ACS Publications. Most Trusted. Most Cited. Most Read
Inducible, Site-Specific Protein Labeling by Tyrosine Oxidation–Strain-Promoted (4 + 2) Cycloaddition
My Activity

Figure 1Loading Img
  • Open Access
Article

Inducible, Site-Specific Protein Labeling by Tyrosine Oxidation–Strain-Promoted (4 + 2) Cycloaddition
Click to copy article linkArticle link copied!

View Author Information
Laboratory of Organic Chemistry and Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, building 124 (Helix), 6708 WE Wageningen, The Netherlands
§ AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam, The Netherlands
Open PDFSupporting Information (1)

Bioconjugate Chemistry

Cite this: Bioconjugate Chem. 2017, 28, 4, 1189–1193
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.bioconjchem.7b00046
Published March 6, 2017

Copyright © 2017 American Chemical Society. This publication is licensed under CC-BY-NC-ND.

Abstract

Click to copy section linkSection link copied!

Genetically encoded tyrosine (Y-tag) can be utilized as a latent anchor for inducible and site-selective conjugation. Upon oxidation of tyrosine with mushroom tyrosinase, strain-promoted cycloaddition (SPOCQ) of the resulting 1,2-quinone with various bicyclo[6.1.0]nonyne (BCN) derivatives led to efficient conjugation. The method was applied for fluorophore labeling of laminarinase A and for the site-specific preparation of an antibody–drug conjugate.

Copyright © 2017 American Chemical Society

Introduction

Click to copy section linkSection link copied!

Functional modification of proteins can be achieved in a wide variety of ways. Early generation approaches, entailing the reaction with amino or thiol groups of amino acid side chains, (1-3) are effective and facile but in most cases lack selectivity due to relatively high natural abundance of lysines and cysteines in proteins. (3) Other methods involving conjugation to tyrosine, histidine, or tryptophan side chains, or to the N-terminus of proteins have also been developed. (2) As an alternative to native proteins, full control of regioselectivity can be achieved by introduction of a non-natural amino acid containing a functional handle such as an azide, a ketone or an ortho-aminophenol but often at the expense of protein expression yields. (4-6) Site-specific conjugation can also be achieved through enzymatic means, as, for example, with sortase-mediated conjugation, formyl-generating enzyme (FGE), tubulin tyrosine ligase, or activation of dihydrotetrazines by oxidation for tetrazine–TCO ligation via horseradish peroxidase or a photocatalytic agent. (7-10)
Tyrosine residues show promise as selective conjugation sites, as the relative hydrophobicity of tyrosine combined with the tendency of π–π stacking of the aromatic rings results in the limited exposure of tyrosine residues on the periphery of proteins, resulting in generally low accessibility. (11, 12) As a consequence, reactive small molecules may conjugate to tyrosines for less-selective conjugation, (13-15) while more-exposed tyrosines can allow for a wide variety of enzymatic reactions. (12, 16-20) For example, exposed tyrosine residues can be oxidized by mushroom tyrosinase to generate a 1,2-quinone, which can undergo nucleophilic attack by amines or thiols from the side chains of lysine, histidine, or cysteine. (21-23)
We recently showed that a 1,2-quinone undergoes fast strain-promoted oxidation-controlled quinone–alkyne cycloaddition (SPOCQ) with bicyclo[6.1.0]nonyne (BCN). (24-26) Here, we report that SPOCQ finds useful application in protein labeling via in situ generation of a quinone by oxidation under the action of mushroom tyrosinase (mTyr). We demonstrate that fast and complete C-terminal labeling of proteins, including an enzyme and a monoclonal antibody, can be readily achieved. The potential usefulness of the SPOCQ labeling approach is exemplified by fully controlled, site-specific generation of an antibody-drug conjugate based on anti-influenza AT1002 and the highly potent tubulin binder monomethyl auristatin F (MMAF).

Results and Discussion

Click to copy section linkSection link copied!

Laminarinase A

Given the inaccessibility of native tyrosine residues by mTyr, (11, 12) it was envisioned that an exposed tyrosine required installation in a protein of interest by means of a short spacer. Thus, tetra-glycyltyrosine (G4Y) was genetically fused to the C-terminus of a model protein laminarinase A (LamA), a hyperthermostable endo-β-1,3-glucanase from Pyrococcus furiosus, which contained an N-terminal His tag for purification. (16, 27) Modifications were achieved via site-directed mutagenesis and expression in Escherichia coli (see the Supporting Information section 7), resulting in a C-terminal G4Y fusion (LamA–G4Y, here referred to as Y-tag).
Purified LamA–G4Y was subjected to oxidation by catalytic mTyr (7.5 mol %) to generate the intermediate 1,2-quinone, anticipated to undergo in situ SPOCQ with BCN-modified lissamine 1, present in 4-fold excess (Figure 1). Gratifyingly, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated the conversion of LamA–G4Y into the labeled product after incubation at 37 °C for 30 min with an apparent high conversion (Figure 2A). Negative controls indicated the specificity of conjugation: no fluorescently labeled LamA was detected in the absence of mTyr (lane C). Incubation with mTyr without 1 led solely to an unidentified band (lane B), most likely originating from aspecific intramolecular nucleophilic attack of an amino acid residue (e.g., Lys and His) to the generated quinone, causing it to appear at the expected position. (22, 23) No fluorescence was detected when SPOCQ was performed with wt-LamA (lane I), which implies that only the newly introduced C-terminal tyrosine is oxidized and undergoes SPOCQ. Mass spectrometry (MS) analysis of the SPOCQ reaction show a main product corresponding to the product resulting from oxidation and cycloaddition of 1 (Figure 2B,C), with a deviation of ±1 Da. Figure 2B displays MS profile of LamA–G4Y prior to oxidation, in agreement with the calculated mass, whereas Figure 2C exhibits LamA–G4Y after oxidation and SPOCQ. The desired product was identified as a peak with molecular weight 32647 Da, indicating an increase of 880 Da (calculated 879 Da) from oxidation of the tyrosine and subsequent conjugation with 1. The oxidized LamA, which underwent aspecific conjugation by a nucleophilic amino acid residue addition was also clearly detected on MS with a mass increase of approximately 13 Da. Further experiments showed that conjugation via SPOCQ could also be performed at 4 and 16 °C and ambient temperature with no observable difference in efficiency (Figure S2).

Figure 1

Figure 1. SPOCQ labeling of G4Y-tagged laminarinase A by reaction of BCN-modified reagent 1 with in situ generated 1,2-quinone. Typical reaction conditions: LamA (1.0 mg/mL), mTyr (0.3 mg/mL), and 1 (4 equiv) in 50 mM potassium phosphate buffer pH 7.3, containing 135 mM NaCl and 10% DMSO as cosolvent.

Figure 2

Figure 2. (A) SDS-PAGE analysis of SPOCQ on LamA–G4Y and wt-LamA. (B) MS profile of LamA–G4Y. (C) MS profile of LamA–G4Y after SPOCQ with 1.

Trastuzumab

Having successfully demonstrated the suitability of SPOCQ for C-terminal protein conjugation, its usefulness for site-specific modification of monoclonal antibodies was investigated next. Trastuzumab with genetically engineered tetra-glycyltyrosine on both light chains (Tras[LC]G4Y) was transiently expressed in CHO-K1 and purified by protein A affinity chromatography (Supporting Information section 8). Next, Tras[LC]G4Y was subjected to identical conditions for conjugation with 1 (5 equiv) by SPOCQ at 16 °C as described for LamA. As expected, SDS-PAGE analysis indicated exclusive conversion of Tras[LC]G4Y upon incubation with both 1 and mTyr (Figure S3A), while no reaction was detected on either chain for native trastuzumab under identical conditions. Mass spectrometric analysis confirmed successful addition of 1 via SPOCQ (Figure S3 B,C). It is worth pointing out that the reaction also proceeded at 4 °C, albeit much slower, but to our surprise, no fluorescent protein could be detected at higher temperature (37 °C), possibly via competing intramolecular reaction of the intermediate quinone with nearby lysine or histidine side chains (Figure S4).

AT1002

To further assess the applicability of SPOCQ for site-specific modification of monoclonal antibodies, we modified AT1002, a potent anti-influenza antibody, with a C-terminal G4Y tag (Supporting Information section 9). (28) To this end, AT1002 with a sortase tag residing on the C-terminus of each light chain was employed to obtain a C-terminally fused G4Y (AT1002[LC]G4Y). Of relevance, the obtained AT1002[LC]G4Y possesses a longer C-terminally fused tag (-G4SLPETG4Y) compared to Tras[LC]G4Y, which was anticipated to contribute favorably with regard to accessibility of the tyrosine by mTyr. (29) SPOCQ was attempted on AT1002[LC]G4Y under identical conditions compared to Tras[LC]G4Y, after which SDS-PAGE analysis demonstrated similar conjugation selectivity with high conversion: only fluorescence on the light chain was detected when reacted with mTyr and 1 (Figure 3B). Interestingly, fluorescence of the labeled AT1002 seems more intense than that of trastuzumab under identical condition, which was taken a confirmation that labeling to the light chain with a short spacer may be encumbered by less steric accessibility. Additionally, a protein band corresponding to the conjugated product was observed by SDS-PAGE analysis upon Coomassie staining, indicating a significantly higher conversion for AT1002[LC]G4Y. MS analysis confirmed SPOCQ on AT1002 (Figure 3C,D). As with trastuzumab, some nonlabeled material was still present, which may indicate that also in this case a fraction of the formed quinone reacts with lysine or histidine residues.

Figure 3

Figure 3. (A) Schematic representation of G4Y-tagged antibodies. (B) SDS-PAGE analysis of SPOCQ on AT1002[LC]G4Y and wt-AT1002. (C) MS profile of AT1002[LC]G4Y (light chain only). (D) MS spectrum of AT1002[LC]G4Y after SPOCQ with 1. (E) MS profile of AT1002[LC]G4Y after SPOCQ with 2.

Our newly developed conjugation method was envisioned to be suitable as a site-specific approach to access antibody–drug conjugates (ADCs). These are a class of promising chemotherapeutics used for targeted treatment of tumors by combining the high cytotoxicity of a drug such as monomethyl auristatin E (MMAE) or maytansine with an antibody that has high binding affinity to the tumor cell of choice. (30) The ability of ADCs to bring highly toxic compounds selectively to the tumor cells allows the treatment of cancers while reducing the effect on healthy tissue as with traditional chemotherapies, which has led to the recent market approval of Adcetris (for the treatment of non-Hodgkin lymphoma and anaplastic large-cell lymphoma) and Kadcyla (for treatment of HER2-positive breast cancer). (31, 32) To this end, AT1002[LC]G4Y was subjected to BCN-monomethyl auristatin F conjugate (BCN-MMAF, 2) after oxidation by mTyr under identical conditions as before, with the exception that DMF was used as cosolvent instead of DMSO. Much to our satisfaction, the desired ADC was seamlessly obtained, as indicated by the expected mass increase of 1459 Da (Figure 3E), which corresponds to oxidation followed by cycloaddition (SPOCQ) with 2.

Conclusions

Click to copy section linkSection link copied!

We have successfully developed a site-specific bioconjugation method based on the in situ enzymatic oxidation of tyrosine by mushroom tyrosinase. Various BCN derivatives were successfully conjugated to C-terminal, oxidized tyrosine residues via SPOCQ. This cycloaddition occurs quickly, selectively, and under physiological conditions on a variety of proteins. Extensive optimization of reaction conditions is anticipated to allow fully selective and quantitative conversion. Research along those lines is currently ongoing in our laboratories. We envision that SPOCQ on tyrosine residues can be a valuable tool to create more unique, orthogonal conjugation possibilities for a wide variety of protein modifications, including the preparation of next-generation, site-specifically generated antibody–drug conjugates.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.bioconjchem.7b00046.

  • Additional method and material details, SPOCQ and expression details, gene and protein sequences, a schematic view of the reaction and corresponding mass values, and MS data. (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Floris L. van Delft - †Laboratory of Organic Chemistry and ‡Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, building 124 (Helix), 6708 WE Wageningen, The NetherlandsAIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam, The Netherlands Email: [email protected]
  • Authors
    • Jorick J. Bruins - †Laboratory of Organic Chemistry and ‡Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, building 124 (Helix), 6708 WE Wageningen, The NetherlandsAIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam, The NetherlandsOrcidhttp://orcid.org/0000-0003-1470-5557
    • Adrie H. Westphal - †Laboratory of Organic Chemistry and ‡Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, building 124 (Helix), 6708 WE Wageningen, The NetherlandsAIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam, The Netherlands
    • Bauke Albada - †Laboratory of Organic Chemistry and ‡Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, building 124 (Helix), 6708 WE Wageningen, The NetherlandsAIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam, The NetherlandsOrcidhttp://orcid.org/0000-0003-3659-2434
    • Koen Wagner - AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam, The Netherlands
    • Lina Bartels - AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam, The Netherlands
    • Hergen Spits - AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam, The Netherlands
    • Willem J. H. van Berkel - †Laboratory of Organic Chemistry and ‡Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, building 124 (Helix), 6708 WE Wageningen, The NetherlandsAIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam, The NetherlandsOrcidhttp://orcid.org/0000-0002-6551-2782
  • Notes
    The authors declare the following competing financial interest(s): K.W., L.B. and H.S. declare that they are employees of AIMM therapeutics. H.S. declares that he is also an employee of the department of experimental immunology at AMC, Amsterdam. F.L.V.D. declares that he is also an employee and share-holder of Synaffix BV.

Acknowledgment

Click to copy section linkSection link copied!

Remon van Geel and Peter van Galen are acknowledged for providing kind assistance with the mass spectrometry measurements. This work is funded by the NWO Gravity Program Institute for Chemical Immunology (ICI).

References

Click to copy section linkSection link copied!

This article references 32 other publications.

  1. 1
    Foley, T. L. and Burkart, M. D. (2007) Site-specific protein modification: advances and applications Curr. Opin. Chem. Biol. 11, 12 19 DOI: 10.1016/j.cbpa.2006.11.036
  2. 2
    Jung, S. and Kwon, I. (2016) Expansion of bioorthogonal chemistries towards site-specific polymer-protein conjugation Polym. Chem. 7, 4584 98 DOI: 10.1039/C6PY00856A
  3. 3
    Spicer, C. D. and Davis, B. G. (2014) Selective chemical protein modification Nat. Commun. 5, 4740 DOI: 10.1038/ncomms5740
  4. 4
    Zhang, Z., Smith, B. A., Wang, L., Brock, A., Cho, C., and Schultz, P. G. (2003) A new strategy for the site-specific modification of proteins in vivo Biochemistry 42, 6735 46 DOI: 10.1021/bi0300231
  5. 5
    Umeda, A., Thibodeaux, G. N., Zhu, J., Lee, Y., and Zhang, Z. J. (2009) Site-specific protein cross-linking with genetically incorporated 3,4-dihydroxy-L-phenylalanine ChemBioChem 10, 1302 04 DOI: 10.1002/cbic.200900127
  6. 6
    Burdine, L., Gillette, T. G., Lin, H. J., and Kodadek, T. (2004) Periodate-triggered cross-linking of DOPA-containing peptide-protein complexes J. Am. Chem. Soc. 126, 11442 3 DOI: 10.1021/ja045982c
  7. 7
    Mao, H., Hart, S. A., Schink, A., and Pollok, B. A. (2004) Sortase-mediated protein ligation: a new method for protein engineering J. Am. Chem. Soc. 126, 2670 1 DOI: 10.1021/ja039915e
  8. 8
    Schumacher, D., Helma, J., Mann, F. A., Pichler, G., Natale, F., Krause, E., Cardoso, M. C., Hackenberger, C. P. R., and Leonhardt, H. (2015) Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase Angew. Chem., Int. Ed. 54, 13787 91 DOI: 10.1002/anie.201505456
  9. 9
    Holder, P. G., Jones, L. C., Drake, P. M., Barfield, R. M., Banas, S., de Hart, G. W., Baker, J., and Rabuka, D. (2015) Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion J. Biol. Chem. 290, 15730 45 DOI: 10.1074/jbc.M115.652669
  10. 10
    Zhang, H., Trout, W. S., Liu, S., Andrade, G. A., Hudson, D. A., Scinto, S. L., Dicker, K. T., Li, Y., Lazouski, N., and Rosenthal, J. 2016, Rapid Bioorthogonal Chemistry Turn-on through Enzymatic or Long Wavelength Photocatalytic Activation of Tetrazine Ligation J. Am. Chem. Soc. 138, 5978 5983 DOI: 10.1021/jacs.6b02168
  11. 11
    McGaughey, G. B., Gagne, M., and Rappe, A. K. (1998) pi-Stacking interactions. Alive and well in proteins J. Biol. Chem. 273, 15458 15463 DOI: 10.1074/jbc.273.25.15458
  12. 12
    Struck, A. W., Bennett, M. R., Shepherd, S. A., Law, B. J., Zhuo, Y., Wong, L. S., and Micklefield, J. (2016) An enzyme cascade for selective modification of tyrosine residues in structurally diverse peptides and proteins J. Am. Chem. Soc. 138, 3038 45 DOI: 10.1021/jacs.5b10928
  13. 13
    Schlick, T. L., Ding, Z., Kovacs, E. W., and Francis, M. B. (2005) Dual-surface modification of the tobacco mosaic virus J. Am. Chem. Soc. 127, 3718 23 DOI: 10.1021/ja046239n
  14. 14
    Ban, H., Gavrilyuk, J., and Barbas, C. F., 3rd (2010) Tyrosine bioconjugation through aqueous ene-type reactions: a click-like reaction for tyrosine J. Am. Chem. Soc. 132, 1523 5 DOI: 10.1021/ja909062q
  15. 15
    Ban, H., Nagano, M., Gavrilyuk, J., Hakamata, W., Inokuma, T., and Barbas, C. F., 3rd (2013) Facile and stabile linkages through tyrosine: bioconjugation strategies with the tyrosine-click reaction Bioconjugate Chem. 24, 520 32 DOI: 10.1021/bc300665t
  16. 16
    Minamihata, K., Goto, M., and Kamiya, N. (2011) Site-specific protein cross-linking by peroxidase-catalyzed activation of a tyrosine-containing peptide tag Bioconjugate Chem. 22, 74 81 DOI: 10.1021/bc1003982
  17. 17
    Tilley, S. D. and Francis, M. B. (2006) Tyrosine-selective protein alkylation using pi-allylpalladium complexes J. Am. Chem. Soc. 128, 1080 81 DOI: 10.1021/ja057106k
  18. 18
    Romanini, D. W. and Francis, M. B. (2008) Attachment of peptide building blocks to proteins through tyrosine bioconjugation Bioconjugate Chem. 19, 153 7 DOI: 10.1021/bc700231v
  19. 19
    Long, M. J. C. and Hedstrom, L. (2012) Mushroom tyrosinase oxidizes tyrosine-rich sequences to allow selective protein functionalization ChemBioChem 13, 1818 25 DOI: 10.1002/cbic.201100792
  20. 20
    Faccio, G., Kampf, M. M., Piatti, C., Thony-Meyer, L., and Richter, M. (2014) Tyrosinase-catalyzed site-specific immobilization of engineered C-phycocyanin to surface Sci. Rep. 4, 5370 DOI: 10.1038/srep05370
  21. 21
    Ito, S., Kato, T., Shinpo, K., and Fujita, K. (1984) Oxidation of tyrosine residues in proteins by tyrosinase. Formation of protein-bonded 3,4-dihydroxyphenylalanine and 5-S-cysteinyl-3,4-dihydroxyphenylalanine Biochem. J. 222, 407 11 DOI: 10.1042/bj2220407
  22. 22
    Tabakovic, K. and Abul-Hajj, Y. J. (1994) Reaction of lysine with estrone 3,4-o-quinone Chem. Res. Toxicol. 7, 696 701 DOI: 10.1021/tx00041a016
  23. 23
    Xu, R., Huang, X., Morgan, T. D., Prakash, O., Kramer, K. J., and Hawley, M. D. (1996) Characterization of products from the reactions of N-acetyldopamine quinone with N-acetylhistidine Arch. Biochem. Biophys. 329, 56 64 DOI: 10.1006/abbi.1996.0191
  24. 24
    Borrmann, A., Fatunsin, O., Dommerholt, J., Jonker, A. M., Lowik, D. W., van Hest, J. C., and van Delft, F. L. (2015) Strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition (SPOCQ) for fast and activatable protein conjugation Bioconjugate Chem. 26, 257 61 DOI: 10.1021/bc500534d
  25. 25
    Jonker, A. M., Borrmann, A., van Eck, E. R., van Delft, F. L., Lowik, D. W., and van Hest, J. C. (2015) A fast and activatable cross-linking strategy for hydrogel formation Adv. Mater. 27, 1235 40 DOI: 10.1002/adma.201404448
  26. 26
    Dommerholt, J., Schmidt, S., Temming, R., Hendriks, L. J., Rutjes, F. P., van Hest, J. C., Lefeber, D. J., Friedl, P., and van Delft, F. L. (2010) Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells Angew. Chem., Int. Ed. 49, 9422 5 DOI: 10.1002/anie.201003761
  27. 27
    Przybysz, A., Volmer, A. A., Westphal, A. H., and van Berkel, W. J. (2014) Bifunctional immobilization of a hyperthermostable endo-beta-1,3-glucanase Appl. Microbiol. Biotechnol. 98, 1155 63 DOI: 10.1007/s00253-013-4953-3
  28. 28
    Wagner, K., Kwakkenbos, M. J., Claassen, Y. B., Maijoor, K., Bohne, M., van der Sluijs, K. F., Witte, M. D., van Zoelen, D. J., Cornelissen, L. A., and Beaumont, T. 2014, Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity Proc. Natl. Acad. Sci. U. S. A. 111, 16820 5 DOI: 10.1073/pnas.1408605111
  29. 29
    Dorywalska, M., Strop, P., Melton-Witt, J. A., Hasa-Moreno, A., Farias, S. E., Galindo Casas, M., Delaria, K., Lui, V., Poulsen, K., and Loo, C. 2015, Effect of Attachment Site on Stability of Cleavable Antibody Drug Conjugates Bioconjugate Chem. 26, 650 659 DOI: 10.1021/bc5005747
  30. 30
    Chari, R. V., Miller, M. L., and Widdison, W. C. (2014) Antibody-drug conjugates: an emerging concept in cancer therapy Angew. Chem., Int. Ed. 53, 3796 827 DOI: 10.1002/anie.201307628
  31. 31
    Younes, A., Bartlett, N. L., Leonard, J. P., Kennedy, D. A., Lynch, C. M., Sievers, E. L., and Forero-Torres, A. (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas N. Engl. J. Med. 363, 1812 21 DOI: 10.1056/NEJMoa1002965
  32. 32
    Verma, S., Miles, D., Gianni, L., Krop, I. E., Welslau, M., Baselga, J., Pegram, M., Oh, D. Y., Dieras, V., and Guardino, E. 2012, Trastuzumab emtansine for HER2-positive advanced breast cancer N. Engl. J. Med. 367, 1783 91 DOI: 10.1056/NEJMoa1209124

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 77 publications.

  1. Irene Shajan, Léa N. C. Rochet, Shannon R. Tracey, Rania Benazza, Bianka Jackowska, Oscar Hernandez-Alba, Sarah Cianférani, Christopher J. Scott, Floris L. van Delft, Vijay Chudasama, Bauke Albada. Modular Semisynthetic Approach to Generate T Cell-Dependent Bispecific Constructs from Recombinant IgG1 Antibodies. Bioconjugate Chemistry 2024, 35 (10) , 1524-1531. https://doi.org/10.1021/acs.bioconjchem.4c00309
  2. Saki Horie, Kenji Mishiro, Mio Nishino, Inori Domae, Mitsuo Wakasugi, Tsukasa Matsunaga, Munetaka Kunishima. Epitope-Based Specific Antibody Modifications. Bioconjugate Chemistry 2023, 34 (11) , 2022-2033. https://doi.org/10.1021/acs.bioconjchem.3c00340
  3. Aaron Debon, Elina Siirola, Radka Snajdrova. Enzymatic Bioconjugation: A Perspective from the Pharmaceutical Industry. JACS Au 2023, 3 (5) , 1267-1283. https://doi.org/10.1021/jacsau.2c00617
  4. Ming Fang, Gangam Srikanth Kumar, Stefano Racioppi, Heyang Zhang, Johnathan D. Rabb, Eva Zurek, Qing Lin. Hydrazonyl Sultones as Stable Tautomers of Highly Reactive Nitrile Imines for Fast Bioorthogonal Ligation Reaction. Journal of the American Chemical Society 2023, 145 (18) , 9959-9964. https://doi.org/10.1021/jacs.2c12325
  5. Julia E. Rosenberger, Yixin Xie, Yinzhi Fang, Xinyi Lyu, William S. Trout, Olga Dmitrenko, Joseph M. Fox. Ligand-Directed Photocatalysts and Far-Red Light Enable Catalytic Bioorthogonal Uncaging inside Live Cells. Journal of the American Chemical Society 2023, 145 (11) , 6067-6078. https://doi.org/10.1021/jacs.2c10655
  6. Johnathan C. Maza, Derek M. García-Almedina, Lydia E. Boike, Noah X. Hamlish, Daniel K. Nomura, Matthew B. Francis. Tyrosinase-Mediated Synthesis of Nanobody–Cell Conjugates. ACS Central Science 2022, 8 (7) , 955-962. https://doi.org/10.1021/acscentsci.1c01265
  7. Andrew Jemas, Yixin Xie, Jessica E. Pigga, Jeffrey L. Caplan, Christopher W. am Ende, Joseph M. Fox. Catalytic Activation of Bioorthogonal Chemistry with Light (CABL) Enables Rapid, Spatiotemporally Controlled Labeling and No-Wash, Subcellular 3D-Patterning in Live Cells Using Long Wavelength Light. Journal of the American Chemical Society 2022, 144 (4) , 1647-1662. https://doi.org/10.1021/jacs.1c10390
  8. Katsuya Maruyama, Takashi Ishiyama, Yohei Seki, Kentaro Sakai, Takaya Togo, Kounosuke Oisaki, Motomu Kanai. Protein Modification at Tyrosine with Iminoxyl Radicals. Journal of the American Chemical Society 2021, 143 (47) , 19844-19855. https://doi.org/10.1021/jacs.1c09066
  9. Jorick J. Bruins, Johannes A. M. Damen, Marloes A. Wijdeven, Lianne P. W. M. Lelieveldt, Floris L. van Delft, Bauke Albada. Non-Genetic Generation of Antibody Conjugates Based on Chemoenzymatic Tyrosine Click Chemistry. Bioconjugate Chemistry 2021, 32 (10) , 2167-2172. https://doi.org/10.1021/acs.bioconjchem.1c00351
  10. Casey S. Mogilevsky, Marco J. Lobba, Daniel D. Brauer, Alan M. Marmelstein, Johnathan C. Maza, Jamie M. Gleason, Jennifer A. Doudna, Matthew B. Francis. Synthesis of Multi-Protein Complexes through Charge-Directed Sequential Activation of Tyrosine Residues. Journal of the American Chemical Society 2021, 143 (34) , 13538-13547. https://doi.org/10.1021/jacs.1c03079
  11. Chuanqi Wang, He Zhang, Tao Zhang, Xiaoyu Zou, Hui Wang, Julia E. Rosenberger, Raghu Vannam, William S. Trout, Jonathan B. Grimm, Luke D. Lavis, Colin Thorpe, Xinqiao Jia, Zibo Li, Joseph M. Fox. Enabling In Vivo Photocatalytic Activation of Rapid Bioorthogonal Chemistry by Repurposing Silicon-Rhodamine Fluorophores as Cytocompatible Far-Red Photocatalysts. Journal of the American Chemical Society 2021, 143 (28) , 10793-10803. https://doi.org/10.1021/jacs.1c05547
  12. Brian J. Levandowski, Ronald T. Raines. Click Chemistry with Cyclopentadiene. Chemical Reviews 2021, 121 (12) , 6777-6801. https://doi.org/10.1021/acs.chemrev.0c01055
  13. Bauke Albada, Jordi F. Keijzer, Han Zuilhof, Floris van Delft. Oxidation-Induced “One-Pot” Click Chemistry. Chemical Reviews 2021, 121 (12) , 7032-7058. https://doi.org/10.1021/acs.chemrev.0c01180
  14. Napon Nilchan, James M. Alburger, William R. Roush, Christoph Rader. An Engineered Arginine Residue of Unusual pH-Sensitive Reactivity Facilitates Site-Selective Antibody Conjugation. Biochemistry 2021, 60 (14) , 1080-1087. https://doi.org/10.1021/acs.biochem.0c00955
  15. Jordi F. Keijzer, Bauke Albada. Site-Specific and Trigger-Activated Modification of Proteins by Means of Catalytic Hemin/G-quadruplex DNAzyme Nanostructures. Bioconjugate Chemistry 2020, 31 (10) , 2283-2287. https://doi.org/10.1021/acs.bioconjchem.0c00422
  16. Marco J. Lobba, Christof Fellmann, Alan M. Marmelstein, Johnathan C. Maza, Elijah N. Kissman, Stephanie A. Robinson, Brett T. Staahl, Cole Urnes, Rachel J. Lew, Casey S. Mogilevsky, Jennifer A. Doudna, Matthew B. Francis. Site-Specific Bioconjugation through Enzyme-Catalyzed Tyrosine–Cysteine Bond Formation. ACS Central Science 2020, 6 (9) , 1564-1571. https://doi.org/10.1021/acscentsci.0c00940
  17. Shinichi Sato, Masaki Matsumura, Tetsuya Kadonosono, Satoshi Abe, Takafumi Ueno, Hiroshi Ueda, Hiroyuki Nakamura. Site-Selective Protein Chemical Modification of Exposed Tyrosine Residues Using Tyrosine Click Reaction. Bioconjugate Chemistry 2020, 31 (5) , 1417-1424. https://doi.org/10.1021/acs.bioconjchem.0c00120
  18. Alan M. Marmelstein, Marco J. Lobba, Casey S. Mogilevsky, Johnathan C. Maza, Daniel D. Brauer, Matthew B. Francis. Tyrosinase-Mediated Oxidative Coupling of Tyrosine Tags on Peptides and Proteins. Journal of the American Chemical Society 2020, 142 (11) , 5078-5086. https://doi.org/10.1021/jacs.9b12002
  19. Jorick J. Bruins, Criss van de Wouw, Koen Wagner, Lina Bartels, Bauke Albada, Floris L. van Delft. Highly Efficient Mono-Functionalization of Knob-in-Hole Antibodies with Strain-Promoted Click Chemistry. ACS Omega 2019, 4 (7) , 11801-11807. https://doi.org/10.1021/acsomega.9b01727
  20. Johnathan C. Maza, Daniel L. V. Bader, Lifeng Xiao, Alan M. Marmelstein, Daniel D. Brauer, Adel M. ElSohly, Matthew J. Smith, Shane W. Krska, Craig A. Parish, Matthew B. Francis. Enzymatic Modification of N-Terminal Proline Residues Using Phenol Derivatives. Journal of the American Chemical Society 2019, 141 (9) , 3885-3892. https://doi.org/10.1021/jacs.8b10845
  21. Elita Montanari, Arianna Gennari, Maria Pelliccia, Lucio Manzi, Roberto Donno, Neil J. Oldham, Andrew MacDonald, Nicola Tirelli. Tyrosinase-Mediated Bioconjugation. A Versatile Approach to Chimeric Macromolecules. Bioconjugate Chemistry 2018, 29 (8) , 2550-2560. https://doi.org/10.1021/acs.bioconjchem.8b00227
  22. Yi Liu, Hsuan-Chen Wu, Narendranath Bhokisham, Jinyang Li, Kai-Lin Hong, David N. Quan, Chen-Yu Tsao, William E. Bentley, Gregory F. Payne. Biofabricating Functional Soft Matter Using Protein Engineering to Enable Enzymatic Assembly. Bioconjugate Chemistry 2018, 29 (6) , 1809-1822. https://doi.org/10.1021/acs.bioconjchem.8b00197
  23. Jorge Escorihuela, Anita Das, Wilhelmus J. E. Looijen, Floris L. van Delft, Adelia J. A. Aquino, Hans Lischka, and Han Zuilhof . Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies. The Journal of Organic Chemistry 2018, 83 (1) , 244-252. https://doi.org/10.1021/acs.joc.7b02614
  24. Matthias Pretzler, Annette Rompel. Tyrosinases: a family of copper-containing metalloenzymes. ChemTexts 2024, 10 (4) https://doi.org/10.1007/s40828-024-00195-y
  25. Ming Bao, Klaudia Łuczak, Wojciech Chaładaj, Marriah Baird, Dorota Gryko, Michael P. Doyle. Photo-cycloaddition reactions of vinyldiazo compounds. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-48274-5
  26. Keita Nakane, Chizu Fujimura, Shogo Miyano, Zhengyi Liu, Tatsuya Niwa, Hafumi Nishi, Tetsuya Kadonosono, Hideki Taguchi, Shusuke Tomoshige, Minoru Ishikawa, Shinichi Sato. Laccase-catalyzed tyrosine click reaction with 1-methyl-4-arylurazole: rapid labeling on protein surfaces. Chemical Communications 2024, 60 (96) , 14208-14211. https://doi.org/10.1039/D4CC03802A
  27. Kevin R. Venrooij, Lucienne de Bondt, Kimberly M. Bonger. Mutually Orthogonal Bioorthogonal Reactions: Selective Chemistries for Labeling Multiple Biomolecules Simultaneously. Topics in Current Chemistry 2024, 382 (3) https://doi.org/10.1007/s41061-024-00467-8
  28. Hongfei Chen, Hong‐Chai Fabio Wong, Jiaming Qiu, Biquan Li, Dingdong Yuan, Hao Kong, Yishu Bao, Yu Zhang, Zhiyi Xu, Ying‐Lung Steve Tse, Jiang Xia. Site‐Selective Tyrosine Reaction for Antibody‐Cell Conjugation and Targeted Immunotherapy. Advanced Science 2024, 11 (5) https://doi.org/10.1002/advs.202305012
  29. Thomas A. King, Laura Rodríguez Pérez, Sabine L. Flitsch. Application of Biocatalysis for Protein Bioconjugation. 2024, 389-437. https://doi.org/10.1016/B978-0-32-390644-9.00122-0
  30. Christopher C. Marvin, Milan Bruncko, Ippei Usui. Chemistry of Antibody-Small Molecule Drug Conjugates. 2024https://doi.org/10.1016/B978-0-323-96025-0.00109-5
  31. Hwaseok Hong, Uk-Jae Lee, Seul Hoo Lee, Hyun Kim, Gyu-Min Lim, Sang-Hyuk Lee, Hyeoncheol Francis Son, Byung-Gee Kim, Kyung-Jin Kim. Highly efficient site-specific protein modification using tyrosinase from Streptomyces avermitilis: Structural insight. International Journal of Biological Macromolecules 2024, 255 , 128313. https://doi.org/10.1016/j.ijbiomac.2023.128313
  32. Xiaoxuan Ma, Jian Jiang, Xiaoye An, Wanting Zu, Chi Ma, Zhuo Zhang, Yaci Lu, Lijing Zhao, Lisheng Wang. Advances in research based on antibody-cell conjugation. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1310130
  33. Valentina Vitali, Francesco Torricella, Lara Massai, Luigi Messori, Lucia Banci. Enlarging the scenario of site directed 19F labeling for NMR spectroscopy of biomolecules. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-49247-2
  34. Bauke Albada. Precise and Controlled Modification of Proteins using Multifunctional Chemical Constructs. ChemBioChem 2023, 24 (15) https://doi.org/10.1002/cbic.202300187
  35. Shengping Zhang, Luis M. De Leon Rodriguez, Freda F. Li, Margaret A. Brimble. Recent developments in the cleavage, functionalization, and conjugation of proteins and peptides at tyrosine residues. Chemical Science 2023, 14 (29) , 7782-7817. https://doi.org/10.1039/D3SC02543H
  36. Johannes A. M. Damen, Jorge Escorihuela, Han Zuilhof, Floris L. van Delft, Bauke Albada. High Rates of Quinone‐Alkyne Cycloaddition Reactions are Dictated by Entropic Factors. Chemistry – A European Journal 2023, 29 (39) https://doi.org/10.1002/chem.202300231
  37. Ryan J. Pakula, Peter J. H. Scott. Applications of radiolabeled antibodies in neuroscience and neuro‐oncology. Journal of Labelled Compounds and Radiopharmaceuticals 2023, 66 (9) , 269-285. https://doi.org/10.1002/jlcr.4049
  38. Niklas Henrik Fischer, Maria Teresa Oliveira, Frederik Diness. Chemical modification of proteins – challenges and trends at the start of the 2020s. Biomaterials Science 2023, 11 (3) , 719-748. https://doi.org/10.1039/D2BM01237E
  39. Shunsuke Yamazaki, Yutaka Matsuda. Tag‐Free Enzymatic Modification for Antibody−Drug Conjugate Production. ChemistrySelect 2022, 7 (48) https://doi.org/10.1002/slct.202203753
  40. Hao‐Ran Jia, Ya‐Xuan Zhu, Yi Liu, Yuxin Guo, Sayed Mir Sayed, Xiao‐Yu Zhu, Xiaotong Cheng, Fu‐Gen Wu. Direct chemical editing of Gram‐positive bacterial cell walls via an enzyme‐catalyzed oxidative coupling reaction. Exploration 2022, 2 (5) https://doi.org/10.1002/EXP.20220010
  41. Jordi F. Keijzer, Han Zuilhof, Bauke Albada. Calibrating Catalytic DNA Nanostructures for Site‐Selective Protein Modification**. Chemistry – A European Journal 2022, 28 (51) https://doi.org/10.1002/chem.202200895
  42. Huaibin Yu, Jiayi Feng, Fangrui Zhong, Yuzhou Wu. Chemical Modification for the “Off‐/On” Regulation of Enzyme Activity. Macromolecular Rapid Communications 2022, 43 (18) https://doi.org/10.1002/marc.202200195
  43. Pablo García-Aznar, Jorge Escorihuela. Computational insights into the inverse electron-demand Diels–Alder reaction of norbornenes with 1,2,4,5-tetrazines: norbornene substituents’ effects on the reaction rate. Organic & Biomolecular Chemistry 2022, 20 (32) , 6400-6412. https://doi.org/10.1039/D2OB01121B
  44. Hongfei Jiang, Qing Zhang, Yue Zhang, Huxin Feng, Hao Jiang, Fan Pu, Rilei Yu, Zheng Zhong, Chaoming Wang, Yi Man Eva Fung, Pilar Blasco, Yongxin Li, Tao Jiang, Xuechen Li. Triazine-pyridine chemistry for protein labelling on tyrosine. Chemical Communications 2022, 58 (50) , 7066-7069. https://doi.org/10.1039/D2CC01528E
  45. Shengping Zhang, Luis M. De Leon Rodriguez, Freda F. Li, Renjie Huang, Ivanhoe K. H. Leung, Paul W. R. Harris, Margaret A. Brimble. A novel tyrosine hyperoxidation enables selective peptide cleavage. Chemical Science 2022, 13 (9) , 2753-2763. https://doi.org/10.1039/D1SC06216F
  46. Jonathan Schwach, Mustafa Abdellatif, Andreas Stengl. More than Toxins—Current Prospects in Designing the Next Generation of Antibody Drug Conjugates. Frontiers in Bioscience-Landmark 2022, 27 (8) https://doi.org/10.31083/j.fbl2708240
  47. G. T. Hermanson, F. L. van Delft. Antibody Conjugation Technologies. 2021, 32-70. https://doi.org/10.1039/9781839165153-00032
  48. Sébastien Depienne, Dimitri Alvarez-Dorta, Mikael Croyal, Ranil C. T. Temgoua, Cathy Charlier, David Deniaud, Mathieu Mével, Mohammed Boujtita, Sébastien G. Gouin. Luminol anchors improve the electrochemical-tyrosine-click labelling of proteins. Chemical Science 2021, 12 (46) , 15374-15381. https://doi.org/10.1039/D1SC04809K
  49. Augustine George, Mohan Indhu, Sundarapandian Ashokraj, Ganesh Shanmugam, Ponesakki Ganesan, Numbi Ramudu Kamini, Niraikulam Ayyadurai. Genetically encoded dihydroxyphenylalanine coupled with tyrosinase for strain promoted labeling. Bioorganic & Medicinal Chemistry 2021, 50 , 116460. https://doi.org/10.1016/j.bmc.2021.116460
  50. Zhefu Dai, Xiao-Nan Zhang, Qinqin Cheng, Fan Fei, Tianling Hou, Jiawei Li, Alireza Abdolvahabi, Junji Watanabe, Hua Pei, Goar Smbatyan, Jianming Xie, Heinz-Josef Lenz, Stan G. Louie, Yong Zhang. Site-specific antibody-drug conjugates with variable drug-to-antibody-ratios for AML therapy. Journal of Controlled Release 2021, 336 , 433-442. https://doi.org/10.1016/j.jconrel.2021.06.041
  51. Vesela Kostova, Patrice Désos, Jérôme-Benoît Starck, Andras Kotschy. The Chemistry Behind ADCs. Pharmaceuticals 2021, 14 (5) , 442. https://doi.org/10.3390/ph14050442
  52. Mike L.W.J. Smeenk, Jordi Agramunt, Kimberly M. Bonger. Recent developments in bioorthogonal chemistry and the orthogonality within. Current Opinion in Chemical Biology 2021, 60 , 79-88. https://doi.org/10.1016/j.cbpa.2020.09.002
  53. Stephen J. Walsh, Jonathan D. Bargh, Friederike M. Dannheim, Abigail R. Hanby, Hikaru Seki, Andrew J. Counsell, Xiaoxu Ou, Elaine Fowler, Nicola Ashman, Yuri Takada, Albert Isidro-Llobet, Jeremy S. Parker, Jason S. Carroll, David R. Spring. Site-selective modification strategies in antibody–drug conjugates. Chemical Society Reviews 2021, 50 (2) , 1305-1353. https://doi.org/10.1039/D0CS00310G
  54. Peter A. Szijj, Kristina A. Kostadinova, Richard J. Spears, Vijay Chudasama. Tyrosine bioconjugation – an emergent alternative. Organic & Biomolecular Chemistry 2020, 18 (44) , 9018-9028. https://doi.org/10.1039/D0OB01912G
  55. Dimitri Alvarez Dorta, David Deniaud, Mathieu Mével, Sébastien G. Gouin. Tyrosine Conjugation Methods for Protein Labelling. Chemistry – A European Journal 2020, 26 (63) , 14257-14269. https://doi.org/10.1002/chem.202001992
  56. Sean S. Nguyen, Jennifer A. Prescher. Developing bioorthogonal probes to span a spectrum of reactivities. Nature Reviews Chemistry 2020, 4 (9) , 476-489. https://doi.org/10.1038/s41570-020-0205-0
  57. Sara Ponziani, Giulia Di Vittorio, Giuseppina Pitari, Anna Maria Cimini, Matteo Ardini, Roberta Gentile, Stefano Iacobelli, Gianluca Sala, Emily Capone, David J. Flavell, Rodolfo Ippoliti, Francesco Giansanti. Antibody-Drug Conjugates: The New Frontier of Chemotherapy. International Journal of Molecular Sciences 2020, 21 (15) , 5510. https://doi.org/10.3390/ijms21155510
  58. Zhefu Dai, Xiao-Nan Zhang, Fariborz Nasertorabi, Qinqin Cheng, Jiawei Li, Benjamin B. Katz, Goar Smbatyan, Hua Pei, Stan G. Louie, Heinz-Josef Lenz, Raymond C. Stevens, Yong Zhang. Synthesis of site-specific antibody-drug conjugates by ADP-ribosyl cyclases. Science Advances 2020, 6 (23) https://doi.org/10.1126/sciadv.aba6752
  59. Hendrik Schneider, Lukas Deweid, Olga Avrutina, Harald Kolmar. Recent progress in transglutaminase-mediated assembly of antibody-drug conjugates. Analytical Biochemistry 2020, 595 , 113615. https://doi.org/10.1016/j.ab.2020.113615
  60. L. Nathan Tumey. An Overview of the Current ADC Discovery Landscape. 2020, 1-22. https://doi.org/10.1007/978-1-4939-9929-3_1
  61. Lukas Deweid, Olga Avrutina, Harald Kolmar. Microbial transglutaminase for biotechnological and biomedical engineering. Biological Chemistry 2019, 400 (3) , 257-274. https://doi.org/10.1515/hsz-2018-0335
  62. Lina Bartels, Hidde L. Ploegh, Hergen Spits, Koen Wagner. Preparation of bispecific antibody-protein adducts by site-specific chemo-enzymatic conjugation. Methods 2019, 154 , 93-101. https://doi.org/10.1016/j.ymeth.2018.07.013
  63. Jorick J. Bruins, Criss van de Wouw, Jordi F. Keijzer, Bauke Albada, Floris L. van Delft. Inducible, Selective Labeling of Proteins via Enzymatic Oxidation of Tyrosine. 2019, 357-368. https://doi.org/10.1007/978-1-4939-9546-2_18
  64. Shino Manabe. Recent Progress in Linker Technology for Antibody-Drug Conjugates: Methods for Connection and Release. 2019, 93-123. https://doi.org/10.1007/978-4-431-56880-3_5
  65. Hiroyuki Nakamura. Target Protein Chemical Modification. 2019, 305-333. https://doi.org/10.1007/978-981-13-6244-6_13
  66. Sander S. van Berkel, Floris L. van Delft. Enzymatic strategies for (near) clinical development of antibody-drug conjugates. Drug Discovery Today: Technologies 2018, 30 , 3-10. https://doi.org/10.1016/j.ddtec.2018.09.005
  67. Si Mou, Yue Huang, Anton I. Rosenbaum. ADME Considerations and Bioanalytical Strategies for Pharmacokinetic Assessments of Antibody-Drug Conjugates. Antibodies 2018, 7 (4) , 41. https://doi.org/10.3390/antib7040041
  68. Digvijay Gahtory, Rickdeb Sen, Andriy R. Kuzmyn, Jorge Escorihuela, Han Zuilhof. Strain‐Promoted Cycloaddition of Cyclopropenes with o ‐Quinones: A Rapid Click Reaction. Angewandte Chemie 2018, 130 (32) , 10275-10279. https://doi.org/10.1002/ange.201800937
  69. Digvijay Gahtory, Rickdeb Sen, Andriy R. Kuzmyn, Jorge Escorihuela, Han Zuilhof. Strain‐Promoted Cycloaddition of Cyclopropenes with o ‐Quinones: A Rapid Click Reaction. Angewandte Chemie International Edition 2018, 57 (32) , 10118-10122. https://doi.org/10.1002/anie.201800937
  70. Digvijay Gahtory, Rickdeb Sen, Sidharam Pujari, Suhua Li, Qinheng Zheng, John E. Moses, K. Barry Sharpless, Han Zuilhof. Quantitative and Orthogonal Formation and Reactivity of SuFEx Platforms. Chemistry – A European Journal 2018, 24 (41) , 10550-10556. https://doi.org/10.1002/chem.201802356
  71. Jorick J. Bruins, Bauke Albada, Floris van Delft. ortho ‐Quinones and Analogues Thereof: Highly Reactive Intermediates for Fast and Selective Biofunctionalization. Chemistry – A European Journal 2018, 24 (19) , 4749-4756. https://doi.org/10.1002/chem.201703919
  72. Jun Ohata, Mary K. Miller, Courtney M. Mountain, Farrukh Vohidov, Zachary T. Ball. A Three‐Component Organometallic Tyrosine Bioconjugation. Angewandte Chemie 2018, 130 (11) , 2877-2880. https://doi.org/10.1002/ange.201711868
  73. Jun Ohata, Mary K. Miller, Courtney M. Mountain, Farrukh Vohidov, Zachary T. Ball. A Three‐Component Organometallic Tyrosine Bioconjugation. Angewandte Chemie International Edition 2018, 57 (11) , 2827-2830. https://doi.org/10.1002/anie.201711868
  74. Olivier Marcq. Outlook on Next Generation Technologies and Strategy Considerations for ADC Process Development and Manufacturing. 2018, 113-161. https://doi.org/10.1007/978-3-319-78154-9_6
  75. Igor Dovgan, Stéphane Erb, Steve Hessmann, Sylvain Ursuegui, Chloé Michel, Christian Muller, Guilhem Chaubet, Sarah Cianférani, Alain Wagner. Arginine-selective bioconjugation with 4-azidophenyl glyoxal: application to the single and dual functionalisation of native antibodies. Organic & Biomolecular Chemistry 2018, 16 (8) , 1305-1311. https://doi.org/10.1039/C7OB02844J
  76. Jorick J. Bruins, Daniel Blanco-Ania, Vincent van der Doef, Floris L. van Delft, Bauke Albada. Orthogonal, dual protein labelling by tandem cycloaddition of strained alkenes and alkynes to ortho -quinones and azides. Chemical Communications 2018, 54 (53) , 7338-7341. https://doi.org/10.1039/C8CC02638F
  77. Alex R. Nanna, Xiuling Li, Even Walseng, Lee Pedzisa, Rebecca S. Goydel, David Hymel, Terrence R. Burke, William R. Roush, Christoph Rader. Harnessing a catalytic lysine residue for the one-step preparation of homogeneous antibody-drug conjugates. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-01257-1

Bioconjugate Chemistry

Cite this: Bioconjugate Chem. 2017, 28, 4, 1189–1193
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.bioconjchem.7b00046
Published March 6, 2017

Copyright © 2017 American Chemical Society. This publication is licensed under CC-BY-NC-ND.

Article Views

4963

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. SPOCQ labeling of G4Y-tagged laminarinase A by reaction of BCN-modified reagent 1 with in situ generated 1,2-quinone. Typical reaction conditions: LamA (1.0 mg/mL), mTyr (0.3 mg/mL), and 1 (4 equiv) in 50 mM potassium phosphate buffer pH 7.3, containing 135 mM NaCl and 10% DMSO as cosolvent.

    Figure 2

    Figure 2. (A) SDS-PAGE analysis of SPOCQ on LamA–G4Y and wt-LamA. (B) MS profile of LamA–G4Y. (C) MS profile of LamA–G4Y after SPOCQ with 1.

    Figure 3

    Figure 3. (A) Schematic representation of G4Y-tagged antibodies. (B) SDS-PAGE analysis of SPOCQ on AT1002[LC]G4Y and wt-AT1002. (C) MS profile of AT1002[LC]G4Y (light chain only). (D) MS spectrum of AT1002[LC]G4Y after SPOCQ with 1. (E) MS profile of AT1002[LC]G4Y after SPOCQ with 2.

  • References


    This article references 32 other publications.

    1. 1
      Foley, T. L. and Burkart, M. D. (2007) Site-specific protein modification: advances and applications Curr. Opin. Chem. Biol. 11, 12 19 DOI: 10.1016/j.cbpa.2006.11.036
    2. 2
      Jung, S. and Kwon, I. (2016) Expansion of bioorthogonal chemistries towards site-specific polymer-protein conjugation Polym. Chem. 7, 4584 98 DOI: 10.1039/C6PY00856A
    3. 3
      Spicer, C. D. and Davis, B. G. (2014) Selective chemical protein modification Nat. Commun. 5, 4740 DOI: 10.1038/ncomms5740
    4. 4
      Zhang, Z., Smith, B. A., Wang, L., Brock, A., Cho, C., and Schultz, P. G. (2003) A new strategy for the site-specific modification of proteins in vivo Biochemistry 42, 6735 46 DOI: 10.1021/bi0300231
    5. 5
      Umeda, A., Thibodeaux, G. N., Zhu, J., Lee, Y., and Zhang, Z. J. (2009) Site-specific protein cross-linking with genetically incorporated 3,4-dihydroxy-L-phenylalanine ChemBioChem 10, 1302 04 DOI: 10.1002/cbic.200900127
    6. 6
      Burdine, L., Gillette, T. G., Lin, H. J., and Kodadek, T. (2004) Periodate-triggered cross-linking of DOPA-containing peptide-protein complexes J. Am. Chem. Soc. 126, 11442 3 DOI: 10.1021/ja045982c
    7. 7
      Mao, H., Hart, S. A., Schink, A., and Pollok, B. A. (2004) Sortase-mediated protein ligation: a new method for protein engineering J. Am. Chem. Soc. 126, 2670 1 DOI: 10.1021/ja039915e
    8. 8
      Schumacher, D., Helma, J., Mann, F. A., Pichler, G., Natale, F., Krause, E., Cardoso, M. C., Hackenberger, C. P. R., and Leonhardt, H. (2015) Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase Angew. Chem., Int. Ed. 54, 13787 91 DOI: 10.1002/anie.201505456
    9. 9
      Holder, P. G., Jones, L. C., Drake, P. M., Barfield, R. M., Banas, S., de Hart, G. W., Baker, J., and Rabuka, D. (2015) Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion J. Biol. Chem. 290, 15730 45 DOI: 10.1074/jbc.M115.652669
    10. 10
      Zhang, H., Trout, W. S., Liu, S., Andrade, G. A., Hudson, D. A., Scinto, S. L., Dicker, K. T., Li, Y., Lazouski, N., and Rosenthal, J. 2016, Rapid Bioorthogonal Chemistry Turn-on through Enzymatic or Long Wavelength Photocatalytic Activation of Tetrazine Ligation J. Am. Chem. Soc. 138, 5978 5983 DOI: 10.1021/jacs.6b02168
    11. 11
      McGaughey, G. B., Gagne, M., and Rappe, A. K. (1998) pi-Stacking interactions. Alive and well in proteins J. Biol. Chem. 273, 15458 15463 DOI: 10.1074/jbc.273.25.15458
    12. 12
      Struck, A. W., Bennett, M. R., Shepherd, S. A., Law, B. J., Zhuo, Y., Wong, L. S., and Micklefield, J. (2016) An enzyme cascade for selective modification of tyrosine residues in structurally diverse peptides and proteins J. Am. Chem. Soc. 138, 3038 45 DOI: 10.1021/jacs.5b10928
    13. 13
      Schlick, T. L., Ding, Z., Kovacs, E. W., and Francis, M. B. (2005) Dual-surface modification of the tobacco mosaic virus J. Am. Chem. Soc. 127, 3718 23 DOI: 10.1021/ja046239n
    14. 14
      Ban, H., Gavrilyuk, J., and Barbas, C. F., 3rd (2010) Tyrosine bioconjugation through aqueous ene-type reactions: a click-like reaction for tyrosine J. Am. Chem. Soc. 132, 1523 5 DOI: 10.1021/ja909062q
    15. 15
      Ban, H., Nagano, M., Gavrilyuk, J., Hakamata, W., Inokuma, T., and Barbas, C. F., 3rd (2013) Facile and stabile linkages through tyrosine: bioconjugation strategies with the tyrosine-click reaction Bioconjugate Chem. 24, 520 32 DOI: 10.1021/bc300665t
    16. 16
      Minamihata, K., Goto, M., and Kamiya, N. (2011) Site-specific protein cross-linking by peroxidase-catalyzed activation of a tyrosine-containing peptide tag Bioconjugate Chem. 22, 74 81 DOI: 10.1021/bc1003982
    17. 17
      Tilley, S. D. and Francis, M. B. (2006) Tyrosine-selective protein alkylation using pi-allylpalladium complexes J. Am. Chem. Soc. 128, 1080 81 DOI: 10.1021/ja057106k
    18. 18
      Romanini, D. W. and Francis, M. B. (2008) Attachment of peptide building blocks to proteins through tyrosine bioconjugation Bioconjugate Chem. 19, 153 7 DOI: 10.1021/bc700231v
    19. 19
      Long, M. J. C. and Hedstrom, L. (2012) Mushroom tyrosinase oxidizes tyrosine-rich sequences to allow selective protein functionalization ChemBioChem 13, 1818 25 DOI: 10.1002/cbic.201100792
    20. 20
      Faccio, G., Kampf, M. M., Piatti, C., Thony-Meyer, L., and Richter, M. (2014) Tyrosinase-catalyzed site-specific immobilization of engineered C-phycocyanin to surface Sci. Rep. 4, 5370 DOI: 10.1038/srep05370
    21. 21
      Ito, S., Kato, T., Shinpo, K., and Fujita, K. (1984) Oxidation of tyrosine residues in proteins by tyrosinase. Formation of protein-bonded 3,4-dihydroxyphenylalanine and 5-S-cysteinyl-3,4-dihydroxyphenylalanine Biochem. J. 222, 407 11 DOI: 10.1042/bj2220407
    22. 22
      Tabakovic, K. and Abul-Hajj, Y. J. (1994) Reaction of lysine with estrone 3,4-o-quinone Chem. Res. Toxicol. 7, 696 701 DOI: 10.1021/tx00041a016
    23. 23
      Xu, R., Huang, X., Morgan, T. D., Prakash, O., Kramer, K. J., and Hawley, M. D. (1996) Characterization of products from the reactions of N-acetyldopamine quinone with N-acetylhistidine Arch. Biochem. Biophys. 329, 56 64 DOI: 10.1006/abbi.1996.0191
    24. 24
      Borrmann, A., Fatunsin, O., Dommerholt, J., Jonker, A. M., Lowik, D. W., van Hest, J. C., and van Delft, F. L. (2015) Strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition (SPOCQ) for fast and activatable protein conjugation Bioconjugate Chem. 26, 257 61 DOI: 10.1021/bc500534d
    25. 25
      Jonker, A. M., Borrmann, A., van Eck, E. R., van Delft, F. L., Lowik, D. W., and van Hest, J. C. (2015) A fast and activatable cross-linking strategy for hydrogel formation Adv. Mater. 27, 1235 40 DOI: 10.1002/adma.201404448
    26. 26
      Dommerholt, J., Schmidt, S., Temming, R., Hendriks, L. J., Rutjes, F. P., van Hest, J. C., Lefeber, D. J., Friedl, P., and van Delft, F. L. (2010) Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells Angew. Chem., Int. Ed. 49, 9422 5 DOI: 10.1002/anie.201003761
    27. 27
      Przybysz, A., Volmer, A. A., Westphal, A. H., and van Berkel, W. J. (2014) Bifunctional immobilization of a hyperthermostable endo-beta-1,3-glucanase Appl. Microbiol. Biotechnol. 98, 1155 63 DOI: 10.1007/s00253-013-4953-3
    28. 28
      Wagner, K., Kwakkenbos, M. J., Claassen, Y. B., Maijoor, K., Bohne, M., van der Sluijs, K. F., Witte, M. D., van Zoelen, D. J., Cornelissen, L. A., and Beaumont, T. 2014, Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity Proc. Natl. Acad. Sci. U. S. A. 111, 16820 5 DOI: 10.1073/pnas.1408605111
    29. 29
      Dorywalska, M., Strop, P., Melton-Witt, J. A., Hasa-Moreno, A., Farias, S. E., Galindo Casas, M., Delaria, K., Lui, V., Poulsen, K., and Loo, C. 2015, Effect of Attachment Site on Stability of Cleavable Antibody Drug Conjugates Bioconjugate Chem. 26, 650 659 DOI: 10.1021/bc5005747
    30. 30
      Chari, R. V., Miller, M. L., and Widdison, W. C. (2014) Antibody-drug conjugates: an emerging concept in cancer therapy Angew. Chem., Int. Ed. 53, 3796 827 DOI: 10.1002/anie.201307628
    31. 31
      Younes, A., Bartlett, N. L., Leonard, J. P., Kennedy, D. A., Lynch, C. M., Sievers, E. L., and Forero-Torres, A. (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas N. Engl. J. Med. 363, 1812 21 DOI: 10.1056/NEJMoa1002965
    32. 32
      Verma, S., Miles, D., Gianni, L., Krop, I. E., Welslau, M., Baselga, J., Pegram, M., Oh, D. Y., Dieras, V., and Guardino, E. 2012, Trastuzumab emtansine for HER2-positive advanced breast cancer N. Engl. J. Med. 367, 1783 91 DOI: 10.1056/NEJMoa1209124
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.bioconjchem.7b00046.

    • Additional method and material details, SPOCQ and expression details, gene and protein sequences, a schematic view of the reaction and corresponding mass values, and MS data. (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.