eduardo Aluicio-Sarduy, Jennifer N. Whetter, Jonathan W. Engle, Joseph A. Cotruvo, Eszter Boros. Radiolabeling and in vivo evaluation of lanmodulin with biomedically relevant lanthanide isotopes. RSC Chemical Biology 2023, 4 (6) , 414-421. https://doi.org/10.1039/D3CB00020F
  41. David Bauer, Samantha M. Sarrett, Jason S. Lewis, Brian M. Zeglis. Click chemistry: a transformative technology in nuclear medicine. Nature Protocols 2023, 18 (6) , 1659-1668. https://doi.org/10.1038/s41596-023-00825-8
  42. Shameer M. Kondengadan, Shubham Bansal, Ce Yang, Dongning Liu, Zach Fultz, Binghe Wang. Click chemistry and drug delivery: A bird's-eye view. Acta Pharmaceutica Sinica B 2023, 13 (5) , 1990-2016. https://doi.org/10.1016/j.apsb.2022.10.015
  43. Sébastien Schmitt, Emmanuel Moreau. Radiochemistry with {Al18F}2+: Current status and optimization perspectives for efficient radiofluorination by complexation. Coordination Chemistry Reviews 2023, 480 , 215028. https://doi.org/10.1016/j.ccr.2023.215028
  44. Natasha Bidesi, Vladimir Shalgunov, Umberto Maria Battisti, Lars Hvass, Jesper Tranekjær Jørgensen, Christian B. M. Poulie, Andreas I. Jensen, Andreas Kjaer, Matthias M. Herth. Synthesis and radiolabeling of a polar [ 125 I]I‐1,2,4,5‐tetrazine. Journal of Labelled Compounds and Radiopharmaceuticals 2023, 66 (1) , 22-30. https://doi.org/10.1002/jlcr.4009
  45. Raphael Lengacher, Alexia G. Cosby, Dariusz Śmiłowicz, Eszter Boros. Validation of a post-radiolabeling bioconjugation strategy for radioactive rare earth complexes with minimal structural footprint. Chemical Communications 2022, 58 (99) , 13728-13730. https://doi.org/10.1039/D2CC06128G
  46. Alexandre Lugat, Clément Bailly, Michel Chérel, Caroline Rousseau, Françoise Kraeber-Bodéré, Caroline Bodet-Milin, Mickaël Bourgeois. Immuno-PET: Design options and clinical proof-of-concept. Frontiers in Medicine 2022, 9 https://doi.org/10.3389/fmed.2022.1026083
  47. Ida Vang Andersen, Rocío García-Vázquez, Umberto Maria Battisti, Matthias M. Herth. Optimization of Direct Aromatic 18F-Labeling of Tetrazines. Molecules 2022, 27 (13) , 4022. https://doi.org/10.3390/molecules27134022
  48. Rocío García-Vázquez, Umberto Battisti, Matthias Herth. Recent Advances in the Development of Tetrazine Ligation Tools for Pretargeted Nuclear Imaging. Pharmaceuticals 2022, 15 (6) , 685. https://doi.org/10.3390/ph15060685
  49. Rocío García-Vázquez, Jesper Tranekjær Jørgensen, Klas Erik Bratteby, Vladimir Shalgunov, Lars Hvass, Matthias M. Herth, Andreas Kjær, Umberto Maria Battisti. Development of 18F-Labeled Bispyridyl Tetrazines for In Vivo Pretargeted PET Imaging. Pharmaceuticals 2022, 15 (2) , 245. https://doi.org/10.3390/ph15020245
  50. E.I. Shramova, M.V. Shilova, A.V. Ryabova, D.S. Dzhalilova, N.A. Zolotova, G.B. Telegin, S.M. Deyev, G.M. Proshkina. Barnase*Barstar-guided two-step targeting approach for drug delivery to tumor cells in vivo. Journal of Controlled Release 2021, 340 , 200-208. https://doi.org/10.1016/j.jconrel.2021.11.001
  51. Lingyi Sun, Yongkang Gai, Zhonghan Li, Xiaohui Zhang, Jianchun Li, Yongyong Ma, Huiqiang Li, Ramon F. Barajas, Dexing Zeng. Development of Dual Receptor Enhanced Pre‐Targeting Strategy—A Novel Promising Technology for Immuno‐Positron Emission Tomography Imaging. Advanced Therapeutics 2021, 4 (10) https://doi.org/10.1002/adtp.202100110
  52. Rocío García-Vázquez, Umberto M. Battisti, Jesper T. Jørgensen, Vladimir Shalgunov, Lars Hvass, Daniel L. Stares, Ida N. Petersen, François Crestey, Andreas Löffler, Dennis Svatunek, Jesper L. Kristensen, Hannes Mikula, Andreas Kjaer, Matthias M. Herth. Direct Cu-mediated aromatic 18 F-labeling of highly reactive tetrazines for pretargeted bioorthogonal PET imaging. Chemical Science 2021, 12 (35) , 11668-11675. https://doi.org/10.1039/D1SC02789A
  53. Yuxuan Hu, Junya Zhang, Yinxing Miao, Xidan Wen, Jian Wang, Yidan Sun, Yinfei Chen, Jianguo Lin, Ling Qiu, Kai Guo, Hong‐Yuan Chen, Deju Ye. Enzyme‐Mediated In Situ Self‐Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angewandte Chemie 2021, 133 (33) , 18230-18241. https://doi.org/10.1002/ange.202103307
  54. Yuxuan Hu, Junya Zhang, Yinxing Miao, Xidan Wen, Jian Wang, Yidan Sun, Yinfei Chen, Jianguo Lin, Ling Qiu, Kai Guo, Hong‐Yuan Chen, Deju Ye. Enzyme‐Mediated In Situ Self‐Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angewandte Chemie International Edition 2021, 60 (33) , 18082-18093. https://doi.org/10.1002/anie.202103307
  55. Maryana Handula, Kuo-Ting Chen, Yann Seimbille. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications. Molecules 2021, 26 (15) , 4640. https://doi.org/10.3390/molecules26154640
  56. Samantha M. Sarrett, Outi Keinänen, Eric J. Dayts, Guillaume Dewaele-Le Roi, Cindy Rodriguez, Kathryn E. Carnazza, Brian M. Zeglis. Inverse electron demand Diels–Alder click chemistry for pretargeted PET imaging and radioimmunotherapy. Nature Protocols 2021, 16 (7) , 3348-3381. https://doi.org/10.1038/s41596-021-00540-2
  57. Louis Allott, Cen Chen, Marta Braga, Sau Fung Jacob Leung, Ning Wang, Chris Barnes, Diana Brickute, Laurence Carroll, Eric O. Aboagye. Detecting hypoxia in vitro using 18 F-pretargeted IEDDA “click” chemistry in live cells. RSC Advances 2021, 11 (33) , 20335-20341. https://doi.org/10.1039/D1RA02482E
  58. Christian A. Mason, Lukas M. Carter, Komal Mandleywala, Paula Demetrio de Souza Franca, Jan-Philip Meyer, Tanjeena Mamun, Joseph M. Backer, Marina V. Backer, Thomas Reiner, Jason S. Lewis. Imaging Early-Stage Metastases Using an 18F-Labeled VEGFR-1-Specific Single Chain VEGF Mutant. Molecular Imaging and Biology 2021, 23 (3) , 340-349. https://doi.org/10.1007/s11307-020-01555-z
  59. Louis Allott, Ala Amgheib, Chris Barnes, Marta Braga, Diana Brickute, Ning Wang, Ruisi Fu, Sadaf Ghaem-Maghami, Eric O. Aboagye. Radiolabelling an 18 F biologic via facile IEDDA “click” chemistry on the GE FASTLab™ platform. Reaction Chemistry & Engineering 2021, 6 (6) , 1070-1078. https://doi.org/10.1039/D1RE00117E
  60. Simon Klingler, Jason P. Holland. Computational studies on the Carboni-Lindsey reaction. Computational and Theoretical Chemistry 2021, 1197 , 113161. https://doi.org/10.1016/j.comptc.2021.113161
  61. Lin Qiu, Qingyu Lin, Zhan Si, Hui Tan, Guobing Liu, Jun Zhou, Tingting Wang, Yue Chen, Yingzhao Huang, Tao Yu, Mingzhi Jin, Dengfeng Cheng, Hongcheng Shi. A Pretargeted Imaging Strategy for EGFR-Positive Colorectal Carcinoma via Modulation of Tz-Radioligand Pharmacokinetics. Molecular Imaging and Biology 2021, 23 (1) , 38-51. https://doi.org/10.1007/s11307-020-01539-z
  62. Christian B. M. Poulie, Jesper T. Jørgensen, Vladimir Shalgunov, Georgios Kougioumtzoglou, Troels Elmer Jeppesen, Andreas Kjaer, Matthias M. Herth. Evaluation of [64Cu]Cu-NOTA-PEG7-H-Tz for Pretargeted Imaging in LS174T Xenografts—Comparison to [111In]In-DOTA-PEG11-BisPy-Tz. Molecules 2021, 26 (3) , 544. https://doi.org/10.3390/molecules26030544
  63. Karine Porte, Maxime Riberaud, Rémi Châtre, Davide Audisio, Sébastien Papot, Frédéric Taran. Bioorthogonal Reactions in Animals. ChemBioChem 2021, 22 (1) , 100-113. https://doi.org/10.1002/cbic.202000525
  64. Kathryn M. Tully, Veronica L. Nagle, Joshua A. Korsen, Jason S. Lewis. Antibody-Based Molecular Imaging. 2021, 547-562. https://doi.org/10.1016/B978-0-12-816386-3.00024-7
  65. Katherine A. Morgan, Paul S. Donnelly. Metallic radionuclides for diagnostic imaging and cancer radiotherapy: The development of theragnostic matched pairs and targeted alpha therapy. 2021, 37-63. https://doi.org/10.1016/bs.adioch.2021.05.002
  66. Hidefumi Mukai, Yasuyoshi Watanabe. Review: PET imaging with macro- and middle-sized molecular probes. Nuclear Medicine and Biology 2021, 92 , 156-170. https://doi.org/10.1016/j.nucmedbio.2020.06.007
  67. Allen F. Brooks, Katarina J. Makaravage, Jay Wright, Melanie S. Sanford, Peter J. H. Scott. Fluorine‐18 Radiochemistry. 2020, 251-289. https://doi.org/10.1002/9781119500575.ch8
  68. Outi Keinänen, Kimberly Fung, James M. Brennan, Nicholas Zia, Matt Harris, Ellen van Dam, Colin Biggin, Amos Hedt, Jon Stoner, Paul S. Donnelly, Jason S. Lewis, Brian M. Zeglis. Harnessing 64 Cu/ 67 Cu for a theranostic approach to pretargeted radioimmunotherapy. Proceedings of the National Academy of Sciences 2020, 117 (45) , 28316-28327. https://doi.org/10.1073/pnas.2009960117
  69. Qian Wang, Wangxi Hai, Sanyuan Shi, Jinliang Peng, Yuhong Xu. Oral uptake and persistence of the FnAb-8 protein characterized by in situ radio-labeling and PET/CT imaging. Asian Journal of Pharmaceutical Sciences 2020, 15 (6) , 752-758. https://doi.org/10.1016/j.ajps.2020.03.002
  70. Jean-Baptiste Béquignat, Nancy Ty, Aurélie Rondon, Ludivine Taiariol, Françoise Degoul, Damien Canitrot, Mercedes Quintana, Isabelle Navarro-Teulon, Elisabeth Miot-Noirault, Claude Boucheix, Jean-Michel Chezal, Emmanuel Moreau. Optimization of IEDDA bioorthogonal system: Efficient process to improve trans-cyclooctene/tetrazine interaction. European Journal of Medicinal Chemistry 2020, 203 , 112574. https://doi.org/10.1016/j.ejmech.2020.112574
  71. Stephane Demine, Michael L. Schulte, Paul R. Territo, Decio L. Eizirik. Beta Cell Imaging—From Pre-Clinical Validation to First in Man Testing. International Journal of Molecular Sciences 2020, 21 (19) , 7274. https://doi.org/10.3390/ijms21197274
  72. Nicholas L. Fletcher, Kristian Kempe, Kristofer J. Thurecht. Next‐Generation Polymeric Nanomedicines for Oncology: Perspectives and Future Directions. Macromolecular Rapid Communications 2020, 41 (18) https://doi.org/10.1002/marc.202000319
  73. Zhengyuan Zhou, Michael R. Zalutsky, Ganesan Vaidyanathan. Labeling a TCO-functionalized single domain antibody fragment with 18F via inverse electron demand Diels Alder cycloaddition using a fluoronicotinyl moiety-bearing tetrazine derivative. Bioorganic & Medicinal Chemistry 2020, 28 (17) , 115634. https://doi.org/10.1016/j.bmc.2020.115634
  74. Zhiguo Liu, Lun Yu, Kai Cheng, Yabo Feng, Pengfei Qiu, Yongkang Gai, Ming Zhou. Optimization, automation and validation of the large-scale radiosynthesis of Al 18 F tracers in a custom-made automatic platform for high yield. Reaction Chemistry & Engineering 2020, 5 (8) , 1441-1449. https://doi.org/10.1039/D0RE00144A
  75. Sudath Hapuarachchige, Dmitri Artemov. Theranostic Pretargeting Drug Delivery and Imaging Platforms in Cancer Precision Medicine. Frontiers in Oncology 2020, 10 https://doi.org/10.3389/fonc.2020.01131
  76. Ping Dong, Xueyi Wang, Junwei Zheng, Xiaoyang Zhang, Yiwen Li, Haoxing Wu, Lin Li. Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry. Current Medicinal Chemistry 2020, 27 (23) , 3924-3943. https://doi.org/10.2174/1386207322666190702105829
  77. Jonatan Dewulf, Karuna Adhikari, Christel Vangestel, Tim Van Den Wyngaert, Filipe Elvas. Development of Antibody Immuno-PET/SPECT Radiopharmaceuticals for Imaging of Oncological Disorders—An Update. Cancers 2020, 12 (7) , 1868. https://doi.org/10.3390/cancers12071868
  78. Huijuan Feng., He Zhang, Mengzhe Wang, Raghu Vannam, Hui Wang, Xuefeng Yan, Wei Ouyang, Xinqiao Jia, Joseph M. Fox, Zibo Li. Improving Tumor‐to‐Background Contrast through Hydrophilic Tetrazines: The Construction of 18 F‐Labeled PET Agents Targeting Nonsmall Cell Lung Carcinoma. Chemistry – A European Journal 2020, 26 (21) , 4690-4694. https://doi.org/10.1002/chem.202000028
  79. Sofia Otaru, Surachet Imlimthan, Mirkka Sarparanta, Kerttuli Helariutta, Kristiina Wähälä, Anu Airaksinen. Evaluation of Organo [18F]Fluorosilicon Tetrazine as a Prosthetic Group for the Synthesis of PET Radiotracers. Molecules 2020, 25 (5) , 1208. https://doi.org/10.3390/molecules25051208
  80. Patricia E. Edem, Jesper T. Jørgensen, Kamilla Nørregaard, Rafaella Rossin, Abdolreza Yazdani, John F. Valliant, Marc Robillard, Matthias M. Herth, Andreas Kjaer. Evaluation of a 68Ga-Labeled DOTA-Tetrazine as a PET Alternative to 111In-SPECT Pretargeted Imaging. Molecules 2020, 25 (3) , 463. https://doi.org/10.3390/molecules25030463
  81. João M. J. M. Ravasco, Jaime A. S. Coelho, Alexandre F. Trindade, Carlos A. M. Afonso. Synthesis and reactivity/stability study of double-functionalizable strained trans -cyclooctenes for tetrazine bioorthogonal reactions. Pure and Applied Chemistry 2020, 92 (1) , 15-23. https://doi.org/10.1515/pac-2019-0201
  82. Patrícia M.R. Pereira, Komal Mandleywala, Ashwin Ragupathi, Lukas M. Carter, Jeroen A.C.M. Goos, Yelena Y. Janjigian, Jason S. Lewis. Temporal Modulation of HER2 Membrane Availability Increases Pertuzumab Uptake and Pretargeted Molecular Imaging of Gastric Tumors. Journal of Nuclear Medicine 2019, 60 (11) , 1569-1578. https://doi.org/10.2967/jnumed.119.225813
  83. Mushtaq, Yun, Jeon. Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals. Molecules 2019, 24 (19) , 3567. https://doi.org/10.3390/molecules24193567
  84. Phuong Tu Huynh, Nisarg Soni, Rammyani Pal, Swarbhanu Sarkar, Jung-Min Jung, Woonghee Lee, Jeongsoo Yoo. Direct radiofluorination of a heat-sensitive antibody by Al– 18 F complexation. New Journal of Chemistry 2019, 43 (38) , 15389-15395. https://doi.org/10.1039/C9NJ00722A
  85. Eduardo Ruivo, Karuna Adhikari, Filipe Elvas, Jens Fissers, Christel Vangestel, Steven Staelens, Sigrid Stroobants, Pieter Van der Veken, Leonie Wyffels, Koen Augustyns. Improved stability of a novel fluorine-18 labeled TCO analogue for pretargeted PET imaging. Nuclear Medicine and Biology 2019, 76-77 , 36-42. https://doi.org/10.1016/j.nucmedbio.2019.11.001
  86. Mylène Richard, Charles Truillet, Vu Long Tran, Hui Liu, Karine Porte, Davide Audisio, Mélanie Roche, Benoit Jego, Sophie Cholet, François Fenaille, Bertrand Kuhnast, Frédéric Taran, Simon Specklin. New fluorine-18 pretargeting PET imaging by bioorthogonal chlorosydnone–cycloalkyne click reaction. Chemical Communications 2019, 55 (70) , 10400-10403. https://doi.org/10.1039/C9CC05486C
  87. Lin Qiu, Wujian Mao, Hongyan Yin, Hui Tan, Dengfeng Cheng, Hongcheng Shi. Pretargeted Nuclear Imaging and Radioimmunotherapy Based on the Inverse Electron-Demand Diels–Alder Reaction and Key Factors in the Pretargeted Synthetic Design. Contrast Media & Molecular Imaging 2019, 2019 , 1-12. https://doi.org/10.1155/2019/9182476
  88. Cyril Fersing, Ahlem Bouhlel, Christophe Cantelli, Philippe Garrigue, Vincent Lisowski, Benjamin Guillet. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [18F]fluoride: Will [18F]AlF Replace 68Ga for Metal Chelate Labeling?. Molecules 2019, 24 (16) , 2866. https://doi.org/10.3390/molecules24162866
  89. E. Johanna L. Stéen, Jesper T. Jørgensen, Ida N. Petersen, Kamilla Nørregaard, Szabolcs Lehel, Vladimir Shalgunov, Alexander Birke, Patricia E. Edem, Elina T. L'Estrade, Hanne D. Hansen, Jonas Villadsen, Maria Erlandsson, Tomas Ohlsson, Abdolreza Yazdani, John F. Valliant, Jesper L. Kristensen, Matthias Barz, Gitte M. Knudsen, Andreas Kjær, Matthias M. Herth. Improved radiosynthesis and preliminary in vivo evaluation of the 11C-labeled tetrazine [11C]AE-1 for pretargeted PET imaging. Bioorganic & Medicinal Chemistry Letters 2019, 29 (8) , 986-990. https://doi.org/10.1016/j.bmcl.2019.02.014
  90. Sophie Poty, Lukas M. Carter, Komal Mandleywala, Rosemery Membreno, Dalya Abdel-Atti, Ashwin Ragupathi, Wolfgang W. Scholz, Brian M. Zeglis, Jason S. Lewis. Leveraging Bioorthogonal Click Chemistry to Improve 225Ac-Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research 2019, 25 (2) , 868-880. https://doi.org/10.1158/1078-0432.CCR-18-1650
  91. O. Morris, M. Fairclough, J. Grigg, C. Prenant, A. McMahon. A review of approaches to 18 F radiolabelling affinity peptides and proteins. Journal of Labelled Compounds and Radiopharmaceuticals 2019, 62 (1) , 4-23. https://doi.org/10.1002/jlcr.3634
  92. James C. Knight, Bart Cornelissen. Click Chemistry in Radiopharmaceutical Chemistry. 2019, 467-479. https://doi.org/10.1007/978-3-319-98947-1_26
  93. Simon Specklin, Fabien Caillé, Mélanie Roche, Bertrand Kuhnast. Fluorine-18 radiolabeling of biologics. 2019, 425-458. https://doi.org/10.1016/B978-0-12-812733-9.00012-X
  94. Patricia E. Edem, E. Johanna L. Steen, Andreas Kjær, Matthias M. Herth. Fluorine-18 Radiolabeling Strategies—Advantages and Disadvantages of Currently Applied Labeling Methods. 2019, 29-103. https://doi.org/10.1016/B978-0-12-812958-6.00002-1
  95. Javier Giglio, Maia Zeni, Eduardo Savio, Henry Engler. Synthesis of an Al18F radiofluorinated GLU-UREA-LYS(AHX)-HBED-CC PSMA ligand in an automated synthesis platform. EJNMMI Radiopharmacy and Chemistry 2018, 3 (1) https://doi.org/10.1186/s41181-018-0039-y
  96. Dominik Summer, Sonja Mayr, Milos Petrik, Christine Rangger, Katia Schoeler, Lisa Vieider, Barbara Matuszczak, Clemens Decristoforo. Pretargeted Imaging with Gallium-68—Improving the Binding Capability by Increasing the Number of Tetrazine Motifs. Pharmaceuticals 2018, 11 (4) , 102. https://doi.org/10.3390/ph11040102
  97. Daniel Blanco‐Ania, Luuk Maartense, Floris P. J. T. Rutjes. Rapid Production of trans ‐Cyclooctenes in Continuous Flow. ChemPhotoChem 2018, 2 (10) , 898-905. https://doi.org/10.1002/cptc.201800128
  98. Freddy E. Escorcia, Jeffrey M. Steckler, Dalya Abdel-Atti, Eric W. Price, Sean D. Carlin, Wolfgang W. Scholz, Jason S. Lewis, Jacob L. Houghton. Tumor-Specific Zr-89 Immuno-PET Imaging in a Human Bladder Cancer Model. Molecular Imaging and Biology 2018, 20 (5) , 808-815. https://doi.org/10.1007/s11307-018-1177-z
  99. E. Johanna L. Stéen, Patricia E. Edem, Kamilla Nørregaard, Jesper T. Jørgensen, Vladimir Shalgunov, Andreas Kjaer, Matthias M. Herth. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials 2018, 179 , 209-245. https://doi.org/10.1016/j.biomaterials.2018.06.021
  100. Phillip T. Lowe, Sergio Dall'Angelo, Andrew Devine, Matteo Zanda, David O'Hagan. Enzymatic Fluorination of Biotin and Tetrazine Conjugates for Pretargeting Approaches to Positron Emission Tomography Imaging. ChemBioChem 2018, 19 (18) , 1969-1978. https://doi.org/10.1002/cbic.201800234
Load all citations
  • Abstract

    Scheme 1

    Scheme 1. Radiochemical Synthesis of the Radioligand Tz-PEG11-Al[18F]-NOTA ([18F]2)a

    Scheme a[18F]2 was obtained in 54–56% RCY (d.c.) and high SAs (21.4–26.7 GBq/μmol) after a total synthesis time of 108 min. Purification of the crude reaction mixture using a C18-cartridge gave [18F]2 in purities >96%.

    Figure 1

    Figure 1. Biodistribution of the radioligand [18F]2 in healthy athymic nude mice. The 18F-labeled tracer (1.33 nmol, 1.8–2.0 MBq) was injected via the tail vein before the mice were euthanized, and the organs collected at the appropriate time points.

    Figure 2

    Figure 2. Results of the biodistribution pretargeting CA19.9 with [18F]2/5B1-TCO. Subcutaneous BxPC3 xenograft bearing mice were administered 5B1-TCO (1.33 nmol) 72 h prior to the injection of the 18F-labeled tracer (1.33 nmol, 1.8–2.0 MBq) via the tail vein before the mice were euthanized, and the organs collected at the appropriate time points.

    Figure 3

    Figure 3. PET images of Tz-PEG11-Al[18F]-NOTA/5B1-TCO pretargeting strategy. Subcutaneous BxPC3 xenograft bearing mice were administered 5B1-TCO (1.33 nmol) 72 h prior to the injection of the 18F-labeled tracer (1.33 nmol, 18–20 MBq) via the tail vein. Transverse (top) and coronal (middle) planar images intersect the center of the tumors. The maximum intensity projections (MIPs, bottom) clearly illustrate tumor uptake after 1 h with increasing tumor-to-background ratios over the course of the experiment.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 25 other publications.

    1. 1
      Rossin, R. and Robillard, M. S. (2014) Pretargeted imaging using bioorthogonal chemistry in mice Curr. Opin. Chem. Biol. 21, 161 9 DOI: 10.1016/j.cbpa.2014.07.023
    2. 2
      Goldenberg, D. M., Sharkey, R. M., Paganelli, G., Barbet, J., and Chatal, J. F. (2006) Antibody pretargeting advances cancer radioimmmunodetection and radioimmunotherapy J. Clin. Oncol. 24, 823 34 DOI: 10.1200/JCO.2005.03.8471
    3. 3
      Zeglis, B. M., Sevak, K. K., Reiner, T., Mohindra, P., Carlin, S. D., Zanzonico, P., Weissleder, R., and Lewis, J. S. (2013) A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry J. Nucl. Med. 54, 1389 96 DOI: 10.2967/jnumed.112.115840
    4. 4
      Zhu, J., Li, S., Waengler, C., Waengler, B., Lennox, R. B., and Schirmmacher, R. (2015) Synthesis of 3-chloro-6-((4-(di-tert-butyl[18F]-fluorosilyl)-benzyl)oxy)-1,2,4,5-tetrazine ([18F]SiFA-OTz) for rapid tetrazine-based 18F-radiolabeling Chem. Commun. 51, 12415 18 DOI: 10.1039/C5CC03623B
    5. 5
      Goldenberg, D. M., Chang, C., Rossi, E. A., McBride, W. J., and Sharkey, R. M. (2012) Pretargeted Molecular Imaging and Radioimmunotherapy Theranostics 2, 523 40 DOI: 10.7150/thno.3582
    6. 6
      Van deWatering, F. C. J., Rijpkema, M., Robillard, M., Oyen, W. J. G., and Boerman, O. C. (2014) Pretargeted Imaging and Radioimmunotherapy of cancer using antibodies and bioorthogonal chemistry Front. Med. 1, 1 11 DOI: 10.3389/fmed.2014.00044
    7. 7
      Devaraj, N. K. and Weissleder, R. (2011) Biomedical Applications of tetrazine Cycloadditions Acc. Chem. Res. 44, 816 27 DOI: 10.1021/ar200037t
    8. 8
      Emmetiere, F., Irwin, C., Viola-Villegas, N. T., Longo, V., Cheal, S. M., Zanzonico, P., Pillarsetty, N., Weber, W. A., Lewis, J. S., and Reiner, T. (2013) 18F-Labeled-Bioorthogonal Liposomes for In Vivo Targeting Bioconjugate Chem. 24, 1784 89 DOI: 10.1021/bc400322h
    9. 9
      Denk, C., Svatunek, D., Filip, T., Wanek, T., Lumpi, D., Froehlich, J., Kuntner, C., and Mikula, H. (2014) Development of a 18F-labeled tetrazine with favorable pharmacokinetics for bioorthogonal PET imaging Angew. Chem., Int. Ed. 53, 9655 59 DOI: 10.1002/anie.201404277
    10. 10
      Herth, M. M., Andersen, V. L., Lehel, S., Madsen, J., Knudsen, G. M., and Kristensen, J. L. (2013) Development of a 11C-labeled tetrazine for rapidtetrazine-trans-cyclooctene ligation Chem. Commun. 49, 3805 7 DOI: 10.1039/c3cc41027g
    11. 11
      Zeglis, B. Z., Brand, C., Abdel-Atti, D., Carnazza, K. E., Cook, B. E., Carlin, S., Reiner, T., and Lewis, J. S. (2015) Optimization of a Pretargeted Strategy for the PET Imaging of Colorectal Carcinoma via the Modulation of Radioligand Pharmacokinetics Mol. Pharmaceutics 12, 3575 87 DOI: 10.1021/acs.molpharmaceut.5b00294
    12. 12
      McBride, W. J., D’Souza, C. A., Sharkey, R. M., Karacay, H., Chang, C., and Goldenberg, D. M. (2010) Improved 18F Labeling of Peptides with a Fluoride-Aluminum Chelate Complex Bioconjugate Chem. 21, 1331 40 DOI: 10.1021/bc100137x
    13. 13
      Richter, S. and Wuest, F. (2014) 18F-Labeled Peptides: The Future Is Bright Molecules 19, 20536 56 DOI: 10.3390/molecules191220536
    14. 14
      Pan, D., Yan, Y., Yang, R., Xu, Y. P., Chen, F., Wang, L., Luo, S., and Yang, M. (2014) PET imaging of prostate tumors with 18F-Al-NOTA-MATBBN Contrast Media Mol. Imaging 9, 342 8 DOI: 10.1002/cmmi.1583
    15. 15
      McBride, W. J., Sharkey, R. M., Karacay, H., D’Souza, C. A., Rossi, E. A., Laverman, P., Chang, C., Boerman, O. C., and Goldenberg, D. M. (2009) A novel method for 18F Radiolabeling for PET J. Nucl. Med. 50, 991 8 DOI: 10.2967/jnumed.108.060418
    16. 16
      McBride, W. J., D’Souza, C. A., Karacay, H., Sharkey, R. M., and Goldenberg, D. M. (2012) New Lyophilized Kit for Rapid Radiofluorination of Peptides Bioconjugate Chem. 23, 538 47 DOI: 10.1021/bc200608e
    17. 17
      Hoigebazar, L., Jeong, J. M., Lee, J., Shetty, D., Yang, B. Y., Lee, Y., Lee, D. S., Chung, J., and Lee, M. C. (2012) Syntheses of 2-Nitroimidazole Derivatives Conjugated with 1,4,7-Tiazacyclononae-N,N′-Diacetic Acid Labeled with F-18 Using an Aluminum Complex Method for Hypoxia Imaging J. Med. Chem. 55, 3155 62 DOI: 10.1021/jm201611a
    18. 18
      Zeglis, B. M., Emmetiere, F., Pillarsetty, N., Weissleder, R., Lewis, J. S., and Reiner, T. (2014) Building Blocks for the Construction of Bioorthogonally Reactive Peptides via Solid Phase Peptide Synthesis ChemistryOpen 3, 48 53 DOI: 10.1002/open.201402000
    19. 19
      Karver, M. R., Weissleder, R., and Hilderbrand, S. A. (2011) Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation Bioconjugate Chem. 22, 2263 70 DOI: 10.1021/bc200295y
    20. 20
      Reiner, T. and Zeglis, B. M. (2014) The inverse electron demand Diels-Alder click reaction in radiochemistry J. Labelled Compd. Radiopharm. 57, 285 90 DOI: 10.1002/jlcr.3149
    21. 21
      Jacobson, O., Kiesewetter, D. O., and Chen, X. (2015) Fluorine-18 Radiochemistry – Labeling Strategies and Synthetic Routes Bioconjugate Chem. 26, 1 18 DOI: 10.1021/bc500475e
    22. 22
      Wyffels, L., Thomae, D., Waldron, A., Fissers, J., Dedeurwaerdere, S., Van den Veken, P., Joossens, J., Stroobants, K., Augustyns, K., and Staelens, S. (2014) In vivo evaluation of 18F-labeled TCO for pre-targeted PET imaging in the brain Nucl. Med. Biol. 41, 513 523 DOI: 10.1016/j.nucmedbio.2014.03.023
    23. 23
      Viola-Villegas, N. T., Rice, S. L., Carlin, S., Wu, X., Evans, M. J., Sevak, K. K., Drobjnak, M., Ragupathi, G., Sawada, R., and Scholz 2013, Applying PET to broaden the diagnostic utility of the clinically validated CA19.9 serum biomarker for oncology J. Nucl. Med. 54, 1876 1882 DOI: 10.2967/jnumed.113.119867
    24. 24
      Chan, A., Prassas, I., Dimitromanolakis, A., Brand, R. E., Serra, S., Diamandis, E. P., and Blasutig, I. M. (2014) Validation of Biomarkers that complement CA19.9 in Detecting Early Pancreatic Cancer Clin. Cancer Res. 20, 5787 95 DOI: 10.1158/1078-0432.CCR-14-0289
    25. 25
      Houghton, J. L., Zeglis, B. M., Abdel-Atti, D., Sawada, R., Scholz, W. W., and Lewis, J. S. (2015) Pretargeted immunoPET imaging of CA19.9: overcoming circulating antigen and internalized targeting vector to reduce radiation doses. J. Nucl. Med. [Online early access]. DOI:  DOI: 10.2967/jnumed.115.163824 . Published Online: Oct 15, 2015. http://jnm.snmjournals.org/content/early/2015/10/14/jnumed.115.163824.long (accessed Oct 15, 2015).
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.bioconjchem.5b00504.

    • Synthesis of the precursor 1, dosimetry calculations, and experimental details (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect