ACS Publications. Most Trusted. Most Cited. Most Read
Complexes of Magnetic Nanoparticles with Cellulose Nanocrystals as Regenerable, Highly Efficient, and Selective Platform for Protein Separation
My Activity

Figure 1Loading Img
    Article

    Complexes of Magnetic Nanoparticles with Cellulose Nanocrystals as Regenerable, Highly Efficient, and Selective Platform for Protein Separation
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
    Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849-5127, United States
    Department of Applied Physics, School of Science, Aalto University, FI-00076 Aalto, Finland
    Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
    Other Access OptionsSupporting Information (2)

    Biomacromolecules

    Cite this: Biomacromolecules 2017, 18, 3, 898–905
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.biomac.6b01778
    Published February 15, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We present an efficient approach to develop cellulose nanocrystal (CNC) hybrids with magnetically responsive Fe3O4 nanoparticles that were synthesized using the (Fe3+/Fe2+) coprecipitation. After 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-catalyzed oxidation of CNC, carbodiimide (EDC/NHS) was used for coupling amine-containing iron oxide nanoparticles that were achieved by dopamine ligand exchange (NH2–Fe3O4 NPs). The as-prepared hybrids (Fe3O4@CNC) were further complexed with Cu(II) ions to produce specific protein binding sites. The performance of magnetically responsive Cu–Fe3O4@CNC hybrids was assessed by selectively separating lysozyme from aqueous media. The hybrid system displayed a remarkable binding capacity with lysozyme of 860.6 ± 14.6 mg/g while near full protein recovery (∼98%) was achieved by simple elution. Moreover, the regeneration of Fe3O4@CNC hybrids and efficient reutilization for protein separation was demonstrated. Finally, lysozyme separation from matrices containing egg white was achieved, thus revealing the specificity and potential of the presented method.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.biomac.6b01778.

    • Video of lysozyme separation with the assistance of magnet (AVI)

    • Experimental procedures of protein concentration analysis, SDS page analysis. TEM image of TEMPO-oxidation cellulose nanocrystals (TEMPO-CNC). Calculation method of degree of oxidation of TEMPO-CNC. The calibration curve for copper ions concentration. Zeta potential of NH2–Fe3O4 NPs. Stability test of Fe3O4 NPs (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 54 publications.

    1. Ali Hussein F. Alnasraui, I. Hubert Joe, Sharafaldin Al-Musawi. Investigation of Folate-Functionalized Magnetic-Gold Nanoparticles Based Targeted Drug Delivery for Liver: In Vitro, In Vivo and Docking Studies. ACS Biomaterials Science & Engineering 2024, 10 (10) , 6299-6313. https://doi.org/10.1021/acsbiomaterials.4c01039
    2. Zhuojun Meng, Daisuke Sawada, Christiane Laine, Yu Ogawa, Tommi Virtanen, Yoshiharu Nishiyama, Tekla Tammelin, Eero Kontturi. Bottom-up Construction of Xylan Nanocrystals in Dimethyl Sulfoxide. Biomacromolecules 2021, 22 (2) , 898-906. https://doi.org/10.1021/acs.biomac.0c01600
    3. Xiaoyu Wang, Dong Zhang, Jiahui Wu, Iryna Protsak, Shihua Mao, Chunxin Ma, Meng Ma, Mingqiang Zhong, Jun Tan, Jintao Yang. Novel Salt-Responsive SiO2@Cellulose Membranes Promote Continuous Gradient and Adjustable Transport Efficiency. ACS Applied Materials & Interfaces 2020, 12 (37) , 42169-42178. https://doi.org/10.1021/acsami.0c12399
    4. Rubbel Singla, Syed M. S. Abidi, Aqib Iqbal Dar, Amitabha Acharya. Inhibition of Glycation-Induced Aggregation of Human Serum Albumin by Organic–Inorganic Hybrid Nanocomposites of Iron Oxide-Functionalized Nanocellulose. ACS Omega 2019, 4 (12) , 14805-14819. https://doi.org/10.1021/acsomega.9b01392
    5. Long Bai, Luiz G. Greca, Wenchao Xiang, Janika Lehtonen, Siqi Huan, Robertus Wahyu N. Nugroho, Blaise L. Tardy, Orlando J. Rojas. Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces. Langmuir 2019, 35 (3) , 571-588. https://doi.org/10.1021/acs.langmuir.8b01288
    6. Vikram Singh Raghuwanshi, Gil Garnier. Nanoparticle Decorated Cellulose Nanocrystals (CNC) Composites for Energy, Catalysis, and Biomedical Applications. Advanced Functional Materials 2024, 7 https://doi.org/10.1002/adfm.202412869
    7. Ali Hussein F Alnasraui, I Hubert Joe, Sharafaldin Al-Musawi. Investigation of dextran-coated magnetic nanoparticles encapsulated by medication and modified with folate for targeted drug delivery: Invitro and docking studies. Materials Chemistry and Physics 2024, 321 , 129446. https://doi.org/10.1016/j.matchemphys.2024.129446
    8. Aleksandra Janićijević, Vera P. Pavlović, Danijela Kovačević, Nenad Đorđević, Aleksandar Marinković, Branislav Vlahović, Abdennaceur Karoui, Vladimir B. Pavlović, Suzana Filipović. Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material. Journal of Inorganic and Organometallic Polymers and Materials 2024, 34 (5) , 2129-2139. https://doi.org/10.1007/s10904-023-02953-w
    9. Shayeri Das, Prabhat Ranjan, Tanmoy Chakraborty. Study of oxide-based nano cluster X3O4 (X = Ti, Fe and Zn) for biomedical applications: a CDFT approach. Journal of Mathematical Chemistry 2024, 89 https://doi.org/10.1007/s10910-023-01569-2
    10. Xinyi Shao, Jian Wang, Xinjie Yao, Yubo Wang, Wenbao Song, Dehua Xu, Yifei Gao, Cuihua Dong. Cellulose based hierarchically structured anion-exchange fiber for efficient dye adsorption. Cellulose 2024, 31 (1) , 411-426. https://doi.org/10.1007/s10570-023-05605-x
    11. Işık Perçin, Emel Tamahkar, Neslihan İdil, Gülşen Bayrak, Sevgi Aslıyüce, Adil Denizli. Functionalized magnetic nanosystems for immobilization of proteins and enzymes. 2024, 291-326. https://doi.org/10.1016/B978-0-443-19012-4.00008-4
    12. Lucas J. Andrew, Emma R. Gillman, Christopher M. Walters, Erlantz Lizundia, Mark J. MacLachlan. Multi‐Responsive Supercapacitors from Chiral Nematic Cellulose Nanocrystal‐Based Activated Carbon Aerogels. Small 2023, 19 (34) https://doi.org/10.1002/smll.202301947
    13. Ahmed I.A. Soliman, Jonathan A. Díaz Baca, Pedram Fatehi. One-pot synthesis of magnetic cellulose nanocrystal and its post-functionalization for doxycycline adsorption. Carbohydrate Polymers 2023, 308 , 120619. https://doi.org/10.1016/j.carbpol.2023.120619
    14. Wenjing Ma, Dawei Hua, Ranhua Xiong, Chaobo Huang. Bio-based stimuli-responsive materials for biomedical applications. Materials Advances 2023, 4 (2) , 458-475. https://doi.org/10.1039/D2MA01011A
    15. Mahdieh Darroudi, Seyedeh Elnaz Nazari, Fereshteh Asgharzadeh, Nima Khalili-Tanha, Ghazaleh Khalili-Tanha, Toktam Dehghani, Maryam Karimzadeh, Mina Maftooh, Gordon A. Fern, Amir Avan, Majid Rezayi, Majid Khazaei. Fabrication and application of cisplatin-loaded mesoporous magnetic nanobiocomposite: a novel approach to smart cervical cancer chemotherapy. Cancer Nanotechnology 2022, 13 (1) https://doi.org/10.1186/s12645-022-00141-y
    16. Srijeeb Karmakar, Tabli Ghosh, Arjun Sankhla, Sayan Bhattacharjee, Vimal Katiyar. Insulin biomolecular condensate formed in ionic microenvironment modulates the structural properties of pristine and magnetic cellulosic nanomaterials. Journal of Molecular Liquids 2022, 363 , 119580. https://doi.org/10.1016/j.molliq.2022.119580
    17. Xue Chen, Jinyue Chai, Xue Yang, Fang Chai, Miaomiao Tian. Amino acid-immobilized copper ion-modified carbon-based adsorbent for selective adsorption of bovine hemoglobin. Journal of Chromatography A 2022, 1680 , 463440. https://doi.org/10.1016/j.chroma.2022.463440
    18. Areej Shahbaz, Nazim Hussain, Muhammad Asim Raza Basra, Muhammad Bilal. Polysaccharides‐Based Nano‐Hybrid Biomaterial Platforms for Tissue Engineering, Drug Delivery, and Food Packaging Applications. Starch - Stärke 2022, 74 (7-8) https://doi.org/10.1002/star.202200023
    19. Alojz Anžlovar, Ema Žagar. Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their Assemblies. Nanomaterials 2022, 12 (11) , 1837. https://doi.org/10.3390/nano12111837
    20. Tiina Nypelö. Magnetic cellulose: does extending cellulose versatility with magnetic functionality facilitate its use in devices?. Journal of Materials Chemistry C 2022, 10 (3) , 805-818. https://doi.org/10.1039/D1TC02105B
    21. Elias E. Elemike, Anthony C. Ekennia, Damian C. Onwudiwe, Rachael O. Ezeani. Agro-waste materials: Sustainable substrates in nanotechnology. 2022, 187-214. https://doi.org/10.1016/B978-0-12-823575-1.00022-6
    22. Leonardo Zanata, Aryane Tofanello, Herculano S. Martinho, José A. Souza, Derval S. Rosa. Iron oxide nanoparticles–cellulose: a comprehensive insight on nanoclusters formation. Journal of Materials Science 2022, 57 (1) , 324-335. https://doi.org/10.1007/s10853-021-06564-z
    23. Kaifeng Du, Liangzhi Qiao. Biotextile-based adsorbents for medical applications. 2022, 117-135. https://doi.org/10.1016/B978-0-323-90479-7.00003-8
    24. Xue Chen, Jinyue Chai, Xue Yang, Fang Chai, Miaomiao Tian. Amino Acid-Immobilized Copper Ion-Modified Carbon-Based Adsorbent for Selective Adsorption of Bovine Hemoglobin. SSRN Electronic Journal 2022, 1129 https://doi.org/10.2139/ssrn.4158179
    25. Chen Hou, Linhui Fu, Yang Wang, Wenqiang Chen, Fang Chen, Sufeng Zhang, Jianzhi Wang. Core–shell magnetic Fe3O4/CNC@MOF composites with peroxidase-like activity for colorimetric detection of phenol. Cellulose 2021, 28 (14) , 9253-9268. https://doi.org/10.1007/s10570-021-04117-w
    26. Nishil Mohammed, Han Lian, Muhammad Shahidul Islam, MacKenzie Strong, Zengqian Shi, Richard M. Berry, Hou-Yong Yu, Kam Chiu Tam. Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chemical Engineering Journal 2021, 417 , 129237. https://doi.org/10.1016/j.cej.2021.129237
    27. Elias E. Elemike, Damian C. Onwudiwe, Doris F. Ogeleka, Esther C. Obasi. Biomediated Cellulose-Ag-ZnO Nanocomposites and Their Ecotoxicological Assessment Using Onion Bulb Plant. Journal of Cluster Science 2021, 32 (3) , 651-656. https://doi.org/10.1007/s10876-020-01826-3
    28. Mhd. Abd. Cader Mhd. Haniffa, Yern Chee Ching, Hazlee Azil Illias, Khadija Munawar, Shaliza Ibrahim, Dai Hai Nguyen, Cheng Hock Chuah. Cellulose supported promising magnetic sorbents for magnetic solid-phase extraction: A review. Carbohydrate Polymers 2021, 253 , 117245. https://doi.org/10.1016/j.carbpol.2020.117245
    29. Rahul Patwa, Oyunchimeg Zandraa, Zdenka Capáková, Nabanita Saha, Petr Sáha. Effect of Iron-Oxide Nanoparticles Impregnated Bacterial Cellulose on Overall Properties of Alginate/Casein Hydrogels: Potential Injectable Biomaterial for Wound Healing Applications. Polymers 2020, 12 (11) , 2690. https://doi.org/10.3390/polym12112690
    30. Xin Chen, Zuyang Ye, Fan Yang, Ji Feng, Zhiwei Li, Chen Huang, Qinfei Ke, Yadong Yin. Magnetic cellulose microcrystals with tunable magneto-optical responses. Applied Materials Today 2020, 20 , 100749. https://doi.org/10.1016/j.apmt.2020.100749
    31. Erlantz Lizundia, Debora Puglia, Thanh-Dinh Nguyen, Ilaria Armentano. Cellulose nanocrystal based multifunctional nanohybrids. Progress in Materials Science 2020, 112 , 100668. https://doi.org/10.1016/j.pmatsci.2020.100668
    32. Seju Kang, Asifur Rahman, Ethan Boeding, Peter J. Vikesland. Synthesis and SERS application of gold and iron oxide functionalized bacterial cellulose nanocrystals (Au@Fe 3 O 4 @BCNCs). The Analyst 2020, 145 (12) , 4358-4368. https://doi.org/10.1039/D0AN00711K
    33. Kazım Köse, Miran Mavlan, Md Nuruddin, Jeffrey P. Youngblood. TEMPO-oxidized cellulose nanofiber based polymeric adsorbent for use in iron removal. Cellulose 2020, 27 (8) , 4623-4635. https://doi.org/10.1007/s10570-020-03104-x
    34. Erlantz Lizundia, Mikel Rincón-Iglesias, Senentxu Lanceros-Méndez. Combining cobalt ferrite and graphite with cellulose nanocrystals for magnetically active and electrically conducting mesoporous nanohybrids. Carbohydrate Polymers 2020, 236 , 116001. https://doi.org/10.1016/j.carbpol.2020.116001
    35. Yanxiang Li, Jinju Zhang, Chengbo Zhan, Fangong Kong, Wangliang Li, Chuanfang Yang, Benjamin S. Hsiao. Facile synthesis of TiO2/CNC nanocomposites for enhanced Cr(VI) photoreduction: Synergistic roles of cellulose nanocrystals. Carbohydrate Polymers 2020, 233 , 115838. https://doi.org/10.1016/j.carbpol.2020.115838
    36. Mengxue Li, Haibo Liu, Tianhu Chen, Dong Chen, Can Wang, Lin Wei, Lingkai Wang. Efficient U(VI) adsorption on iron/carbon composites derived from the coupling of cellulose with iron oxides: Performance and mechanism. Science of The Total Environment 2020, 703 , 135604. https://doi.org/10.1016/j.scitotenv.2019.135604
    37. Bai Huang, Hui He, Hao Liu, Yue Zhang, Xiaodong Peng, Bingcheng Wang. Multi-type cellulose nanocrystals from sugarcane bagasse and their nanohybrids constructed with polyhedral oligomeric silsesquioxane. Carbohydrate Polymers 2020, 227 , 115368. https://doi.org/10.1016/j.carbpol.2019.115368
    38. S. N. A. Mahamood, Y. Bustami, H. Rokiah, K. I. Ku Marsilla. The effect of degree of oxidation on protein recovery in stickwater using magnetized cellulose nanocrystals. 2020, 020039. https://doi.org/10.1063/5.0016190
    39. Zhili Chen, Michael Chopp, Alex Zacharek, Wei Li, Poornima Venkat, Fenjie Wang, Julie Landschoot-Ward, Jieli Chen. Brain-Derived Microparticles (BDMPs) Contribute to Neuroinflammation and Lactadherin Reduces BDMP Induced Neuroinflammation and Improves Outcome After Stroke. Frontiers in Immunology 2019, 10 https://doi.org/10.3389/fimmu.2019.02747
    40. Liangzhi Qiao, Liangshen Zhao, Chao Liang, Kaifeng Du. The construction of porous chitosan microspheres with high specific surface area by using agarose as the pore-forming agent and further functionalized application in bioseparation. Journal of Materials Chemistry B 2019, 7 (36) , 5510-5519. https://doi.org/10.1039/C9TB01157A
    41. Zahra Tavakoli, Behnam Rasekh, Fatemeh Yazdian, Amir Maghsoudi, Mehdi Soleimani, Javad Mohammadnejad. One-step separation of the recombinant protein by using the amine-functionalized magnetic mesoporous silica nanoparticles; an efficient and facile approach. International Journal of Biological Macromolecules 2019, 135 , 600-608. https://doi.org/10.1016/j.ijbiomac.2019.05.114
    42. Bai Huang, Hui He, Shuna Meng, Yunchao Jia. Optimizing 3D printing performance of acrylonitrile‐butadiene‐styrene composites with cellulose nanocrystals/silica nanohybrids. Polymer International 2019, 68 (7) , 1351-1360. https://doi.org/10.1002/pi.5824
    43. Ying Chuin Yee, Rokiah Hashim, Ahmad Ramli Mohd Yahya, Yazmin Bustami. Colorimetric Analysis of Glucose Oxidase-Magnetic Cellulose Nanocrystals (CNCs) for Glucose Detection. Sensors 2019, 19 (11) , 2511. https://doi.org/10.3390/s19112511
    44. Liming Cao, Zhenzhen Cheng, Mengwen Yan, Yukun Chen. Anisotropic rubber nanocomposites via magnetic-induced alignment of Fe3O4/cellulose nanocrystals hybrids obtained by templated assembly. Chemical Engineering Journal 2019, 363 , 203-212. https://doi.org/10.1016/j.cej.2019.01.126
    45. Gabriela Biliuta, Sergiu Coseri. Cellulose: A ubiquitous platform for ecofriendly metal nanoparticles preparation. Coordination Chemistry Reviews 2019, 383 , 155-173. https://doi.org/10.1016/j.ccr.2019.01.007
    46. Sherif M A S Keshk, Adel A El-Zahhar, Abdullah G Al-Sehemi, Ahmad Irfan, Samir Bondock. Synthesis and characterization of magnetic nanoparticles/dialdehyde cellulose composite as a flame retardant. Materials Research Express 2019, 6 (2) , 025312. https://doi.org/10.1088/2053-1591/aaef64
    47. Qian Yu, Xianming Kong, Yibo Ma, Rui Wang, Qing Liu, Juan P. Hinestroza, Alan X. Wang, Tapani Vuorinen. Multi-functional regenerated cellulose fibers decorated with plasmonic Au nanoparticles for colorimetry and SERS assays. Cellulose 2018, 25 (10) , 6041-6053. https://doi.org/10.1007/s10570-018-1987-9
    48. Eero Kontturi, Päivi Laaksonen, Markus B. Linder, Nonappa, André H. Gröschel, Orlando J. Rojas, Olli Ikkala. Advanced Materials through Assembly of Nanocelluloses. Advanced Materials 2018, 30 (24) https://doi.org/10.1002/adma.201703779
    49. Lazhen Shen, Bei Li, Yongsheng Qiao. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials 2018, 11 (2) , 324. https://doi.org/10.3390/ma11020324
    50. Alireza Farrokhi, Maasoumeh Jafarpour, Fahimeh Feizpour. Magnetic Bisphosphonic Acid Nanohybrid Catalyzed Heterogeneous Synthesis of Heterocylcles. ChemistrySelect 2018, 3 (4) , 1234-1241. https://doi.org/10.1002/slct.201702528
    51. Carla Vilela, Ricardo João Borges Pinto, Susana Pinto, Paula Marques, Armando Silvestre, Carmen Sofia da Rocha Freire Barros. Polysaccharides-Based Hybrids with Metal Oxide Nanoparticles. 2018, 31-68. https://doi.org/10.1007/978-3-030-00347-0_3
    52. Zhiyong Guo, Dandan Zhang, Shunfen Song, Yang Shu, Xuwei Chen, Jianhua Wang. Complexes of magnetic nanospheres with amphiprotic polymer–Zn systems for the selective isolation of lactoferrin. Journal of Materials Chemistry B 2018, 6 (35) , 5596-5603. https://doi.org/10.1039/C8TB01341A
    53. E. Lizundia, A. Maceiras, J.L. Vilas, P. Martins, S. Lanceros-Mendez. Magnetic cellulose nanocrystal nanocomposites for the development of green functional materials. Carbohydrate Polymers 2017, 175 , 425-432. https://doi.org/10.1016/j.carbpol.2017.08.024
    54. XiaoZhou Ma, YanJie Zhang, Jin Huang. Surface Chemical Modification of Cellulose Nanocrystals and Its Application in Biomaterials. Paper and Biomaterials 2017, 2 (4) , 34-57. https://doi.org/10.26599/PBM.2017.9260026

    Biomacromolecules

    Cite this: Biomacromolecules 2017, 18, 3, 898–905
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.biomac.6b01778
    Published February 15, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    2550

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.