ACS Publications. Most Trusted. Most Cited. Most Read
p-SCN-Bn-HOPO: A Superior Bifunctional Chelator for 89Zr ImmunoPET
My Activity

Figure 1Loading Img
    Article

    p-SCN-Bn-HOPO: A Superior Bifunctional Chelator for 89Zr ImmunoPET
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Radiology and the Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
    Department of Chemistry, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, United States
    § Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave, New York, New York 10016, United States
    Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
    *E-mail: [email protected]. Phone: 646-888-3038.
    *E-mail: [email protected]. Phone: 212-772-5353.
    Other Access OptionsSupporting Information (2)

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2015, 26, 12, 2579–2591
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.bioconjchem.5b00572
    Published November 9, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Zirconium-89 has an ideal half-life for use in antibody-based PET imaging; however, when used with the chelator DFO, there is an accumulation of radioactivity in the bone, suggesting that the 89Zr4+ cation is being released in vivo. Therefore, a more robust chelator for 89Zr could reduce the in vivo release and the dose to nontarget tissues. Evaluation of the ligand 3,4,3-(LI-1,2-HOPO) demonstrated efficient binding of 89Zr4+ and high stability; therefore, we developed a bifunctional derivative, p-SCN-Bn-HOPO, for conjugation to an antibody. A Zr-HOPO crystal structure was obtained showing that the Zr is fully coordinated by the octadentate HOPO ligand, as expected, forming a stable complex. p-SCN-Bn-HOPO was synthesized through a novel pathway. Both p-SCN-Bn-HOPO and p-SCN-Bn-DFO were conjugated to trastuzumab and radiolabeled with 89Zr. Both complexes labeled efficiently and achieved specific activities of approximately 2 mCi/mg. PET imaging studies in nude mice with BT474 tumors (n = 4) showed good tumor uptake for both compounds, but with a marked decrease in bone uptake for the 89Zr-HOPO-trastuzumab images. Biodistribution data confirmed the lower bone activity, measuring 17.0%ID/g in the bone at 336 h for 89Zr-DFO-trastuzumab while 89Zr-HOPO-trastuzumab only had 2.4%ID/g. We successfully synthesized p-SCN-Bn-HOPO, a bifunctional derivative of 3,4,3-(LI-1,2-HOPO) as a potential chelator for 89Zr. In vivo studies demonstrate the successful use of 89Zr-HOPO-trastuzumab to image BT474 breast cancer with low background, good tumor to organ contrast, and, importantly, very low bone uptake. The reduced bone uptake seen with 89Zr-HOPO-trastuzumab suggests superior stability of the 89Zr-HOPO complex.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.bioconjchem.5b00572.

    • Detailed data and figures from crystal structure analysis, bifunctional ligand synthesis and characterization, and biodistribution studies (PDF)

    • Crysallographic data (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 114 publications.

    1. Joshua J. Woods, Alex Rigby, Jennifer N. Wacker, Trevor Arino, Jennifer V. Alvarenga Vasquez, Alexia Cosby, Kirsten E. Martin, Rebecca J. Abergel. Synthesis and Evaluation of a Bifunctional Chelator for Thorium-227 Targeted Radiotherapy. Journal of Medicinal Chemistry 2025, Article ASAP.
    2. Ryota Imura, Jaewoong Jang, Atsuko Nakanishi Ozeki, Hiroyuki Takahashi, Hiroyuki Ida, Youichiro Wada, Yoshitaka Kumakura, Nobuyoshi Akimitsu. Click Chemistry Enables [89Zr]Zr-DOTA Radioimmunoconjugation for Theranostic 89Zr-immunoPET. Bioconjugate Chemistry 2024, 35 (11) , 1744-1754. https://doi.org/10.1021/acs.bioconjchem.4c00274
    3. Jennifer N. Whetter, Dariusz Śmiłowicz, Eszter Boros. Exploring Aqueous Coordination Chemistry of Highly Lewis Acidic Metals with Emerging Isotopes for Nuclear Medicine. Accounts of Chemical Research 2024, 57 (6) , 933-944. https://doi.org/10.1021/acs.accounts.3c00781
    4. Attila Kovács. Metal–Ligand Interactions in Scandium Complexes with Radiopharmaceutical Applications. Inorganic Chemistry 2023, 62 (50) , 20733-20744. https://doi.org/10.1021/acs.inorgchem.3c02211
    5. Imma Carbo-Bague, Cen Li, Brooke L. McNeil, Yang Gao, Anthony W. McDonagh, Michiel Van de Voorde, Maarten Ooms, Peter Kunz, Hua Yang, Valery Radchenko, Georg Schreckenbach, Caterina F. Ramogida. Comparative Study of a Decadentate Acyclic Chelate, HOPO-O10, and Its Octadentate Analogue, HOPO-O8, for Radiopharmaceutical Applications. Inorganic Chemistry 2023, 62 (50) , 20549-20566. https://doi.org/10.1021/acs.inorgchem.2c03671
    6. Michael D. Phipps, Shelbie Cingoranelli, N. V. S. Dinesh K. Bhupathiraju, Ali Younes, Minhua Cao, Vanessa A. Sanders, Michelle C. Neary, Matthew H. Devany, Cathy S. Cutler, Gustavo E. Lopez, Shefali Saini, Candace C. Parker, Solana R. Fernandez, Jason S. Lewis, Suzanne E. Lapi, Lynn C. Francesconi, Melissa A. Deri. Sc-HOPO: A Potential Construct for Use in Radioscandium-Based Radiopharmaceuticals. Inorganic Chemistry 2023, 62 (50) , 20567-20581. https://doi.org/10.1021/acs.inorgchem.2c03931
    7. Akam K. Salih, Moralba Dominguez Garcia, Shvan J. Raheem, William K. Ahiahonu, Eric W. Price. DFO-Km: A Modular Chelator as a New Chemical Tool for the Construction of Zirconium-89-Based Radiopharmaceuticals. Inorganic Chemistry 2023, 62 (50) , 20806-20819. https://doi.org/10.1021/acs.inorgchem.3c02714
    8. Joshua J. Woods, Alexia G. Cosby, Jennifer N. Wacker, Luis M. Aguirre Quintana, Appie Peterson, Stefan G. Minasian, Rebecca J. Abergel. Macrocyclic 1,2-Hydroxypyridinone-Based Chelators as Potential Ligands for Thorium-227 and Zirconium-89 Radiopharmaceuticals. Inorganic Chemistry 2023, 62 (50) , 20721-20732. https://doi.org/10.1021/acs.inorgchem.3c02164
    9. Bhasker Radaram, Sarah E. Glazer, Ping Yang, Chia-Wei Li, Mien-Chie Hung, Seth T. Gammon, Mian Alauddin, David Piwnica-Worms. Evaluation of 89Zr-Labeled Anti-PD-L1 Monoclonal Antibodies Using DFO and Novel HOPO Analogues as Chelating Agents for Immuno-PET. ACS Omega 2023, 8 (19) , 17181-17194. https://doi.org/10.1021/acsomega.3c01547
    10. Charlotte Rivas, Jessica A. Jackson, Alex Rigby, James A. Jarvis, Andrew J. P. White, Philip J. Blower, Andreas Phanopoulos, Michelle T. Ma. Probing Unexpected Reactivity in Radiometal Chemistry: Indium-111-Mediated Hydrolysis of Hybrid Cyclen-Hydroxypyridinone Ligands. Inorganic Chemistry 2023, 62 (13) , 5270-5281. https://doi.org/10.1021/acs.inorgchem.3c00353
    11. Elaheh Khozeimeh Sarbisheh, Kelly L. Summers, Akam K. Salih, Julien J. H. Cotelesage, Amanda Zimmerling, Ingrid J. Pickering, Graham N. George, Eric W. Price. Radiochemical, Computational, and Spectroscopic Evaluation of High-Denticity Desferrioxamine Derivatives DFO2 and DFO2p toward an Ideal Zirconium-89 Chelate Platform. Inorganic Chemistry 2023, 62 (6) , 2637-2651. https://doi.org/10.1021/acs.inorgchem.2c03573
    12. Akam K. Salih, Shvan J. Raheem, Moralba Dominguez Garcia, William K. Ahiahonu, Eric W. Price. Design, Synthesis, and Evaluation of DFO-Em: A Modular Chelator with Octadentate Chelation for Optimal Zirconium-89 Radiochemistry. Inorganic Chemistry 2022, 61 (51) , 20964-20976. https://doi.org/10.1021/acs.inorgchem.2c03442
    13. Ge Yan, Xinyu Wang, Yeli Fan, Jianhan Lin, Junjie Yan, Lizhen Wang, Donghui Pan, Yuping Xu, Min Yang. Immuno-PET Imaging of TNF-α in Colitis Using 89Zr-DFO-infliximab. Molecular Pharmaceutics 2022, 19 (10) , 3632-3639. https://doi.org/10.1021/acs.molpharmaceut.2c00411
    14. Lily Southcott, Lily Li, Brian O. Patrick, Holger Stephan, María de Guadalupe Jaraquemada-Peláez, Chris Orvig. [nat/89Zr][Zr(pypa)]: Thermodynamically Stable and Kinetically Inert Binary Nonadentate Complex for Radiopharmaceutical Applications. Inorganic Chemistry 2021, 60 (23) , 18082-18093. https://doi.org/10.1021/acs.inorgchem.1c02709
    15. Marion Chomet, Guus A. M. S. van Dongen, Danielle J. Vugts. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjugate Chemistry 2021, 32 (7) , 1315-1330. https://doi.org/10.1021/acs.bioconjchem.1c00136
    16. Kelly L. Summers, Elaheh Khozeimeh Sarbisheh, Amanda Zimmerling, Julien J. H. Cotelesage, Ingrid J. Pickering, Graham N. George, Eric W. Price. Structural Characterization of the Solution Chemistry of Zirconium(IV) Desferrioxamine: A Coordination Sphere Completed by Hydroxides. Inorganic Chemistry 2020, 59 (23) , 17443-17452. https://doi.org/10.1021/acs.inorgchem.0c02725
    17. Aiman H. Alnahwi, Samia Ait-Mohand, Véronique Dumulon-Perreault, Yves L. Dory, Brigitte Guérin. Promising Performance of 4HMS, a New Zirconium-89 Octadendate Chelator. ACS Omega 2020, 5 (19) , 10731-10739. https://doi.org/10.1021/acsomega.0c00207
    18. Weijun Wei, Zachary T. Rosenkrans, Jianjun Liu, Gang Huang, Quan-Yong Luo, Weibo Cai. ImmunoPET: Concept, Design, and Applications. Chemical Reviews 2020, 120 (8) , 3787-3851. https://doi.org/10.1021/acs.chemrev.9b00738
    19. Jason P. Holland. Predicting the Thermodynamic Stability of Zirconium Radiotracers. Inorganic Chemistry 2020, 59 (3) , 2070-2082. https://doi.org/10.1021/acs.inorgchem.9b03515
    20. Christian Buchwalder, María de Guadalupe Jaraquemada-Peláez, Julie Rousseau, Helen Merkens, Cristina Rodríguez-Rodríguez, Chris Orvig, François Bénard, Paul Schaffer, Katayoun Saatchi, Urs O. Häfeli. Evaluation of the Tetrakis(3-Hydroxy-4-Pyridinone) Ligand THPN with Zirconium(IV): Thermodynamic Solution Studies, Bifunctionalization, and in Vivo Assessment of Macromolecular 89Zr-THPN-Conjugates. Inorganic Chemistry 2019, 58 (21) , 14667-14681. https://doi.org/10.1021/acs.inorgchem.9b02350
    21. Mikkel B. Skovsgaard, Troels E. Jeppesen, Michael R. Mortensen, Carsten H. Nielsen, Jacob Madsen, Andreas Kjaer, Kurt V. Gothelf. Affinity-Guided Conjugation to Antibodies for Use in Positron Emission Tomography. Bioconjugate Chemistry 2019, 30 (3) , 881-887. https://doi.org/10.1021/acs.bioconjchem.9b00013
    22. Eszter Boros, Alan B. Packard. Radioactive Transition Metals for Imaging and Therapy. Chemical Reviews 2019, 119 (2) , 870-901. https://doi.org/10.1021/acs.chemrev.8b00281
    23. Gauthier J.-P. Deblonde, Trevor D. Lohrey, Corwin H. Booth, Korey P. Carter, Bernard F. Parker, Åsmund Larsen, Roger Smeets, Olav B. Ryan, Alan S. Cuthbertson, Rebecca J. Abergel. Solution Thermodynamics and Kinetics of Metal Complexation with a Hydroxypyridinone Chelator Designed for Thorium-227 Targeted Alpha Therapy. Inorganic Chemistry 2018, 57 (22) , 14337-14346. https://doi.org/10.1021/acs.inorgchem.8b02430
    24. Shanna Litau, Uwe Seibold, Björn Wängler, Ralf Schirrmacher, Carmen Wängler. iEDDA Conjugation Reaction in Radiometal Labeling of Peptides with 68Ga and 64Cu: Unexpected Findings. ACS Omega 2018, 3 (10) , 14039-14053. https://doi.org/10.1021/acsomega.8b01926
    25. Agostino Cilibrizzi, Vincenzo Abbate, Yu-Lin Chen, Yongmin Ma, Tao Zhou, Robert C. Hider. Hydroxypyridinone Journey into Metal Chelation. Chemical Reviews 2018, 118 (16) , 7657-7701. https://doi.org/10.1021/acs.chemrev.8b00254
    26. Morgan P. Kelley, Gauthier J.-P. Deblonde, Jing Su, Corwin H. Booth, Rebecca J. Abergel, Enrique R. Batista, Ping Yang. Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO). Inorganic Chemistry 2018, 57 (9) , 5352-5363. https://doi.org/10.1021/acs.inorgchem.8b00345
    27. Sandra Heskamp, René Raavé, Otto Boerman, Mark Rijpkema, Victor Goncalves, and Franck Denat . 89Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry. Bioconjugate Chemistry 2017, 28 (9) , 2211-2223. https://doi.org/10.1021/acs.bioconjchem.7b00325
    28. Sarah Spreckelmeyer, Caterina F. Ramogida, Julie Rousseau, Karen Arane, Ivica Bratanovic, Nadine Colpo, Una Jermilova, Gemma M. Dias, Iulia Dude, Maria de Guadalupe Jaraquemada-Peláez, François Bénard, Paul Schaffer, and Chris Orvig . p-NO2–Bn–H4neunpa and H4neunpa–Trastuzumab: Bifunctional Chelator for Radiometalpharmaceuticals and 111In Immuno-Single Photon Emission Computed Tomography Imaging. Bioconjugate Chemistry 2017, 28 (8) , 2145-2159. https://doi.org/10.1021/acs.bioconjchem.7b00311
    29. Casey J. Adams, Justin J. Wilson, and Eszter Boros . Multifunctional Desferrichrome Analogues as Versatile 89Zr(IV) Chelators for ImmunoPET Probe Development. Molecular Pharmaceutics 2017, 14 (8) , 2831-2842. https://doi.org/10.1021/acs.molpharmaceut.7b00343
    30. William Tieu, Tulip Lifa, Andrew Katsifis, and Rachel Codd . Octadentate Zirconium(IV)-Loaded Macrocycles with Varied Stoichiometry Assembled From Hydroxamic Acid Monomers using Metal-Templated Synthesis. Inorganic Chemistry 2017, 56 (6) , 3719-3728. https://doi.org/10.1021/acs.inorgchem.7b00362
    31. Ilya Captain, Gauthier J.-P. Deblonde, Peter B. Rupert, Dahlia D. An, Marie-Claire Illy, Emeline Rostan, Corie Y. Ralston, Roland K. Strong, and Rebecca J. Abergel . Engineered Recognition of Tetravalent Zirconium and Thorium by Chelator–Protein Systems: Toward Flexible Radiotherapy and Imaging Platforms. Inorganic Chemistry 2016, 55 (22) , 11930-11936. https://doi.org/10.1021/acs.inorgchem.6b02041
    32. Erika Saccullo, Vincenzo Patamia, Elisabetta Grazia Tomarchio, Chiara Zagni, Giuseppe Floresta, Antonio Rescifina. Unveiling the chemistry of antibody conjugation for enhanced PET imaging: Current trends and future directions. Bioorganic Chemistry 2025, 155 , 108115. https://doi.org/10.1016/j.bioorg.2024.108115
    33. Lasse Outzen, Darius Ludolfs, Maximilian Irl, Susanne Kossatz, Wolfgang Maison. Isopeptidic Desferrioxamine Analogues: The Role of Hydroxamate Spacing for Chelation of Zr 4+. ChemMedChem 2024, 44 https://doi.org/10.1002/cmdc.202400890
    34. Valentina Albanese, Chiara Roccatello, Salvatore Pacifico, Remo Guerrini, Delia Preti, Silvia Gentili, Matteo Tegoni, Maurizio Remelli, Denise Bellotti, Jonathan Amico, Giancarlo Gorgoni, Emiliano Cazzola. Bifunctional octadentate pseudopeptides as Zirconium-89 chelators for immuno-PET applications. EJNMMI Radiopharmacy and Chemistry 2024, 9 (1) https://doi.org/10.1186/s41181-024-00263-1
    35. Thomas Erik Wuensche, Serge Lyashchenko, Guus A. M. S. van Dongen, Danielle Vugts. Good practices for 89Zr radiopharmaceutical production and quality control. EJNMMI Radiopharmacy and Chemistry 2024, 9 (1) https://doi.org/10.1186/s41181-024-00258-y
    36. Ngô Minh Toàn. Novel Molecular Classification of Breast Cancer with PET Imaging. Medicina 2024, 60 (12) , 2099. https://doi.org/10.3390/medicina60122099
    37. Lasse Outzen, Hoang Duc Nguyen, Darius Ludolfs, Wolfgang Maison. Mixed Liquid and Solid Phase Synthesis of Isopeptidic Desferrioxamine Analogues for Complexation of Zirconium. European Journal of Organic Chemistry 2024, 44 https://doi.org/10.1002/ejoc.202400266
    38. Laure Badier, Isabelle Quelven. Zirconium 89 and Copper 64 for ImmunoPET: From Antibody Bioconjugation and Radiolabeling to Molecular Imaging. Pharmaceutics 2024, 16 (7) , 882. https://doi.org/10.3390/pharmaceutics16070882
    39. Floriane Mangin, Osian Fonquernie, Pawel Jewula, Stéphane Brandès, Marie‐José Penouilh, Quentin Bonnin, Bruno Vincent, Enrique Espinosa, Emmanuel Aubert, Michel Meyer, Jean‐Claude Chambron. Combining Desferriferrioxamine B and 1‐Hydroxy‐2‐Piperidone ((PIPO)H) to Chelate Zirconium. Solution Structure of a Model Complex of the [ 89 Zr]Zr−DFOcyclo*−mAb Radioimmunoconjugate. ChemPlusChem 2024, 89 (7) https://doi.org/10.1002/cplu.202400062
    40. Florian Paßler, Linda Belke, Falco Reissig, Klaus Kopka, Constantin Mamat. Preparation of HOPO-containing lariate ethers based on the diaza-18-crown-6 scaffold. Chemical Papers 2024, 78 (7) , 4157-4164. https://doi.org/10.1007/s11696-024-03376-8
    41. Falguni Basuli, Olga Vasalatiy, Jianfeng Shi, Kelly C. Lane, Freddy E. Escorcia, Rolf E. Swenson. Preparation of a Zirconium-89 Labeled Clickable DOTA Complex and Its Antibody Conjugate. Pharmaceuticals 2024, 17 (4) , 480. https://doi.org/10.3390/ph17040480
    42. Caterina Ramogida, Eric Price. Transition and Post-Transition Radiometals for PET Imaging and Radiotherapy. 2024, 65-101. https://doi.org/10.1007/978-1-0716-3499-8_6
    43. Akam K. Salih, Elaheh Khozeimeh Sarbisheh, Shvan J. Raheem, Moralba Dominguez-Garcia, Hillary H. Mehlhorn, Eric W. Price. Synthesis and evaluation of bifunctional DFO2K: a modular chelator with ideal properties for zirconium-89 chelation. Dalton Transactions 2024, 9 https://doi.org/10.1039/D4DT01830C
    44. Yong Sok Lee, Robert D. O'Connor, Olga Vasalatiy. Investigation of Two Zr‐p‐NO 2 Bn‐DOTA Isomers via NMR and Quantum Chemical Studies. European Journal of Inorganic Chemistry 2023, 26 (32) https://doi.org/10.1002/ejic.202300439
    45. Alexia G. Cosby, Trevor Arino, Tyler A. Bailey, Matthew Buerger, Joshua J. Woods, Luis M. Aguirre Quintana, Jennifer V. Alvarenga Vasquez, Jennifer N. Wacker, Alyssa N. Gaiser, Roland K. Strong, Rebecca J. Abergel. Siderocalin fusion proteins enable a new 86 Y/ 90 Y theranostic approach. RSC Chemical Biology 2023, 4 (8) , 587-591. https://doi.org/10.1039/D3CB00050H
    46. Lasse Outzen, Moritz Münzmay, John V. Frangioni, Wolfgang Maison. Synthesis of Modular Desferrioxamine Analogues and Evaluation of Zwitterionic Derivatives for Zirconium Complexation. ChemMedChem 2023, 18 (13) https://doi.org/10.1002/cmdc.202300112
    47. Laura Melendez-Alafort, Guillermina Ferro-Flores, Laura De Nardo, Blanca Ocampo-García, Cristina Bolzati. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coordination Chemistry Reviews 2023, 479 , 215005. https://doi.org/10.1016/j.ccr.2022.215005
    48. Lin Ma, Alba Gonzalez-Junca, William Chou, Mary Helen Barcellos-Hoff. Monitoring TGFβ signaling in irradiated tumors. 2023, 49-67. https://doi.org/10.1016/bs.mcb.2023.02.009
    49. Aditya Bansal, Shalini Sharma, Benedikt Klasen, Frank Rösch, Mukesh K. Pandey. Evaluation of different 89Zr-labeled synthons for direct labeling and tracking of white blood cells and stem cells in healthy athymic mice. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-19953-4
    50. V. B. Bubenshchikov, A. A. Larenkov. Chelating Agents for Zirconium-89 in the Synthesis of Radiopharmaceuticals: Current State and Prospects of Development. Russian Journal of Coordination Chemistry 2022, 48 (11) , 675-695. https://doi.org/10.1134/S1070328422110021
    51. Lily Southcott, Luke Wharton, Julie Rousseau, Helen Merkens, Hua Yang, François Bénard, Chris Orvig. Trastuzumab-conjugated oxine-based ligand for [89Zr]Zr4+ immunoPET. Journal of Inorganic Biochemistry 2022, 235 , 111936. https://doi.org/10.1016/j.jinorgbio.2022.111936
    52. Helen Damerow, Xia Cheng, Valeska von Kiedrowski, Ralf Schirrmacher, Björn Wängler, Gert Fricker, Carmen Wängler. Toward Optimized 89Zr-Immuno-PET: Side-by-Side Comparison of [89Zr]Zr-DFO-, [89Zr]Zr-3,4,3-(LI-1,2-HOPO)- and [89Zr]Zr-DFO*-Cetuximab for Tumor Imaging: Which Chelator Is the Most Suitable?. Pharmaceutics 2022, 14 (10) , 2114. https://doi.org/10.3390/pharmaceutics14102114
    53. Jianfeng Xu, Fei Cai, Zhigang Luo, Wenbin Fan, Juan Dai, Jingjing Cui, Shihong Li, Changran Geng, Qihuang Zheng, Zheng Wang, Xiaobin Tang. Design, synthesis, and preclinical evaluation of a novel bifunctional macrocyclic chelator for theranostics of cancers. European Journal of Nuclear Medicine and Molecular Imaging 2022, 49 (8) , 2618-2633. https://doi.org/10.1007/s00259-022-05750-8
    54. Tyler A. Bailey, Jennifer N. Wacker, Dahlia D. An, Korey P. Carter, Ryan C. Davis, Veronika Mocko, John Larrabee, Katherine M. Shield, Mila Nhu Lam, Corwin H. Booth, Rebecca J. Abergel. Evaluation of 134Ce as a PET imaging surrogate for antibody drug conjugates incorporating 225Ac. Nuclear Medicine and Biology 2022, 110-111 , 28-36. https://doi.org/10.1016/j.nucmedbio.2022.04.007
    55. Mark Bartholomae, Nerissa Viola-Villegas, Jayme L. Workinger, Robert P. Doyle, Jon Zubieta. The Role of Fundamental Coordination Chemistry in the Development of Radioimaging Agents. 2022, 89-148. https://doi.org/10.1039/9781782624028-00089
    56. Francesco Bartoli, William C. Eckelman, Marie Boyd, Robert J. Mairs, Paola A. Erba. Principles of Molecular Targeting for Radionuclide Therapy. 2022, 1-54. https://doi.org/10.1007/978-3-319-26067-9_32-2
    57. Francesco Bartoli, William C. Eckelman, Marie Boyd, Robert J. Mairs, Paola A. Erba. Principles of Molecular Targeting for Radionuclide Therapy. 2022, 41-93. https://doi.org/10.1007/978-3-031-05494-5_32
    58. Shigufa Kahn Ali, Samia Ait-Mohand, Véronique Dumulon-Perreault, Brigitte Guérin. [68Ga]Ga-4HMSA a promising new PET tracer for imaging inflammation. EJNMMI Research 2021, 11 (1) https://doi.org/10.1186/s13550-021-00856-w
    59. Helen Damerow, Ralph Hübner, Benedikt Judmann, Ralf Schirrmacher, Björn Wängler, Gert Fricker, Carmen Wängler. Side-by-Side Comparison of Five Chelators for 89Zr-Labeling of Biomolecules: Investigation of Chemical/Radiochemical Properties and Complex Stability. Cancers 2021, 13 (24) , 6349. https://doi.org/10.3390/cancers13246349
    60. Benedikt Klasen, Daniel Lemcke, Thomas L. Mindt, Gilles Gasser, Frank Rösch. Development and in vitro evaluation of new bifunctional 89Zr-chelators based on the 6-amino-1,4-diazepane scaffold for immuno-PET applications. Nuclear Medicine and Biology 2021, 102-103 , 12-23. https://doi.org/10.1016/j.nucmedbio.2021.06.007
    61. Natalia Herrero Álvarez, David Bauer, Javier Hernández‐Gil, Jason S. Lewis. Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. ChemMedChem 2021, 16 (19) , 2909-2941. https://doi.org/10.1002/cmdc.202100135
    62. Lisa Russelli, Francesco De Rose, Loredana Leone, Sybille Reder, Markus Schwaiger, Calogero D’Alessandria, Lorenzo Tei. A Semi Rigid Novel Hydroxamate AMPED-Based Ligand for 89Zr PET Imaging. Molecules 2021, 26 (19) , 5819. https://doi.org/10.3390/molecules26195819
    63. Irene V. J. Feiner, Marie Brandt, Joseph Cowell, Tori Demuth, Daniëlle Vugts, Gilles Gasser, Thomas L. Mindt. The Race for Hydroxamate-Based Zirconium-89 Chelators. Cancers 2021, 13 (17) , 4466. https://doi.org/10.3390/cancers13174466
    64. Kuo Li, Youjiu Zhang, Xiaomei Wang, Ran Zhu, Changsheng Ma, Rui Hu. Exploring the Application of Bifunctional Metal Chelators in Treating Triple-Negative Breast Cancer. Frontiers in Bioengineering and Biotechnology 2021, 9 https://doi.org/10.3389/fbioe.2021.697862
    65. Jyoti Roy, Elaine M. Jagoda, Falguni Basuli, Olga Vasalatiy, Tim E. Phelps, Karen Wong, Anita T. Ton, Urs B. Hagemann, Alan S. Cuthbertson, Patricia E. Cole, Raffit Hassan, Peter L. Choyke, Frank I. Lin. In Vitro and In Vivo Comparison of 3,2-HOPO Versus Deferoxamine-Based Chelation of Zirconium-89 to the Antimesothelin Antibody Anetumab. Cancer Biotherapy and Radiopharmaceuticals 2021, 36 (4) , 316-325. https://doi.org/10.1089/cbr.2020.4492
    66. Christopher J.M. Brown, Rachel Codd. Directing macrocyclic architecture using iron(III)-, gallium(III)-, or zirconium(IV)-assisted ring closure of linear dimeric endo-hydroxamic acid ligands. Journal of Inorganic Biochemistry 2021, 216 , 111337. https://doi.org/10.1016/j.jinorgbio.2020.111337
    67. Marion Chomet, Maxime Schreurs, Maria J. Bolijn, Mariska Verlaan, Wissam Beaino, Kari Brown, Alex J. Poot, Albert D. Windhorst, Herman Gill, Jan Marik, Simon Williams, Joseph Cowell, Gilles Gasser, Thomas L. Mindt, Guus A. M. S van Dongen, Danielle J. Vugts. Head-to-head comparison of DFO* and DFO chelators: selection of the best candidate for clinical 89Zr-immuno-PET. European Journal of Nuclear Medicine and Molecular Imaging 2021, 48 (3) , 694-707. https://doi.org/10.1007/s00259-020-05002-7
    68. Leticia Arnedo‐Sanchez, Kurt F. Smith, Gauthier J.‐P. Deblonde, Korey P. Carter, Liane M. Moreau, Julian A. Rees, Toni Tratnjek, Corwin H. Booth, Rebecca J. Abergel. Combining the Best of Two Chelating Titans: A Hydroxypyridinone‐Decorated Macrocyclic Ligand for Efficient and Concomitant Complexation and Sensitized Luminescence of f‐Elements. ChemPlusChem 2021, 86 (3) , 483-491. https://doi.org/10.1002/cplu.202100083
    69. Alba Gonzalez-Junca, Oliver Reiners, Luis D. Borrero-Garcia, Denis Beckford-Vera, Ann A. Lazar, William Chou, Steve Braunstein, Henry VanBrocklin, Benjamin L. Franc, Mary Helen Barcellos-Hoff. Positron Emission Tomography Imaging of Functional Transforming Growth Factor β (TGFβ) Activity and Benefit of TGFβ Inhibition in Irradiated Intracranial Tumors. International Journal of Radiation Oncology*Biology*Physics 2021, 109 (2) , 527-539. https://doi.org/10.1016/j.ijrobp.2020.09.043
    70. Henry F. VanBrocklin. PET Radiochemistry. 2021, 445-478. https://doi.org/10.1016/B978-0-12-816386-3.00027-2
    71. Heinz H. Coenen, Johannes Ermert. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nuclear Medicine and Biology 2021, 92 , 241-269. https://doi.org/10.1016/j.nucmedbio.2020.07.003
    72. Charlotte Rivas, Jessica A. Jackson, Ingebjørg N. Hungnes, Michelle T. Ma. Radioactive Metals in Imaging and Therapy. 2021, 706-740. https://doi.org/10.1016/B978-0-08-102688-5.00010-6
    73. Jason P. Holland. The Radiochemistry of Zirconium. 2020, 343-374. https://doi.org/10.1002/9781119500575.ch11
    74. Korey P. Carter, Gauthier J.-P. Deblonde, Trevor D. Lohrey, Tyler A. Bailey, Dahlia D. An, Katherine M. Shield, Wayne W. Lukens, Rebecca J. Abergel. Developing scandium and yttrium coordination chemistry to advance theranostic radiopharmaceuticals. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-0307-0
    75. Urs B. Hagemann, Katrine Wickstroem, Stefanie Hammer, Roger M. Bjerke, Sabine Zitzmann-Kolbe, Olav B. Ryan, Jenny Karlsson, Arne Scholz, Hartwig Hennekes, Dominik Mumberg, Alan S. Cuthbertson. Advances in Precision Oncology: Targeted Thorium-227 Conjugates As a New Modality in Targeted Alpha Therapy. Cancer Biotherapy and Radiopharmaceuticals 2020, 35 (7) , 497-510. https://doi.org/10.1089/cbr.2020.3568
    76. Andrey G. Kazakov, Alexander V. Severin. Sorption of 89Zr on hydroxyapatite nanoparticles as carriers for nuclear medicine. Journal of Radioanalytical and Nuclear Chemistry 2020, 325 (1) , 199-205. https://doi.org/10.1007/s10967-020-07192-8
    77. Jonatan Dewulf, Karuna Adhikari, Christel Vangestel, Tim Van Den Wyngaert, Filipe Elvas. Development of Antibody Immuno-PET/SPECT Radiopharmaceuticals for Imaging of Oncological Disorders—An Update. Cancers 2020, 12 (7) , 1868. https://doi.org/10.3390/cancers12071868
    78. Hyungjun Cho, Noor Al-saden, Heather Lam, Juri Möbus, Raymond M. Reilly, Mitchell A. Winnik. A comparison of DFO and DFO* conjugated to trastuzumab-DM1 for complexing 89Zr – In vitro stability and in vivo microPET/CT imaging studies in NOD/SCID mice with HER2-positive SK-OV-3 human ovarian cancer xenografts. Nuclear Medicine and Biology 2020, 84-85 , 11-19. https://doi.org/10.1016/j.nucmedbio.2019.12.009
    79. Meike N. Leiske, Julia A. Walker, Aadarash Zia, Nicholas L. Fletcher, Kristofer J. Thurecht, Thomas P. Davis, Kristian Kempe. Synthesis of biscarboxylic acid functionalised EDTA mimicking polymers and their ability to form Zr( iv ) chelation mediated nanostructures. Polymer Chemistry 2020, 11 (16) , 2799-2810. https://doi.org/10.1039/D0PY00304B
    80. Mirkka Sarparanta, Jacob Pourat, Kathryn E. Carnazza, Jun Tang, Navid Paknejad, Thomas Reiner, Mauri A. Kostiainen, Jason S. Lewis. Multimodality labeling strategies for the investigation of nanocrystalline cellulose biodistribution in a mouse model of breast cancer. Nuclear Medicine and Biology 2020, 80-81 , 1-12. https://doi.org/10.1016/j.nucmedbio.2019.11.002
    81. Gauthier J.-P. Deblonde, Abel Ricano, Rebecca J. Abergel. Ultra-selective ligand-driven separation of strategic actinides. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10240-x
    82. Nkemakonam C. Okoye, Jakob E. Baumeister, Firouzeh Najafi Khosroshahi, Heather M. Hennkens, Silvia S. Jurisson. Chelators and metal complex stability for radiopharmaceutical applications. Radiochimica Acta 2019, 107 (9-11) , 1087-1120. https://doi.org/10.1515/ract-2018-3090
    83. René Raavé, Gerwin Sandker, Pierre Adumeau, Christian Borch Jacobsen, Floriane Mangin, Michel Meyer, Mathieu Moreau, Claire Bernhard, Laurène Da Costa, Adrien Dubois, Victor Goncalves, Magnus Gustafsson, Mark Rijpkema, Otto Boerman, Jean-Claude Chambron, Sandra Heskamp, Franck Denat. Direct comparison of the in vitro and in vivo stability of DFO, DFO* and DFOcyclo* for 89Zr-immunoPET. European Journal of Nuclear Medicine and Molecular Imaging 2019, 46 (9) , 1966-1977. https://doi.org/10.1007/s00259-019-04343-2
    84. N. V. S. Dinesh K. Bhupathiraju, Ali Younes, Minhua Cao, Jafar Ali, Huseyin T. Cicek, Kathryn M. Tully, Shashikanth Ponnala, John W. Babich, Melissa A. Deri, Jason S. Lewis, Lynn C. Francesconi, Charles Michael Drain. Improved synthesis of the bifunctional chelator p -SCN-Bn-HOPO. Organic & Biomolecular Chemistry 2019, 17 (28) , 6866-6871. https://doi.org/10.1039/C9OB01068H
    85. Abel Ricano, Ilya Captain, Korey P. Carter, Bryan P. Nell, Gauthier J.-P. Deblonde, Rebecca J. Abergel. Combinatorial design of multimeric chelating peptoids for selective metal coordination. Chemical Science 2019, 10 (28) , 6834-6843. https://doi.org/10.1039/C9SC01068H
    86. Gauthier J.-P. Deblonde, Trevor D. Lohrey, Rebecca J. Abergel. Inducing selectivity and chirality in group IV metal coordination with high-denticity hydroxypyridinones. Dalton Transactions 2019, 48 (23) , 8238-8247. https://doi.org/10.1039/C9DT01031A
    87. Darpan N. Pandya, Nikunj B. Bhatt, Frankis Almaguel, Stephanie Rideout-Danner, Howard D. Gage, Kiran Kumar Solingapuram Sai, Thaddeus J. Wadas. 89 Zr-Chloride Can Be Used for Immuno-PET Radiochemistry Without Loss of Antigen Reactivity In Vivo. Journal of Nuclear Medicine 2019, 60 (5) , 696-701. https://doi.org/10.2967/jnumed.118.216457
    88. Alex J. Poot, Kevin W.A. Adamzek, Albert D. Windhorst, Maria J.W.D. Vosjan, Saskia Kropf, Hans-Jurgen Wester, Guus A.M.S. van Dongen, Danielle J. Vugts. Fully Automated 89 Zr Labeling and Purification of Antibodies. Journal of Nuclear Medicine 2019, 60 (5) , 691-695. https://doi.org/10.2967/jnumed.118.217158
    89. Yu Tang, Yingjiang Hu, Weihao Liu, Lin Chen, Yan Zhao, Huan Ma, Jijun Yang, Yuanyou Yang, Jiali Liao, Jiming Cai, Yue Chen, Ning Liu. A radiopharmaceutical [89Zr]Zr-DFO-nimotuzumab for immunoPET with epidermal growth factor receptor expression in vivo. Nuclear Medicine and Biology 2019, 70 , 23-31. https://doi.org/10.1016/j.nucmedbio.2019.01.007
    90. James C. Knight, Michael J. Mosley, Veerle Kersemans, Gemma M. Dias, P. Danny Allen, Sean Smart, Bart Cornelissen. Dual-isotope imaging allows in vivo immunohistochemistry using radiolabelled antibodies in tumours. Nuclear Medicine and Biology 2019, 70 , 14-22. https://doi.org/10.1016/j.nucmedbio.2019.01.010
    91. D. Scott Wilbur. The Radiopharmaceutical Chemistry of Alpha-Emitting Radionuclides. 2019, 409-424. https://doi.org/10.1007/978-3-319-98947-1_23
    92. Bernadette V. Marquez-Nostra, Nerissa Viola. The Radiopharmaceutical Chemistry of Zirconium-89. 2019, 371-390. https://doi.org/10.1007/978-3-319-98947-1_21
    93. Freddy E. Escorcia, Jeffrey M. Steckler, Dalya Abdel-Atti, Eric W. Price, Sean D. Carlin, Wolfgang W. Scholz, Jason S. Lewis, Jacob L. Houghton. Tumor-Specific Zr-89 Immuno-PET Imaging in a Human Bladder Cancer Model. Molecular Imaging and Biology 2018, 20 (5) , 808-815. https://doi.org/10.1007/s11307-018-1177-z
    94. Marie Brandt, Jens Cardinale, Margaret L. Aulsebrook, Gilles Gasser, Thomas L. Mindt. An Overview of PET Radiochemistry, Part 2: Radiometals. Journal of Nuclear Medicine 2018, 59 (10) , 1500-1506. https://doi.org/10.2967/jnumed.117.190801
    95. Stephen A. Graves, Christopher Kutyreff, Kendall E. Barrett, Reinier Hernandez, Paul A. Ellison, Steffen Happel, Eduardo Aluicio-Sarduy, Todd E. Barnhart, Robert J. Nickles, Jonathan W. Engle. Evaluation of a chloride-based 89Zr isolation strategy using a tributyl phosphate (TBP)-functionalized extraction resin. Nuclear Medicine and Biology 2018, 64-65 , 1-7. https://doi.org/10.1016/j.nucmedbio.2018.06.003
    96. Eszter Boros, Jason P. Holland. Chemical aspects of metal ion chelation in the synthesis and application antibody‐based radiotracers. Journal of Labelled Compounds and Radiopharmaceuticals 2018, 61 (9) , 652-671. https://doi.org/10.1002/jlcr.3590
    97. Julie Rousseau, Zhengxing Zhang, Xiaozhu Wang, Chengcheng Zhang, Joseph Lau, Etienne Rousseau, Milena Čolović, Navjit Hundal-Jabal, François Bénard, Kuo-Shyan Lin. Synthesis and evaluation of bifunctional tetrahydroxamate chelators for labeling antibodies with 89 Zr for imaging with positron emission tomography. Bioorganic & Medicinal Chemistry Letters 2018, 28 (5) , 899-905. https://doi.org/10.1016/j.bmcl.2018.01.067
    98. Bo Yu, Shreya Goel, Dalong Ni, Paul A. Ellison, Cerise M. Siamof, Dawei Jiang, Liang Cheng, Lei Kang, Faquan Yu, Zhuang Liu, Todd E. Barnhart, Qianjun He, Han Zhang, Weibo Cai. Reassembly of 89 Zr‐Labeled Cancer Cell Membranes into Multicompartment Membrane‐Derived Liposomes for PET‐Trackable Tumor‐Targeted Theranostics. Advanced Materials 2018, 30 (13) https://doi.org/10.1002/adma.201704934
    99. Gauthier J.-P. Deblonde, Trevor D. Lohrey, Dahlia D. An, Rebecca J. Abergel. Toxic heavy metal – Pb, Cd, Sn – complexation by the octadentate hydroxypyridinonate ligand archetype 3,4,3-LI(1,2-HOPO). New Journal of Chemistry 2018, 42 (10) , 7649-7658. https://doi.org/10.1039/C7NJ04559J
    100. Nikunj B. Bhatt, Darpan N. Pandya, Stephanie Rideout-Danner, Howard D. Gage, Frank C. Marini, Thaddeus J. Wadas. A comprehensively revised strategy that improves the specific activity and long-term stability of clinically relevant 89 Zr-immuno-PET agents. Dalton Transactions 2018, 47 (37) , 13214-13221. https://doi.org/10.1039/C8DT01841C
    Load all citations

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2015, 26, 12, 2579–2591
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.bioconjchem.5b00572
    Published November 9, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    3704

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.