ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Polymers at the Interface with Biology

  • Timothy J. Deming*
    Timothy J. Deming
    Departments of Bioengineering, Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1600, United States
  • Harm-Anton Klok*
    Harm-Anton Klok
    École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
  • Steven P. Armes
    Steven P. Armes
    Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, South Yorkshire, United Kingdom
  • Matthew L. Becker
    Matthew L. Becker
    Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
  • Julie A. Champion
    Julie A. Champion
    School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, United States
  • Eugene Y.-X. Chen
    Eugene Y.-X. Chen
    Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
  • Sarah C. Heilshorn
    Sarah C. Heilshorn
    Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
  • Jan C. M. van Hest
    Jan C. M. van Hest
    Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
  • Darrell J. Irvine
    Darrell J. Irvine
    Koch Institute for Integrative Cancer Research, Department of Biological Engineering, Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
  • Jeremiah A. Johnson
    Jeremiah A. Johnson
    Department of Chemistry, Program in Polymers and Soft Matter, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
  • Laura L. Kiessling
    Laura L. Kiessling
    Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
  • Heather D. Maynard
    Heather D. Maynard
    Departments of Bioengineering, Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1600, United States
    California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
  • Monica Olvera de la Cruz
    Monica Olvera de la Cruz
    Departments of Materials Science and Engineering, Chemistry, Chemical and Biological Engineering and Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
  • Millicent O. Sullivan
    Millicent O. Sullivan
    Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
  • Matthew V. Tirrell
    Matthew V. Tirrell
    Institute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
  • Kristi S. Anseth
    Kristi S. Anseth
    Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
  • Sebastien Lecommandoux
    Sebastien Lecommandoux
    Laboratoire de Chimie des Polymères Organiques, LCPO, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey Berland F-33600 Pessac, France
  • Simona Percec
    Simona Percec
    Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
  • Zhiyuan Zhong
    Zhiyuan Zhong
    Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
  • , and 
  • Ann-Christine Albertsson
    Ann-Christine Albertsson
    Fibre and Polymer Technology, Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
Cite this: Biomacromolecules 2018, 19, 8, 3151–3162
Publication Date (Web):August 13, 2018
https://doi.org/10.1021/acs.biomac.8b01029

Copyright © 2018 American Chemical Society. This publication is available under these Terms of Use.

  • Free to Read

Article Views

10859

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (7 MB)

Biology in its broadest sense is an important model and inspiration for science and technology. In relation to polymers, biology uses a variety of complex macromolecules to accomplish a myriad of functions in living systems. These biopolymers incorporate many unique features that have inspired the polymer community, including sequence specificity, renewable feedstocks, catalytic activity, self-replication, and specific recognition. Bioinspired synthetic and biologically derived polymers are critical components of many innovative solutions aimed at addressing some of the most pressing problems related to human health and the environment. Challenges and opportunities for the polymer science community at large include both developing synthetic strategies toward such materials as well as studying and developing a fundamental understanding of their interactions with biological systems. Since its inception in 2000, Biomacromolecules has strived to become the leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Articles published in Biomacromolecules contain strong elements of innovation in terms of macromolecular design, synthesis, and characterization or in new applications of polymers to biology and medicine.

The aims of this Editorial are to review the evolution of research at the interface of polymer science and biology and to present a forward-looking view of this field. We do this by highlighting some areas of research that have been prominently featured in Biomacromolecules over the past years and by presenting some emerging topics that we consider of great relevance and interest to the polymer science community and the readership of Biomacromolecules. This Editorial is partly based on a symposium entitled “Polymers at the Interface with Biology” and an associated “round-table” discussion that took place during the 2017 American Chemical Society (ACS) Fall Meeting in Washington, DC. The participants of this discussion included the Editor-in-Chief and Associate Editors of Biomacromolecules as well as a group of 13 invited experts.

Research at the intersection of polymer science and biology has significantly evolved over the past two decades. To illustrate this, Table 1 provides a collection of the most highly cited manuscripts published in Biomacromolecules since the start of the journal in the year 2000. Table 1 only includes original research papers, i.e., no review articles. The table illustrates how the focus of many of the most cited papers in the field has gradually shifted over time. The focus of highly cited papers that appeared between 2000 and 2006 was heavily influenced by natural biopolymers (e.g., cellulose, silk) as well as electrospinning of polymer fibers. Other highly cited manuscripts that were published in Biomacromolecules during this period include seminal work on the development of reduction-sensitive block copolymer micelles, (12) the use of “click-type” conjugate addition reactions, (9,19) or DOPA chemistry (17) to produce functional hydrogel materials as well as the design of antibacterial surface films using surface-initiated controlled radical polymerization methods. (30) By comparison, many highly cited papers published in Biomacromolecules between 2007 and 2013 report on the preparation, characterization, and use of cellulose nanofibers. In addition, this era features work on the preparation of nonfouling polymer coatings (51) and also shows an increased interest in the design of pH and/or reduction-sensitive polymer nanocarriers for intracellular drug delivery (47,64,82,84) as well as further examples to explore the utilization of DOPA-based chemistries for the preparation of polymer nanoparticles, (68) microcapsules, (73) and hydrogels. (80) Highly cited work from the most recent period (2014–present day) includes a number of articles focused on the development of surfaces or scaffolds designed to enhance tissue regeneration or for cell culture. (88,89,91) Other examples include self-healing materials, (105) mussel-inspired pH responsive hydrogels, (87) investigation of how adsorbed proteins influence cellular uptake of nanoparticles, (92) and several studies on pH, redox, temperature, and light-responsive polymer particles designed to facilitate intracellular or intratumoral drug release. (86,90,94,100) Although the highly cited papers listed in Table 1 and highlighted above reflect topics that have generated significant interest, it is also important to recognize that they, of course, are not exclusively representative of the content published in Biomacromolecules. As is evident also from Table 1, research fields continuously evolve, and Biomacromolecules aims to capture new and exciting work at the forefront of the field.

Table 1. Overview of Highly Cited Original Research Papers Published in Biomacromolecules Since 2000 ()

One important objective of the “Polymers at the Interface with Biology” symposium was to develop a forward-looking view of the field and highlight emerging topics that are of particular interest to the readership of Biomacromolecules. Many interesting topics relevant to this theme were presented by the speakers at the symposium in Washington, DC. One example is the diverse field of biorelated synthetic polymers, which includes those based on natural biopolymers, such as polypeptides, polynucleic acids, and polysaccharides, as well as those that mimic nature, including polypeptoids and other peptidomimetics, polymers from biological feedstocks, and sequence-controlled polymers.

For the field of biosourced sustainable polymers, Prof. Eugene Chen discussed and emphasized the importance of enhancing the thermal and mechanical properties of bioderived synthetic polyesters and also realizing the potential to chemically recycle these polymers back to their constituent monomers. He reported catalytic systems capable of preparing such polyesters with enhanced properties via ring-opening polymerization of γ-butyrolactone and its derivatives, as well as the methodology that permits their complete depolymerization back to the original building blocks. (109−111) Polymers containing functional side-chains and possessing the ability to respond to different stimuli continue to be developed as functional and structural mimics of biological polymers and assemblies. Related to this theme, Prof. Steven Armes presented the synthesis of pH-responsive triblock copolymers designed to self-assemble into framboidal vesicles that were capable of mimicking the structural features and pH-triggered morphological transitions of certain viruses, e.g., the Dengue virus.

Engineered biorelated polymers, such as recombinant proteins and polymers produced using biocatalysis, are another core area for Biomacromolecules. In the symposium, Prof. Jan van Hest described engineered chimeric proteins composed of elastin-like segments and cowpea chlorotic mottle virus subunits and their assembly into nanostructures that form biomimetic structures capable of responding to pH, temperature, and salt. These assemblies take advantage of the stimuli-responsive properties of elastin sequences, and the precision subunit assembly features of viral proteins. (112−114) Related to this theme, Prof. Julie Champion discussed the design and preparation of protein constructs containing segments composed of coiled-coil and antibody binding motifs that enable them to assemble into well-defined nanostructures capable of binding and presenting antibodies. These nanocarriers are being evaluated for the intracellular delivery of therapeutic antibodies. (115)

Beyond synthesis and structure, understanding the properties and dynamics of biorelated polymer assemblies is also central to the scope of Biomacromolecules. Prof. Monica Olvera de la Cruz studies how multivalent ions and polymers can interact with amphiphilic molecules to form different morphologies with diverse chemical functionality. (116−119) Modeling of such systems can lead to the discovery of new functional structures that can mimic biological functions. In studies aimed at mimicking coacervate formation observed with intrinsically disordered proteins in membraneless organelles within cells, Prof. Matthew Tirrell presented studies on complex coacervation of oppositely charged synthetic polyelectrolytes where a variety of features, including polymer stereochemistry, polymer chain length, and solution ionic strength were found to influence polyelectrolyte complex phase separation. (120) These insights into protein/polyelectrolyte complexation show promise for the design of new biomimetic materials. (121)

An obstacle that presents a significant hurdle toward the clinical implementation of polymers and polymer-based nanomaterials for drug delivery applications is a lack of reproducible and scalable synthetic protocols. Polymer nanoparticles, as an example, are typically obtained via multiple formulation and modification steps. To overcome these challenges, Prof. Jeremiah Johnson described the preparation of macromolecular prodrugs starting from complex, small building blocks, which are accessible via organic synthesis. (122−125) These small building blocks are then assembled together, for example, using ring-opening metathesis polymerization (ROMP), into the desired nanomaterial, thereby decoupling synthetic complexity and scalability.

Polymers and polymer nanoparticles are widely acknowledged for their ability to prolong the blood circulation time of therapeutics and to facilitate targeted delivery (e.g., to a tumor in cancer therapy). In addition to controlling plasma half-life and enabling targeted delivery of therapeutics, another pressing problem, in particular for biologics (such as peptide-, protein-, or nucleotide-based actives), is their stability during shipping and storage. (126) This is a fundamental research problem, yet one with enormous impact in those parts of the world where an effective and reliable cold chain from the manufacturer to the patient is absent. Addressing this challenge, Prof. Heather Maynard emphasized the need for improved polymers for protein stabilization, especially for prolonged storage, and presented functional polymer designs, some also degradable, that enabled protein protection to heat and mechanical agitation. The polymers could be conjugated to proteins and peptides, added as excipients, or used to surround the biologic as a nanoparticle for potential use in medicine. (127−133)

Considerable research over the past few decades has accumulated an increasingly robust understanding of the behavior of polymers and polymer nanoparticles in blood circulation as well as mechanisms for their cellular uptake. Fundamental design principles to control properties such as plasma half-life or to promote cellular internalization have been established for the preparation of more effective polymer nanomedicines. However, because the target for many active compounds is a specific cellular organelle, understanding and controlling the behavior of polymer nanomedicines at the subcellular level remains an important challenge. Aimed at addressing this issue, Prof. Millicent Sullivan and co-workers developed light-sensitive mPEG-b-poly(5-(3-(amino)propoxy)-2-nitrobenzyl methacrylate) polymers to deploy nucleic acids into cells with “on/off” control over the timing and amount of delivery and spatial control at cellular length scales. (134−138)

In addition to their utility for drug delivery, polymers and polymer assemblies also possess great potential for use in the broad realm of immunotherapy, including the targeted delivery of immunomodulatory drugs or vaccines to lymphoid organs or tumors. Prof. Darrell Irvine presented the use of polymer-based amphiphiles to increase the safety and potency of immunotherapies. Initially, these polymer amphiphiles were used to bind antigens and adjuvants to albumin. (139,140) Next, these amphiphiles were designed to associate with a stimulator of interferon genes (STING) agonist and assemble into nanofibers or nanodiscs that may be administered locally or systemically. Another strategy that underlines the potential of polymer science to advance immunotherapy was presented by Prof. Laura Kiessling, who described polymers that target antigens to dendritic cells. (141) These polymers exploit the features of lectins, which are important for the recognition, uptake, and processing of antigens. (142) She reported that the fate of glycosylated antigens in dendritic cells is affected by their physical properties (e.g., size, length), which can be altered using controlled polymerization techniques. These parameters define how polymers can be used to deliver antigens to dendritic cells to avoid immune detection or to promote immunity.

In addition to the diagnosis and treatment of human diseases, another important medical application for polymer-based materials is in the repair or regeneration of damaged or lost tissue. A particularly challenging problem in this context is bone defect generation because it requires polymers that are exceptionally strong and at the same time can also degrade at designed intervals. Prof. Matthew Becker presented a class of α-amino acid based poly(ester urea)s (PEUs) that were designed for this purpose. (143) One of the keys to the successful development of these materials was optimized step polymerization protocols and functionalization strategies, which afforded high molecular weight materials and provided excellent synthetic flexibility. (144) In sheep segmental tibia defect models, the use of scaffolds fabricated from these PEU polymers allowed near complete defect healing within 16 weeks.

Minimally invasive soft tissue regeneration demands hydrogels that provide mechanical protection to cells during injection that are also able to adapt to accommodate local cell remodeling of the polymer network. (145,146) One approach toward such materials was presented by Prof. Sarah Heilshorn who described a new class of double-network hydrogels. Prior to injection, these materials are cross-linked ex situ by the formation of dynamic covalent hydrazone bonds that result from mixing a hydrazine-modified elastin-like polypeptide (ELP) and an aldehyde-modified hyaluronic acid. In situ, after injection, thermoresponsive aggregation of the ELP reinforces the network resulting in a hydrogel matrix that possesses viscoelastic stress-relaxation behavior. (147)

These topics presented in Washington, DC highlight some of the research directions at the forefront of polymer science and biology and represent areas and communities Biomacromolecules aims to serve. These fields are dynamic: new synthetic methodologies are being developed; more accurate characterization tools become available, and biology moves to smaller and smaller length-scales and becomes more quantitative. With these changes, and as new important societal challenges arise, Biomacromolecules endeavors to adapt to include emerging themes and scientific breakthroughs at the interface of polymer science and biology.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
    • Timothy J. DemingDepartments of Bioengineering, Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1600, United StatesOrcidhttp://orcid.org/0000-0002-0594-5025 Email:
    • Harm-Anton KlokÉcole Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, SwitzerlandOrcidhttp://orcid.org/0000-0003-3365-6543 Email:
  • Authors
    • Steven P. ArmesDainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, South Yorkshire, United KingdomOrcidhttp://orcid.org/0000-0002-8289-6351
    • Matthew L. BeckerDepartment of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United StatesOrcidhttp://orcid.org/0000-0003-4089-6916
    • Julie A. ChampionSchool of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, United StatesOrcidhttp://orcid.org/0000-0002-0260-9392
    • Eugene Y.-X. ChenDepartment of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United StatesOrcidhttp://orcid.org/0000-0001-7512-3484
    • Sarah C. HeilshornDepartment of Materials Science & Engineering, Stanford University, Stanford, California 94305, United StatesOrcidhttp://orcid.org/0000-0002-9801-6304
    • Jan C. M. van HestDepartment of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsOrcidhttp://orcid.org/0000-0001-7973-2404
    • Darrell J. IrvineKoch Institute for Integrative Cancer Research, Department of Biological Engineering, Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United StatesOrcidhttp://orcid.org/0000-0002-8637-1405
    • Jeremiah A. JohnsonDepartment of Chemistry, Program in Polymers and Soft Matter, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United StatesOrcidhttp://orcid.org/0000-0001-9157-6491
    • Laura L. KiesslingDepartment of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United StatesOrcidhttp://orcid.org/0000-0001-6829-1500
    • Heather D. MaynardDepartments of Bioengineering, Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1600, United StatesCalifornia NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United StatesOrcidhttp://orcid.org/0000-0003-3692-6289
    • Monica Olvera de la CruzDepartments of Materials Science and Engineering, Chemistry, Chemical and Biological Engineering and Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
    • Millicent O. SullivanDepartment of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
    • Matthew V. TirrellInstitute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
    • Kristi S. AnsethDepartment of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United StatesOrcidhttp://orcid.org/0000-0002-5725-5691
    • Sebastien LecommandouxLaboratoire de Chimie des Polymères Organiques, LCPO, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey Berland F-33600 Pessac, FranceOrcidhttp://orcid.org/0000-0003-0465-8603
    • Simona PercecDepartment of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
    • Zhiyuan ZhongBiomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. ChinaOrcidhttp://orcid.org/0000-0003-4175-4741
    • Ann-Christine AlbertssonFibre and Polymer Technology, Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, SwedenOrcidhttp://orcid.org/0000-0001-8696-9143
  • Notes
    Views expressed in this editorial are those of the authors and not necessarily the views of the ACS.

References

ARTICLE SECTIONS
Jump To

This article references 147 other publications.

  1. 1
    Van Den Bulcke, A. I.; Bogdanov, B.; De Rooze, N.; Schacht, E. H.; Cornelissen, M.; Berghmans, H. Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels. Biomacromolecules 2000, 1, 3138,  DOI: 10.1021/bm990017d
  2. 2
    Chen, C. Z.; Beck-Tan, N. C.; Dhurjati, P.; van Dyk, T. K.; LaRossa, R. A.; Cooper, S. L. Quaternary Ammonium Functionalized Poly(propylene imine) Dendrimers as Effective Antimicrobials: Structure–Activity Studies. Biomacromolecules 2000, 1, 473480,  DOI: 10.1021/bm0055495
  3. 3
    Normand, V.; Lootens, D. L.; Amici, E.; Plucknett, K. P.; Aymard, P. New Insight into Agarose Gel Mechanical Properties. Biomacromolecules 2000, 1, 730738,  DOI: 10.1021/bm005583j
  4. 4
    Mateo, C.; Fernández-Lorente, G.; Abian, O.; Fernández-Lafuente, R.; Guisán, J. M. Multifunctional Epoxy Supports: A New Tool To Improve the Covalent Immobilization of Proteins. The Promotion of Physical Adsorptions of Proteins on the Supports before Their Covalent Linkage. Biomacromolecules 2000, 1, 739745,  DOI: 10.1021/bm000071q
  5. 5
    Kim, U.-J.; Kuga, S.; Wada, M.; Okano, T.; Kondo, T. Periodate Oxidation of Crystalline Cellulose. Biomacromolecules 2000, 1, 488492,  DOI: 10.1021/bm0000337
  6. 6
    Kumar, A.; Gross, R. A. Candida antartica Lipase B Catalyzed Polycaprolactone Synthesis: Effects of Organic Media and Temperature. Biomacromolecules 2000, 1, 133138,  DOI: 10.1021/bm990510p
  7. 7
    Braccini, I.; Pérez, S. Molecular Basis of Ca2+-Induced Gelation in Alginates and Pectins: The Egg-Box Model Revisited. Biomacromolecules 2001, 2, 10891096,  DOI: 10.1021/bm010008g
  8. 8
    Sorlier, P.; Denuzière, A.; Viton, C.; Domard, A. Relation between the Degree of Acetylation and the Electrostatic Properties of Chitin and Chitosan. Biomacromolecules 2001, 2, 765772,  DOI: 10.1021/bm015531+
  9. 9
    Elbert, D. L.; Hubbell, J. A. Conjugate Addition Reactions Combined with Free-Radical Cross-Linking for the Design of Materials for Tissue Engineering. Biomacromolecules 2001, 2, 430441,  DOI: 10.1021/bm0056299
  10. 10
    Langan, P.; Nishiyama, Y.; Chanzy, H. X-ray Structure of Mercerized Cellulose II at 1 Å Resolution. Biomacromolecules 2001, 2, 410416,  DOI: 10.1021/bm005612q
  11. 11
    Persenaire, O.; Alexandre, M.; Degée, P.; Dubois, P. Mechanisms and Kinetics of Thermal Degradation of Poly(ε-caprolactone). Biomacromolecules 2001, 2, 288294,  DOI: 10.1021/bm0056310
  12. 12
    Kakizawa, Y.; Harada, A.; Kataoka, K. Glutathione-Sensitive Stabilization of Block Copolymer Micelles Composed of Antisense DNA and Thiolated Poly(ethylene glycol)-block-poly(L-lysine): A Potential Carrier for Systemic Delivery of Antisense DNA. Biomacromolecules 2001, 2, 491497,  DOI: 10.1021/bm000142l
  13. 13
    Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L. Electrospinning of Collagen Nanofibers. Biomacromolecules 2002, 3, 232238,  DOI: 10.1021/bm015533u
  14. 14
    Jin, H.-J.; Fridrikh, S. V.; Rutledge, G. C.; Kaplan, D. L. Electrospinning Bombyx mori Silk with Poly(ethylene oxide). Biomacromolecules 2002, 3, 12331239,  DOI: 10.1021/bm025581u
  15. 15
    Shu, X. Z.; Liu, Y.; Luo, Y.; Roberts, M. C.; Prestwich, G. D. Disulfide Cross-Linked Hyaluronan Hydrogels. Biomacromolecules 2002, 3, 13041311,  DOI: 10.1021/bm025603c
  16. 16
    Meyer, D. E.; Chilkoti, A. Genetically Encoded Synthesis of Protein-Based Polymers with Precisely Specified Molecular Weight and Sequence by Recursive Directional Ligation: Examples from the Elastin-like Polypeptide System. Biomacromolecules 2002, 3, 357367,  DOI: 10.1021/bm015630n
  17. 17
    Lee, B. P.; Dalsin, J. L.; Messersmith, P. B. Synthesis and Gelation of DOPA-Modified Poly(ethylene glycol) Hydrogels. Biomacromolecules 2002, 3, 10381047,  DOI: 10.1021/bm025546n
  18. 18
    Zhu, Y.; Gao, C.; Liu, X.; Shen, J. Surface Modification of Polycaprolactone Membrane via Aminolysis and Biomacromolecule Immobilization for Promoting Cytocompatibility of Human Endothelial Cells. Biomacromolecules 2002, 3, 13121319,  DOI: 10.1021/bm020074y
  19. 19
    Lutolf, M. P.; Hubbell, J. A. Synthesis and Physicochemical Characterization of End-Linked Poly(ethylene glycol)-co-peptide Hydrogels Formed by Michael-Type Addition. Biomacromolecules 2003, 4, 713722,  DOI: 10.1021/bm025744e
  20. 20
    Mendelsohn, J. D.; Yang, S. Y.; Hiller, J.; Hochbaum, A. I.; Rubner, M. F. Rational Design of Cytophilic and Cytophobic Polyelectrolyte Multilayer Thin Films. Biomacromolecules 2003, 4, 96106,  DOI: 10.1021/bm0256101
  21. 21
    Weinbreck, F.; de Vries, R.; Schrooyen, P.; de Kruif, C. G. Complex Coacervation of Whey Proteins and Gum Arabic. Biomacromolecules 2003, 4, 293303,  DOI: 10.1021/bm025667n
  22. 22
    Seyrek, E.; Dubin, P. L.; Tribet, C.; Gamble, E. A. Ionic Strength Dependence of Protein-Polyelectrolyte Interactions. Biomacromolecules 2003, 4, 273282,  DOI: 10.1021/bm025664a
  23. 23
    Thierry, B.; Winnik, F. M.; Merhi, Y.; Silver, J.; Tabrizian, M. Bioactive Coatings of Endovascular Stents Based on Polyelectrolyte Multilayers. Biomacromolecules 2003, 4, 15641571,  DOI: 10.1021/bm0341834
  24. 24
    Kim, S.; Healy, K. E. Synthesis and Characterization of Injectable Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels with Proteolytically Degradable Cross-Links. Biomacromolecules 2003, 4, 12141223,  DOI: 10.1021/bm0340467
  25. 25
    Nazarov, R.; Jin, H.-J.; Kaplan, D. L. Porous 3-D Scaffolds from Regenerated Silk Fibroin. Biomacromolecules 2004, 5, 718726,  DOI: 10.1021/bm034327e
  26. 26
    Roman, M.; Winter, W. T. Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose. Biomacromolecules 2004, 5, 16711677,  DOI: 10.1021/bm034519+
  27. 27
    Wu, J.; Zhang, J.; Zhang, H.; He, J.; Ren, Q.; Guo, M. Homogeneous Acetylation of Cellulose in a New Ionic Liquid. Biomacromolecules 2004, 5, 266268,  DOI: 10.1021/bm034398d
  28. 28
    Saito, T.; Isogai, A. TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions. Biomacromolecules 2004, 5, 19831989,  DOI: 10.1021/bm0497769
  29. 29
    Kim, U.-J.; Park, J.; Li, C.; Jin, H.-J.; Valluzzi, R.; Kaplan, D. L. Structure and Properties of Silk Hydrogels. Biomacromolecules 2004, 5, 786792,  DOI: 10.1021/bm0345460
  30. 30
    Lee, S. B.; Koepsel, R. R.; Morley, S. W.; Matyjaszewski, K.; Sun, Y.; Russell, A. J. Permanent, Nonleaching Antibacterial Surfaces. 1. Synthesis by Atom Transfer Radical Polymerization. Biomacromolecules 2004, 5, 877882,  DOI: 10.1021/bm034352k
  31. 31
    Beck-Candanedo, S.; Roman, M.; Gray, D. G. Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules 2005, 6, 10481054,  DOI: 10.1021/bm049300p
  32. 32
    Šturcová, A.; Davies, G. R.; Eichhorn, S. J. Elastic Modulus and Stress-Transfer Properties of Tunicate Cellulose Whiskers. Biomacromolecules 2005, 6, 10551061,  DOI: 10.1021/bm049291k
  33. 33
    Chew, S. Y.; Wen, J.; Yim, E. K. F.; Leong, K. W. Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules 2005, 6, 20172024,  DOI: 10.1021/bm0501149
  34. 34
    Burdick, J. A.; Chung, C.; Jia, X.; Randolph, M. A.; Langer, R. Controlled Degradation and Mechanical Behavior of Photopolymerized Hyaluronic Acid Networks. Biomacromolecules 2005, 6, 386391,  DOI: 10.1021/bm049508a
  35. 35
    Wang, S.-F.; Shen, L.; Zhang, W.-D.; Tong, Y.-J. Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites. Biomacromolecules 2005, 6, 30673072,  DOI: 10.1021/bm050378v
  36. 36
    Zhang, Y. Z.; Venugopal, J.; Huang, Z.-M.; Lim, C. T.; Ramakrishna, S. Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts. Biomacromolecules 2005, 6, 25832589,  DOI: 10.1021/bm050314k
  37. 37
    Saito, T.; Nishiyama, Y.; Putaux, J.-L.; Vignon, M.; Isogai, A. Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose. Biomacromolecules 2006, 7, 16871691,  DOI: 10.1021/bm060154s
  38. 38
    Pham, Q. P.; Sharma, U.; Mikos, A. G. Electrospun Poly(ε-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration. Biomacromolecules 2006, 7, 27962805,  DOI: 10.1021/bm060680j
  39. 39
    Jiang, L.; Wolcott, M. P.; Zhang, J. Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends. Biomacromolecules 2006, 7, 199207,  DOI: 10.1021/bm050581q
  40. 40
    Majoros, I. J.; Myc, A.; Thomas, T.; Mehta, C. B.; Baker, J. R. PAMAM Dendrimer-Based Multifunctional Conjugate for Cancer Therapy: Synthesis, Characterization, and Functionality. Biomacromolecules 2006, 7, 572579,  DOI: 10.1021/bm0506142
  41. 41
    Zhang, Y. Z.; Wang, X.; Feng, Y.; Li, J.; Lim, C. T.; Ramakrishna, S. Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(ε-caprolactone) Nanofibers for Sustained Release. Biomacromolecules 2006, 7, 10491057,  DOI: 10.1021/bm050743i
  42. 42
    Fukaya, Y.; Sugimoto, A.; Ohno, H. Superior Solubility of Polysaccharides in Low Viscosity, Polar, and Halogen-Free 1,3-Dialkylimidazolium Formates. Biomacromolecules 2006, 7, 32953297,  DOI: 10.1021/bm060327d
  43. 43
    Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P. T.; Ikkala, O.; Lindström, T. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules 2007, 8, 19341941,  DOI: 10.1021/bm061215p
  44. 44
    Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules 2007, 8, 24852491,  DOI: 10.1021/bm0703970
  45. 45
    Lawrie, G.; Keen, I.; Drew, B.; Chandler-Temple, A.; Rintoul, L.; Fredericks, P.; Grøndahl, L. Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules 2007, 8, 25332541,  DOI: 10.1021/bm070014y
  46. 46
    Abe, K.; Iwamoto, S.; Yano, H. Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood. Biomacromolecules 2007, 8, 32763278,  DOI: 10.1021/bm700624p
  47. 47
    Cerritelli, S.; Velluto, D.; Hubbell, J. A. PEG-SS-PPS: Reduction-Sensitive Disulfide Block Copolymer Vesicles for Intracellular Drug Delivery. Biomacromolecules 2007, 8, 19661972,  DOI: 10.1021/bm070085x
  48. 48
    Cao, X.; Dong, H.; Li, C. M. New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane. Biomacromolecules 2007, 8, 899904,  DOI: 10.1021/bm0610368
  49. 49
    Henriksson, M.; Berglund, L. A.; Isaksson, P.; Lindström, T.; Nishino, T. Cellulose Nanopaper Structures of High Toughness. Biomacromolecules 2008, 9, 15791585,  DOI: 10.1021/bm800038n
  50. 50
    Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.-L.; Heux, L.; Dubreuil, F.; Rochas, C. The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules 2008, 9, 5765,  DOI: 10.1021/bm700769p
  51. 51
    Ladd, J.; Zhang, Z.; Chen, S.; Hower, J. C.; Jiang, S. Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules 2008, 9, 13571361,  DOI: 10.1021/bm701301s
  52. 52
    Sahu, A.; Kasoju, N.; Bora, U. Fluorescence Study of the Curcumin–Casein Micelle Complexation and Its Application as a Drug Nanocarrier to Cancer Cells. Biomacromolecules 2008, 9, 29052912,  DOI: 10.1021/bm800683f
  53. 53
    Liang, L.; Tajmir-Riahi, H. A.; Subirade, M. Interaction of β-Lactoglobulin with Resveratrol and its Biological Implications. Biomacromolecules 2008, 9, 5056,  DOI: 10.1021/bm700728k
  54. 54
    Iwamoto, S.; Abe, K.; Yano, H. The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics. Biomacromolecules 2008, 9, 10221026,  DOI: 10.1021/bm701157n
  55. 55
    Fukuzumi, H.; Saito, T.; Iwata, T.; Kumamoto, Y.; Isogai, A. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation. Biomacromolecules 2009, 10, 162165,  DOI: 10.1021/bm801065u
  56. 56
    Siqueira, G.; Bras, J.; Dufresne, A. Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites. Biomacromolecules 2009, 10, 425432,  DOI: 10.1021/bm801193d
  57. 57
    Saito, T.; Hirota, M.; Tamura, N.; Kimura, S.; Fukuzumi, H.; Heux, L.; Isogai, A. Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions. Biomacromolecules 2009, 10, 19921996,  DOI: 10.1021/bm900414t
  58. 58
    Iwamoto, S.; Kai, W.; Isogai, A.; Iwata, T. Elastic Modulus of Single Cellulose Microfibrils from Tunicate Measured by Atomic Force Microscopy. Biomacromolecules 2009, 10, 25712576,  DOI: 10.1021/bm900520n
  59. 59
    Hu, Y.-J.; Liu, Y.; Xiao, X.-H. Investigation of the Interaction between Berberine and Human Serum Albumin. Biomacromolecules 2009, 10, 517521,  DOI: 10.1021/bm801120k
  60. 60
    Travan, A.; Pelillo, C.; Donati, I.; Marsich, E.; Benincasa, M.; Scarpa, T.; Semeraro, S.; Turco, G.; Gennaro, R.; Paoletti, S. Non-cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites with Antimicrobial Activity. Biomacromolecules 2009, 10, 14291435,  DOI: 10.1021/bm900039x
  61. 61
    Fan, H.; Wang, L.; Zhao, K.; Li, N.; Shi, Z.; Ge, Z.; Jin, Z. Fabrication, Mechanical Properties, and Biocompatibility of Graphene-Reinforced Chitosan Composites. Biomacromolecules 2010, 11, 23452351,  DOI: 10.1021/bm100470q
  62. 62
    Vergaro, V.; Abdullayev, E.; Lvov, Y. M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S. Cytocompatibility and Uptake of Halloysite Clay Nanotubes. Biomacromolecules 2010, 11, 820826,  DOI: 10.1021/bm9014446
  63. 63
    Peresin, M. S.; Habibi, Y.; Zoppe, J. O.; Pawlak, J. J.; Rojas, O. J. Nanofiber Composites of Polyvinyl Alcohol and Cellulose Nanocrystals: Manufacture and Characterization. Biomacromolecules 2010, 11, 674681,  DOI: 10.1021/bm901254n
  64. 64
    Sun, H.; Guo, B.; Li, X.; Cheng, R.; Meng, F.; Liu, H.; Zhong, Z. Shell-Sheddable Micelles Based on Dextran-SS-Poly(ε-caprolactone) Diblock Copolymer for Efficient Intracellular Release of Doxorubicin. Biomacromolecules 2010, 11, 848854,  DOI: 10.1021/bm1001069
  65. 65
    Sehaqui, H.; Liu, A.; Zhou, Q.; Berglund, L. A. Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures. Biomacromolecules 2010, 11, 21952198,  DOI: 10.1021/bm100490s
  66. 66
    Okita, Y.; Saito, T.; Isogai, A. Entire Surface Oxidation of Various Cellulose Microfibrils by TEMPO-Mediated Oxidation. Biomacromolecules 2010, 11, 16961700,  DOI: 10.1021/bm100214b
  67. 67
    Cheng, G.; Varanasi, P.; Li, C.; Liu, H.; Melnichenko, Y. B.; Simmons, B. A.; Kent, M. S.; Singh, S. Transition of Cellulose Crystalline Structure and Surface Morphology of Biomass as a Function of Ionic Liquid Pretreatment and Its Relation to Enzymatic Hydrolysis. Biomacromolecules 2011, 12, 933941,  DOI: 10.1021/bm101240z
  68. 68
    Ju, K.-Y.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J.-K. Bioinspired Polymerization of Dopamine to Generate Melanin-Like Nanoparticles Having an Excellent Free-Radical-Scavenging Property. Biomacromolecules 2011, 12, 625632,  DOI: 10.1021/bm101281b
  69. 69
    Sehaqui, H.; Zhou, Q.; Ikkala, O.; Berglund, L. A. Strong and Tough Cellulose Nanopaper with High Specific Surface Area and Porosity. Biomacromolecules 2011, 12, 36383644,  DOI: 10.1021/bm2008907
  70. 70
    Zhang, Y.; Tao, L.; Li, S.; Wei, Y. Synthesis of Multiresponsive and Dynamic Chitosan-Based Hydrogels for Controlled Release of Bioactive Molecules. Biomacromolecules 2011, 12, 28942901,  DOI: 10.1021/bm200423f
  71. 71
    Yue, Z.-G.; Wei, W.; Lv, P.-P.; Yue, H.; Wang, L.-Y.; Su, Z.-G.; Ma, G.-H. Surface Charge Affects Cellular Uptake and Intracellular Trafficking of Chitosan-Based Nanoparticles. Biomacromolecules 2011, 12, 24402446,  DOI: 10.1021/bm101482r
  72. 72
    Liu, A.; Walther, A.; Ikkala, O.; Belova, L.; Berglund, L. A. Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions. Biomacromolecules 2011, 12, 633641,  DOI: 10.1021/bm101296z
  73. 73
    Cui, J.; Yan, Y.; Such, G. K.; Liang, K.; Ochs, C. J.; Postma, A.; Caruso, F. Immobilization and Intracellular Delivery of an Anticancer Drug Using Mussel-Inspired Polydopamine Capsules. Biomacromolecules 2012, 13, 22252228,  DOI: 10.1021/bm300835r
  74. 74
    Shinoda, R.; Saito, T.; Okita, Y.; Isogai, A. Relationship between Length and Degree of Polymerization of TEMPO-Oxidized Cellulose Nanofibrils. Biomacromolecules 2012, 13, 842849,  DOI: 10.1021/bm2017542
  75. 75
    Kalashnikova, I.; Bizot, H.; Cathala, B.; Capron, I. Modulation of Cellulose Nanocrystals Amphiphilic Properties to Stabilize Oil/Water Interface. Biomacromolecules 2012, 13, 267275,  DOI: 10.1021/bm201599j
  76. 76
    Wu, C.-N.; Saito, T.; Fujisawa, S.; Fukuzumi, H.; Isogai, A. Ultrastrong and High Gas-Barrier Nanocellulose/Clay-Layered Composites. Biomacromolecules 2012, 13, 19271932,  DOI: 10.1021/bm300465d
  77. 77
    Liu, G.; Dong, C.-M. Photoresponsive Poly(S-(o-nitrobenzyl)-L-cysteine)-b-PEO from a L-Cysteine N-Carboxyanhydride Monomer: Synthesis, Self-Assembly, and Phototriggered Drug Release. Biomacromolecules 2012, 13, 15731583,  DOI: 10.1021/bm300304t
  78. 78
    Svagan, A. J.; Akesson, A.; Cárdenas, M.; Bulut, S.; Knudsen, J. C.; Risbo, J.; Plackett, D. Transparent Films Based on PLA and Montmorillonite with Tunable Oxygen Barrier Properties. Biomacromolecules 2012, 13, 397405,  DOI: 10.1021/bm201438m
  79. 79
    Saito, T.; Kuramae, R.; Wohlert, J.; Berglund, L. A.; Isogai, A. An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation. Biomacromolecules 2013, 14, 248253,  DOI: 10.1021/bm301674e
  80. 80
    Krogsgaard, M.; Behrens, M. A.; Pedersen, J. S.; Birkedal, H. Self-Healing Mussel-Inspired Multi-pH-Responsive Hydrogels. Biomacromolecules 2013, 14, 297301,  DOI: 10.1021/bm301844u
  81. 81
    Han, J.; Zhou, C.; Wu, Y.; Liu, F.; Wu, Q. Self-Assembling Behavior of Cellulose Nanoparticles during Freeze-Drying: Effect of Suspension Concentration, Particle Size, Crystal Structure, and Surface Charge. Biomacromolecules 2013, 14, 15291540,  DOI: 10.1021/bm4001734
  82. 82
    Wang, H.; Tang, L.; Tu, C.; Song, Z.; Yin, Q.; Yin, L.; Zhang, Z.; Cheng, J. Redox-Responsive, Core-Cross-Linked Micelles Capable of On-Demand, Concurrent Drug Release and Structure Disassembly. Biomacromolecules 2013, 14, 37063712,  DOI: 10.1021/bm401086d
  83. 83
    Espinosa, S. C.; Kuhnt, T.; Foster, E. J.; Weder, C. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules 2013, 14, 12231230,  DOI: 10.1021/bm400219u
  84. 84
    Huang, Y.; Tang, Z.; Zhang, X.; Yu, H.; Sun, H.; Pang, X.; Chen, X. pH-Triggered Charge-Reversal Polypeptide Nanoparticles for Cisplatin Delivery: Preparation and In Vitro Evaluation. Biomacromolecules 2013, 14, 20232032,  DOI: 10.1021/bm400358z
  85. 85
    Tang, J.; Lee, M. F. X.; Zhang, W.; Zhao, B.; Berry, R. M.; Tam, K. C. Dual Responsive Pickering Emulsion Stabilized by Poly[2-(dimethylamino)ethyl methacrylate] Grafted Cellulose Nanocrystals. Biomacromolecules 2014, 15, 30523060,  DOI: 10.1021/bm500663w
  86. 86
    Son, S.; Shin, E.; Kim, B.-S. Light-Responsive Micelles of Spiropyran Initiated Hyperbranched Polyglycerol for Smart Drug Delivery. Biomacromolecules 2014, 15, 628634,  DOI: 10.1021/bm401670t
  87. 87
    Kim, B. J.; Oh, D. X.; Kim, S.; Seo, J. H.; Hwang, D. S.; Masic, A.; Han, D. K.; Cha, H. J. Mussel-Mimetic Protein-Based Adhesive Hydrogel. Biomacromolecules 2014, 15, 15791585,  DOI: 10.1021/bm4017308
  88. 88
    Martins, A. M.; Eng, G.; Caridade, S. G.; Mano, J. F.; Reis, R. L.; Vunjak-Novakovic, G. Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering. Biomacromolecules 2014, 15, 635643,  DOI: 10.1021/bm401679q
  89. 89
    Cai, H.; Sharma, S.; Liu, W.; Mu, W.; Liu, W.; Zhang, X.; Deng, Y. Aerogel Microspheres from Natural Cellulose Nanofibrils and Their Application as Cell Culture Scaffold. Biomacromolecules 2014, 15, 25402547,  DOI: 10.1021/bm5003976
  90. 90
    Deng, H.; Liu, J.; Zhao, X.; Zhang, Y.; Liu, J.; Xu, S.; Deng, L.; Dong, A.; Zhang, J. PEG-b-PCL Copolymer Micelles with the Ability of pH-Controlled Negative-to-Positive Charge Reversal for Intracellular Delivery of Doxorubicin. Biomacromolecules 2014, 15, 42814292,  DOI: 10.1021/bm501290t
  91. 91
    Markstedt, K.; Mantas, A.; Tournier, I.; Ávila, H. M.; Hägg, D.; Gatenholm, P. 3D Bioprinting Human Chondrocytes with Nanocellulose–Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules 2015, 16, 14891496,  DOI: 10.1021/acs.biomac.5b00188
  92. 92
    Ritz, S.; Schöttler, S.; Kotman, N.; Baier, G.; Musyanovych, A.; Kuharev, J.; Landfester, K.; Schild, H.; Jahn, O.; Tenzer, S.; Mailänder, V. Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake. Biomacromolecules 2015, 16, 13111321,  DOI: 10.1021/acs.biomac.5b00108
  93. 93
    Shen, W.; Luan, J.; Cao, L.; Sun, J.; Yu, L.; Ding, J. Thermogelling Polymer–Platinum(IV) Conjugates for Long-Term Delivery of Cisplatin. Biomacromolecules 2015, 16, 105115,  DOI: 10.1021/bm501220a
  94. 94
    Han, H. S.; Thambi, T.; Choi, K. Y.; Son, S.; Ko, H.; Lee, M. C.; Jo, D.-G.; Chae, Y. S.; Kang, Y. M.; Lee, J. Y.; Park, J. H. Bioreducible Shell-Cross-Linked Hyaluronic Acid Nanoparticles for Tumor-Targeted Drug Delivery. Biomacromolecules 2015, 16, 447456,  DOI: 10.1021/bm5017755
  95. 95
    Pranantyo, D.; Xu, L. Q.; Neoh, K.-G.; Kang, E.-T.; Ng, Y. X.; Teo, S. L.-M. Tea Stains-Inspired Initiator Primer for Surface Grafting of Antifouling and Antimicrobial Polymer Brush Coatings. Biomacromolecules 2015, 16, 723732,  DOI: 10.1021/bm501623c
  96. 96
    Wei, L.; McDonald, A. G.; Stark, N. M. Grafting of Bacterial Polyhydroxybutyrate (PHB) onto Cellulose via In Situ Reactive Extrusion with Dicumyl Peroxide. Biomacromolecules 2015, 16, 10401049,  DOI: 10.1021/acs.biomac.5b00049
  97. 97
    GhavamiNejad, A.; Park, C. H.; Kim, C. S. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application. Biomacromolecules 2016, 17, 12131223,  DOI: 10.1021/acs.biomac.6b00039
  98. 98
    Tully, J.; Yendluri, R.; Lvov, Y. Halloysite Clay Nanotubes for Enzyme Immobilization. Biomacromolecules 2016, 17, 615621,  DOI: 10.1021/acs.biomac.5b01542
  99. 99
    Cherhal, F.; Cousin, F.; Capron, I. Structural Description of the Interface of Pickering Emulsions Stabilized by Cellulose Nanocrystals. Biomacromolecules 2016, 17, 496502,  DOI: 10.1021/acs.biomac.5b01413
  100. 100
    Li, D.; Bu, Y.; Zhang, L.; Wang, X.; Yang, Y.; Zhuang, Y.; Yang, F.; Shen, H.; Wu, D. Facile Construction of pH- and Redox-Responsive Micelles from a Biodegradable Poly(β-hydroxyl amine) for Drug Delivery. Biomacromolecules 2016, 17, 291300,  DOI: 10.1021/acs.biomac.5b01394
  101. 101
    De France, K. J.; Chan, K. J. W.; Cranston, E. D.; Hoare, T. Enhanced Mechanical Properties in Cellulose Nanocrystal–Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking. Biomacromolecules 2016, 17, 649660,  DOI: 10.1021/acs.biomac.5b01598
  102. 102
    Li, Y.; Fu, Q.; Yu, S.; Yan, M.; Berglund, L. Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance. Biomacromolecules 2016, 17, 13581364,  DOI: 10.1021/acs.biomac.6b00145
  103. 103
    Liow, S. S.; Zhou, H.; Sugiarto, S.; Guo, S.; Chalasani, M. L. S.; Verma, N. K.; Xu, J.; Loh, X. J. Highly Efficient Supramolecular Aggregation-Induced Emission-Active Pseudorotaxane Luminogen for Functional Bioimaging. Biomacromolecules 2017, 18, 886897,  DOI: 10.1021/acs.biomac.6b01777
  104. 104
    Venkataraman, S.; Tan, J. P. K.; Ng, V. W. L.; Tan, E. W. P.; Hedrick, J. L.; Yang, Y. Y. Amphiphilic and Hydrophilic Block Copolymers from Aliphatic N-Substituted 8-Membered Cyclic Carbonates: A Versatile Macromolecular Platform for Biomedical Applications. Biomacromolecules 2017, 18, 178188,  DOI: 10.1021/acs.biomac.6b01463
  105. 105
    Guo, R.; Su, Q.; Zhang, J.; Dong, A.; Lin, C.; Zhang, J. Facile Access to Multisensitive and Self-Healing Hydrogels with Reversible and Dynamic Boronic Ester and Disulfide Linkages. Biomacromolecules 2017, 18, 13561364,  DOI: 10.1021/acs.biomac.7b00089
  106. 106
    Gao, J.; Tang, C.; Elsawy, M. A.; Smith, A. M.; Miller, A. F.; Saiani, A. Controlling Self-Assembling Peptide Hydrogel Properties through Network Topology. Biomacromolecules 2017, 18, 826834,  DOI: 10.1021/acs.biomac.6b01693
  107. 107
    Luong, D.; Sau, S.; Kesharwani, P.; Iyer, A. K. Polyvalent Folate-Dendrimer-Coated Iron Oxide Theranostic Nanoparticles for Simultaneous Magnetic Resonance Imaging and Precise Cancer Cell Targeting. Biomacromolecules 2017, 18, 11971209,  DOI: 10.1021/acs.biomac.6b01885
  108. 108
    Pereira, C. S.; Silveira, R. L.; Dupree, P.; Skaf, M. S. Effects of Xylan Side-Chain Substitutions on Xylan–Cellulose Interactions and Implications for Thermal Pretreatment of Cellulosic Biomass. Biomacromolecules 2017, 18, 13111321,  DOI: 10.1021/acs.biomac.7b00067
  109. 109
    Hong, M.; Chen, E. Y.-X. Completely Recyclable Biopolymers with Linear and Cyclic Topologies via Ring-Opening Polymerization of γ-Butyrolactone. Nat. Chem. 2016, 8, 4249,  DOI: 10.1038/nchem.2391
  110. 110
    Hong, M.; Chen, E. Y.-X. Towards Truly Sustainable Polymers: Metal-Free Recyclable Polyester from Bio-renewable Non-Strained γ – Butyrolactone. Angew. Chem., Int. Ed. 2016, 55, 41884193,  DOI: 10.1002/anie.201601092
  111. 111
    Tang, X.; Hong, M.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y.-X. The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways. J. Am. Chem. Soc. 2016, 138, 1432614337,  DOI: 10.1021/jacs.6b07974
  112. 112
    Schoonen, L.; Maassen, S.; Nolte, R. J. M.; van Hest, J. C. M. Stabilization of a Virus-Like Particle and Its Application as a Nanoreactor at Physiological Conditions. Biomacromolecules 2017, 18, 34923497,  DOI: 10.1021/acs.biomac.7b00640
  113. 113
    Schoonen, L.; Maas, R. J. M.; Nolte, R. J. M.; van Hest, J. C. M. Expansion of the assembly of cowpea chlorotic mottle virus towards non-native and physiological conditions. Tetrahedron 2017, 73, 49684971,  DOI: 10.1016/j.tet.2017.04.038
  114. 114
    Van Eldijk, M. B.; Schoonen, L.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; van Hest, J. C. M. Metal Ion-Induced Self-Assembly of a Multi-Responsive Block Copolypeptide into Well-Defined Nanocapsules. Small 2016, 12, 24762483,  DOI: 10.1002/smll.201503889
  115. 115
    Lim, S. I.; Lukianov, C. I.; Champion, J. A. Self-assembled protein nanocarrier for intracellular delivery of antibody. J. Controlled Release 2017, 249, 110,  DOI: 10.1016/j.jconrel.2017.01.007
  116. 116
    Ortony, J. H.; Qiao, B.; Newcomb, C. J.; Keller, T. J.; Palmer, L. C.; Deiss-Yehiely, E.; Olvera de la Cruz, M.; Han, S.; Stupp, S. I. Water Dynamics from the Surface to the Interior of a Supramolecular Nanostructure. J. Am. Chem. Soc. 2017, 139, 89158921,  DOI: 10.1021/jacs.7b02969
  117. 117
    Panganiban, B.; Qiao, B.; Jiang, T.; DelRe, C.; Obadia, M. M.; Nguyen, T. D.; Smith, A. A. A.; Hall, A.; Sit, I.; Crosby, M. G.; Dennis, P. B.; Drockenmuller, E.; Olvera de la Cruz, M.; Xu, T. Random Heteropolymers Preserve Protein Function in Foreign Environments. Science 2018, 359, 12391243,  DOI: 10.1126/science.aao0335
  118. 118
    Tantakitti, F.; Boekhoven, J.; Wang, X.; Kazantsev, R. V.; Yu, T.; Li, J.; Zhuang, E.; Zandi, R.; Ortony, J. H.; Newcomb, C. J.; Palmer, L. C.; Shekhawat, G. S.; de la Cruz, M. O.; Schatz, G. C.; Stupp, S. I. Energy landscapes and functions of supramolecular systems. Nat. Mater. 2016, 15, 469476,  DOI: 10.1038/nmat4538
  119. 119
    Wang, M. X.; Brodin, J. D.; Millan, J. A.; Seo, S. E.; Girard, M.; Olvera de la Cruz, M.; Lee, B.; Mirkin, C. A. Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion. Nano Lett. 2017, 17, 51265132,  DOI: 10.1021/acs.nanolett.7b02502
  120. 120
    Perry, S. L.; Leon, L.; Hoffmann, K. Q.; Kade, M. J.; Priftis, D.; Black, K. A.; Wong, D.; Klein, R. A.; Pierce, C. F., III; Margossian, K. O.; Whitmer, J. K.; Qin, J.; de Pablo, J. J.; Tirrell, M. Chirality-selected Phase Behaviour in Ionic Polypeptide Complexes. Nat. Commun. 2015, 6, 6052,  DOI: 10.1038/ncomms7052
  121. 121
    Srivastava, S.; Andreev, M.; Levi, A. E.; Goldfeld, D. J.; Mao, J.; Heller, W. T.; Prabhu, V. M.; De Pablo, J. J.; Tirrell, M. V. Gel phase formation in dilute triblock copolyelectrolyte complexes. Nat. Commun. 2017, 8, 14131,  DOI: 10.1038/ncomms14131
  122. 122
    Liao, L.; Liu, J.; Dreaden, E. C.; Morton, S. W.; Shopsowitz, K. E.; Hammond, P. T.; Johnson, J. A. A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J. Am. Chem. Soc. 2014, 136, 58965899,  DOI: 10.1021/ja502011g
  123. 123
    Barnes, J. C.; Bruno, P. M.; Nguyen, H. V.-T.; Liao, L.; Liu, J.; Hemann, M. T.; Johnson, J. A. Using an RNAi signature assay to guide the design of three-drug conjugated nanoparticles with validated mechanisms, in vivo efficacy, and low toxicity. J. Am. Chem. Soc. 2016, 138, 1249412501,  DOI: 10.1021/jacs.6b06321
  124. 124
    Nguyen, H. V.-T.; Chen, Q.; Paletta, J. T.; Harvey, P.; Jiang, Y.; Zhang, H.; Boska, M. D.; Ottaviani, M. F.; Jasanoff, A.; Rajca, A.; Johnson, J. A. Nitroxide-Based Macromolecular Contrast Agents with Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors. ACS Cent. Sci. 2017, 3, 800811,  DOI: 10.1021/acscentsci.7b00253
  125. 125
    Nguyen, H. V.-T.; Gallagher, N. M.; Vohidov, F.; Jiang, Y.; Kawamoto, K.; Zhang, H.; Park, J. V.; Huang, Z.; Ottaviani, M. F.; Rajca, A.; Johnson, J. A. Scalable synthesis of multivalent macromonomers for ROMP. ACS Macro Lett. 2018, 7, 472476,  DOI: 10.1021/acsmacrolett.8b00201
  126. 126
    Pelegri-O’Day, E. M.; Lin, E.–W.; Maynard, H. D. Therapeutic Protein-Polymer Conjugates: Advancing Beyond PEGylation. J. Am. Chem. Soc. 2014, 136, 1432314332,  DOI: 10.1021/ja504390x
  127. 127
    Mancini, R. J.; Lee, J.; Maynard, H. D. Trehalose Glycopolymers for Stabilization of Protein Conjugates to Environmental Stressors. J. Am. Chem. Soc. 2012, 134, 84748479,  DOI: 10.1021/ja2120234
  128. 128
    Lee, J.; Lin, E.-W.; Lau, U. Y.; Hedrick, J. L.; Bat, E.; Maynard, H. D. Trehalose Glycopolymers as Excipients for Protein Stabilization. Biomacromolecules 2013, 14, 25612569,  DOI: 10.1021/bm4003046
  129. 129
    Messina, M. S.; Ko, J. H.; Yang, Z.; Strouse, M. J.; Houk, K. N.; Maynard, H. D. Effect of Trehalose Polymer Regioisomers on Protein Stabilization. Polym. Chem. 2017, 8, 47814788,  DOI: 10.1039/C7PY00700K
  130. 130
    Liu, Y.; Lee, J.; Mansfield, K. M.; Ko, J. H.; Sallam, S.; Wesdemiotis, C.; Maynard, H. D. Trehalose Glycopolymer Enhances Both Solution Stability and Pharmacokinetics of a Therapeutic Protein. Bioconjugate Chem. 2017, 28, 836845,  DOI: 10.1021/acs.bioconjchem.6b00659
  131. 131
    Mansfield, K. M.; Maynard, H. D. Site-Specific Insulin-Trehalose Glycopolymer Conjugate by Grafting From Strategy Improves Bioactivtiy. ACS Macro Lett. 2018, 7, 324329,  DOI: 10.1021/acsmacrolett.7b00974
  132. 132
    Pelegri-O’Day, E. M.; Paluck, S. J.; Maynard, H. D. Substituted Polyesters by Thiol-ene Modification: Rapid Diversification for Therapeutic Protein Stabilization. J. Am. Chem. Soc. 2017, 139, 11451154,  DOI: 10.1021/jacs.6b10776
  133. 133
    Boehnke, N.; Kammeyer, J. K.; Damoiseaux, R.; Maynard, H. D. Stabilization of Glucagon by Trehalose Glycopolymer Nanogels. Adv. Funct. Mater. 2018, 28, 1705475,  DOI: 10.1002/adfm.201705475
  134. 134
    Foster, A. A.; Greco, C. T.; Green, M. D.; Roy, R.; Epps, T. H., III; Sullivan, M. O. Light-Mediated Activation of siRNA Release in Diblock Copolymer Assemblies for Controlled Gene Silencing. Adv. Healthcare Mater. 2015, 4, 760770,  DOI: 10.1002/adhm.201400671
  135. 135
    Greco, C. T.; Epps, T. H., III; Sullivan, M. O. Mechanistic Design of Polymer Nanocarriers to Spatiotemporally Control Gene Silencing. ACS Biomater. Sci. Eng. 2016, 2, 15821594,  DOI: 10.1021/acsbiomaterials.6b00336
  136. 136
    Greco, C. T.; Muir, V. M.; Epps, T. H., III; Sullivan, M. O. Efficient Tuning of siRNA Dose Response by Combining Mixed Polymer Nanocarriers with Simple Kinetic Modeling. Acta Biomater. 2017, 50, 407416,  DOI: 10.1016/j.actbio.2017.01.003
  137. 137
    Greco, C. T.; Andrechak, J. C.; Epps, T. H., III; Sullivan, M. O. Anionic Polymer and Quantum Dot Excipients to Facilitate siRNA Release and Self-Reporting of Disassembly in Stimuli-Responsive Nanocarrier Formulations. Biomacromolecules 2017, 18, 18141824,  DOI: 10.1021/acs.biomac.7b00265
  138. 138
    Greco, C. T.; Akins, R. E.; Epps, T. H., III; Sullivan, M. O. Attenuation of Maladaptive Responses in Aortic Adventitial Fibroblasts through Stimuli-triggered siRNA Release from Lipid-Polymer Nanocomplexes. Adv. Biosys. 2017, 1, 1700099,  DOI: 10.1002/adbi.201700099
  139. 139
    Liu, H.; Moynihan, K. D.; Zheng, Y.; Szeto, G. L.; Li, A. V.; Huang, B.; Van Egeren, D. S.; Park, C.; Irvine, D. J. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 2014, 507, 519522,  DOI: 10.1038/nature12978
  140. 140
    Moynihan, K. D.; Opel, C. F.; Szeto, G. L.; Tzeng, A.; Zhu, E. F.; Engreitz, J. M.; Williams, R. T.; Rakhra, K.; Zhang, M. H.; Rothschilds, A. M.; Kumari, S.; Kelly, R. L.; Kwan, B. H.; Abraham, W.; Hu, K.; Mehta, N. K.; Kauke, M. J.; Suh, H.; Cochran, J. R.; Lauffenburger, D. A.; Wittrup, D. K.; Irvine, D. J. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 2016, 22, 14021410,  DOI: 10.1038/nm.4200
  141. 141
    Prost, L. R.; Grim, J. S.; Tonelli, M.; Kiessling, L. L. Non-Carbohydrate Glycomimetics and Glycoprotein Surrogates as DC-SIGN Antagonists and Agonists. ACS Chem. Biol. 2012, 7, 16031608,  DOI: 10.1021/cb300260p
  142. 142
    Kiessling, L. L.; Grim, J. D. Glycopolymer Probes of Signal Transduction. Chem. Soc. Rev. 2013, 42, 44764491,  DOI: 10.1039/c3cs60097a
  143. 143
    Yu, J.; Xu, Y.; Li, S.; Seifert, G. V.; Becker, M. L. Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity. Biomacromolecules 2017, 18, 41714183,  DOI: 10.1021/acs.biomac.7b01222
  144. 144
    Li, S.; Xu, Y.; Yu, J.; Becker, M. L. Enhanced Osteogenic Activity of Poly(ester urea) Scaffolds using Facile Post-3D Printing Peptide Functionalization Strategies. Biomaterials 2017, 141, 176187,  DOI: 10.1016/j.biomaterials.2017.06.038
  145. 145
    Wang, H.; Heilshorn, S. C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 2015, 27, 37173736,  DOI: 10.1002/adma.201501558
  146. 146
    Cai, L.; Dewi, R.; Goldstone, A.; Cohen, J.; Steele, A.; Woo, J.; Heilshorn, S. C. Regulating stem cell secretome using injectable hydrogels with in situ network formation. Adv. Healthcare Mater. 2016, 5, 27582764,  DOI: 10.1002/adhm.201600497
  147. 147
    Wang, H.; Zhu, D.; Paul, A.; Cai, L.; Enejder, A.; Yang, F.; Heilshorn, S. C. Covalently adaptable elastin-like protein–hyaluronic acid (ELP–HA) hybrid hydrogels with secondary thermoresponsive crosslinking for injectable stem cell delivery. Adv. Funct. Mater. 2017, 27, 1605609,  DOI: 10.1002/adfm.201605609

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 9 publications.

  1. Metin Karayilan, Liane Clamen, Matthew L. Becker. Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules 2021, 22 (2) , 223-261. https://doi.org/10.1021/acs.biomac.0c01525
  2. Megan K. Livingston, Molly M. Morgan, William T. Daly, William L. Murphy, Brian P. Johnson, David J. Beebe, Marı́a Virumbrales-Muñoz. Evaluation of PEG-Based Hydrogel Influence on Estrogen-Receptor-Driven Responses in MCF7 Breast Cancer Cells. ACS Biomaterials Science & Engineering 2019, 5 (11) , 6089-6098. https://doi.org/10.1021/acsbiomaterials.9b00480
  3. Kiefer O. Ramberg, Paweł M. Antonik, David L. Cheung, Peter B. Crowley. Measuring the Impact of PEGylation on a Protein–Polysaccharide Interaction. Bioconjugate Chemistry 2019, 30 (4) , 1162-1168. https://doi.org/10.1021/acs.bioconjchem.9b00099
  4. Ruili Liu, Xiang Yao, Xiangnan Liu, Jiandong Ding. Proliferation of Cells with Severe Nuclear Deformation on a Micropillar Array. Langmuir 2019, 35 (1) , 284-299. https://doi.org/10.1021/acs.langmuir.8b03452
  5. Elçin Tören, Matej Buzgo, Adnan Ahmed Mazari, Muhammad Zaman Khan. Recent advances in biopolymer based electrospun nanomaterials for drug delivery systems. Polymers for Advanced Technologies 2024, 35 (3) https://doi.org/10.1002/pat.6309
  6. Sundramoorthi Nandhabala, Jayachandran Hemalatha, Chennappan Senthamil, Chandrasekar Sakthivel, Ambikapathi Nivetha, Inbaraj Prabha. Effective Role of Polyamidoamine (PAMAM) Dendrimer Functionalized Nanomaterials in Anticancer Applications. ChemistrySelect 2023, 8 (19) https://doi.org/10.1002/slct.202204490
  7. Huijie Lu, Yu Zhao, Shuchun Qin, Yanyan Zhang, Jinying Liu, Jian Zhang, Chuanliang Feng, Weili Zhao. Fluorine Substitution Tunes the Nanofiber Chirality of Supramolecular Hydrogels to Promote Cell Adhesion and Proliferation. Advanced Fiber Materials 2023, 5 (1) , 377-387. https://doi.org/10.1007/s42765-022-00232-w
  8. Barbora Kalousková, Ondřej Skořepa, Denis Cmunt, Celeste Abreu, Kateřina Krejčová, Jan Bláha, Irena Sieglová, Vlastimil Král, Milan Fábry, Robert Pola, Michal Pechar, Ondřej Vaněk. Tumor Marker B7-H6 Bound to the Coiled Coil Peptide-Polymer Conjugate Enables Targeted Therapy by Activating Human Natural Killer Cells. Biomedicines 2021, 9 (11) , 1597. https://doi.org/10.3390/biomedicines9111597
  9. Thomas Leigh, Paco Fernandez-Trillo. Helical polymers for biological and medical applications. Nature Reviews Chemistry 2020, 4 (6) , 291-310. https://doi.org/10.1038/s41570-020-0180-5
  • This publication has no figures.
  • References

    ARTICLE SECTIONS
    Jump To

    This article references 147 other publications.

    1. 1
      Van Den Bulcke, A. I.; Bogdanov, B.; De Rooze, N.; Schacht, E. H.; Cornelissen, M.; Berghmans, H. Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels. Biomacromolecules 2000, 1, 3138,  DOI: 10.1021/bm990017d
    2. 2
      Chen, C. Z.; Beck-Tan, N. C.; Dhurjati, P.; van Dyk, T. K.; LaRossa, R. A.; Cooper, S. L. Quaternary Ammonium Functionalized Poly(propylene imine) Dendrimers as Effective Antimicrobials: Structure–Activity Studies. Biomacromolecules 2000, 1, 473480,  DOI: 10.1021/bm0055495
    3. 3
      Normand, V.; Lootens, D. L.; Amici, E.; Plucknett, K. P.; Aymard, P. New Insight into Agarose Gel Mechanical Properties. Biomacromolecules 2000, 1, 730738,  DOI: 10.1021/bm005583j
    4. 4
      Mateo, C.; Fernández-Lorente, G.; Abian, O.; Fernández-Lafuente, R.; Guisán, J. M. Multifunctional Epoxy Supports: A New Tool To Improve the Covalent Immobilization of Proteins. The Promotion of Physical Adsorptions of Proteins on the Supports before Their Covalent Linkage. Biomacromolecules 2000, 1, 739745,  DOI: 10.1021/bm000071q
    5. 5
      Kim, U.-J.; Kuga, S.; Wada, M.; Okano, T.; Kondo, T. Periodate Oxidation of Crystalline Cellulose. Biomacromolecules 2000, 1, 488492,  DOI: 10.1021/bm0000337
    6. 6
      Kumar, A.; Gross, R. A. Candida antartica Lipase B Catalyzed Polycaprolactone Synthesis: Effects of Organic Media and Temperature. Biomacromolecules 2000, 1, 133138,  DOI: 10.1021/bm990510p
    7. 7
      Braccini, I.; Pérez, S. Molecular Basis of Ca2+-Induced Gelation in Alginates and Pectins: The Egg-Box Model Revisited. Biomacromolecules 2001, 2, 10891096,  DOI: 10.1021/bm010008g
    8. 8
      Sorlier, P.; Denuzière, A.; Viton, C.; Domard, A. Relation between the Degree of Acetylation and the Electrostatic Properties of Chitin and Chitosan. Biomacromolecules 2001, 2, 765772,  DOI: 10.1021/bm015531+
    9. 9
      Elbert, D. L.; Hubbell, J. A. Conjugate Addition Reactions Combined with Free-Radical Cross-Linking for the Design of Materials for Tissue Engineering. Biomacromolecules 2001, 2, 430441,  DOI: 10.1021/bm0056299
    10. 10
      Langan, P.; Nishiyama, Y.; Chanzy, H. X-ray Structure of Mercerized Cellulose II at 1 Å Resolution. Biomacromolecules 2001, 2, 410416,  DOI: 10.1021/bm005612q
    11. 11
      Persenaire, O.; Alexandre, M.; Degée, P.; Dubois, P. Mechanisms and Kinetics of Thermal Degradation of Poly(ε-caprolactone). Biomacromolecules 2001, 2, 288294,  DOI: 10.1021/bm0056310
    12. 12
      Kakizawa, Y.; Harada, A.; Kataoka, K. Glutathione-Sensitive Stabilization of Block Copolymer Micelles Composed of Antisense DNA and Thiolated Poly(ethylene glycol)-block-poly(L-lysine): A Potential Carrier for Systemic Delivery of Antisense DNA. Biomacromolecules 2001, 2, 491497,  DOI: 10.1021/bm000142l
    13. 13
      Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L. Electrospinning of Collagen Nanofibers. Biomacromolecules 2002, 3, 232238,  DOI: 10.1021/bm015533u
    14. 14
      Jin, H.-J.; Fridrikh, S. V.; Rutledge, G. C.; Kaplan, D. L. Electrospinning Bombyx mori Silk with Poly(ethylene oxide). Biomacromolecules 2002, 3, 12331239,  DOI: 10.1021/bm025581u
    15. 15
      Shu, X. Z.; Liu, Y.; Luo, Y.; Roberts, M. C.; Prestwich, G. D. Disulfide Cross-Linked Hyaluronan Hydrogels. Biomacromolecules 2002, 3, 13041311,  DOI: 10.1021/bm025603c
    16. 16
      Meyer, D. E.; Chilkoti, A. Genetically Encoded Synthesis of Protein-Based Polymers with Precisely Specified Molecular Weight and Sequence by Recursive Directional Ligation: Examples from the Elastin-like Polypeptide System. Biomacromolecules 2002, 3, 357367,  DOI: 10.1021/bm015630n
    17. 17
      Lee, B. P.; Dalsin, J. L.; Messersmith, P. B. Synthesis and Gelation of DOPA-Modified Poly(ethylene glycol) Hydrogels. Biomacromolecules 2002, 3, 10381047,  DOI: 10.1021/bm025546n
    18. 18
      Zhu, Y.; Gao, C.; Liu, X.; Shen, J. Surface Modification of Polycaprolactone Membrane via Aminolysis and Biomacromolecule Immobilization for Promoting Cytocompatibility of Human Endothelial Cells. Biomacromolecules 2002, 3, 13121319,  DOI: 10.1021/bm020074y
    19. 19
      Lutolf, M. P.; Hubbell, J. A. Synthesis and Physicochemical Characterization of End-Linked Poly(ethylene glycol)-co-peptide Hydrogels Formed by Michael-Type Addition. Biomacromolecules 2003, 4, 713722,  DOI: 10.1021/bm025744e
    20. 20
      Mendelsohn, J. D.; Yang, S. Y.; Hiller, J.; Hochbaum, A. I.; Rubner, M. F. Rational Design of Cytophilic and Cytophobic Polyelectrolyte Multilayer Thin Films. Biomacromolecules 2003, 4, 96106,  DOI: 10.1021/bm0256101
    21. 21
      Weinbreck, F.; de Vries, R.; Schrooyen, P.; de Kruif, C. G. Complex Coacervation of Whey Proteins and Gum Arabic. Biomacromolecules 2003, 4, 293303,  DOI: 10.1021/bm025667n
    22. 22
      Seyrek, E.; Dubin, P. L.; Tribet, C.; Gamble, E. A. Ionic Strength Dependence of Protein-Polyelectrolyte Interactions. Biomacromolecules 2003, 4, 273282,  DOI: 10.1021/bm025664a
    23. 23
      Thierry, B.; Winnik, F. M.; Merhi, Y.; Silver, J.; Tabrizian, M. Bioactive Coatings of Endovascular Stents Based on Polyelectrolyte Multilayers. Biomacromolecules 2003, 4, 15641571,  DOI: 10.1021/bm0341834
    24. 24
      Kim, S.; Healy, K. E. Synthesis and Characterization of Injectable Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels with Proteolytically Degradable Cross-Links. Biomacromolecules 2003, 4, 12141223,  DOI: 10.1021/bm0340467
    25. 25
      Nazarov, R.; Jin, H.-J.; Kaplan, D. L. Porous 3-D Scaffolds from Regenerated Silk Fibroin. Biomacromolecules 2004, 5, 718726,  DOI: 10.1021/bm034327e
    26. 26
      Roman, M.; Winter, W. T. Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose. Biomacromolecules 2004, 5, 16711677,  DOI: 10.1021/bm034519+
    27. 27
      Wu, J.; Zhang, J.; Zhang, H.; He, J.; Ren, Q.; Guo, M. Homogeneous Acetylation of Cellulose in a New Ionic Liquid. Biomacromolecules 2004, 5, 266268,  DOI: 10.1021/bm034398d
    28. 28
      Saito, T.; Isogai, A. TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions. Biomacromolecules 2004, 5, 19831989,  DOI: 10.1021/bm0497769
    29. 29
      Kim, U.-J.; Park, J.; Li, C.; Jin, H.-J.; Valluzzi, R.; Kaplan, D. L. Structure and Properties of Silk Hydrogels. Biomacromolecules 2004, 5, 786792,  DOI: 10.1021/bm0345460
    30. 30
      Lee, S. B.; Koepsel, R. R.; Morley, S. W.; Matyjaszewski, K.; Sun, Y.; Russell, A. J. Permanent, Nonleaching Antibacterial Surfaces. 1. Synthesis by Atom Transfer Radical Polymerization. Biomacromolecules 2004, 5, 877882,  DOI: 10.1021/bm034352k
    31. 31
      Beck-Candanedo, S.; Roman, M.; Gray, D. G. Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules 2005, 6, 10481054,  DOI: 10.1021/bm049300p
    32. 32
      Šturcová, A.; Davies, G. R.; Eichhorn, S. J. Elastic Modulus and Stress-Transfer Properties of Tunicate Cellulose Whiskers. Biomacromolecules 2005, 6, 10551061,  DOI: 10.1021/bm049291k
    33. 33
      Chew, S. Y.; Wen, J.; Yim, E. K. F.; Leong, K. W. Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules 2005, 6, 20172024,  DOI: 10.1021/bm0501149
    34. 34
      Burdick, J. A.; Chung, C.; Jia, X.; Randolph, M. A.; Langer, R. Controlled Degradation and Mechanical Behavior of Photopolymerized Hyaluronic Acid Networks. Biomacromolecules 2005, 6, 386391,  DOI: 10.1021/bm049508a
    35. 35
      Wang, S.-F.; Shen, L.; Zhang, W.-D.; Tong, Y.-J. Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites. Biomacromolecules 2005, 6, 30673072,  DOI: 10.1021/bm050378v
    36. 36
      Zhang, Y. Z.; Venugopal, J.; Huang, Z.-M.; Lim, C. T.; Ramakrishna, S. Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts. Biomacromolecules 2005, 6, 25832589,  DOI: 10.1021/bm050314k
    37. 37
      Saito, T.; Nishiyama, Y.; Putaux, J.-L.; Vignon, M.; Isogai, A. Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose. Biomacromolecules 2006, 7, 16871691,  DOI: 10.1021/bm060154s
    38. 38
      Pham, Q. P.; Sharma, U.; Mikos, A. G. Electrospun Poly(ε-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration. Biomacromolecules 2006, 7, 27962805,  DOI: 10.1021/bm060680j
    39. 39
      Jiang, L.; Wolcott, M. P.; Zhang, J. Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends. Biomacromolecules 2006, 7, 199207,  DOI: 10.1021/bm050581q
    40. 40
      Majoros, I. J.; Myc, A.; Thomas, T.; Mehta, C. B.; Baker, J. R. PAMAM Dendrimer-Based Multifunctional Conjugate for Cancer Therapy: Synthesis, Characterization, and Functionality. Biomacromolecules 2006, 7, 572579,  DOI: 10.1021/bm0506142
    41. 41
      Zhang, Y. Z.; Wang, X.; Feng, Y.; Li, J.; Lim, C. T.; Ramakrishna, S. Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(ε-caprolactone) Nanofibers for Sustained Release. Biomacromolecules 2006, 7, 10491057,  DOI: 10.1021/bm050743i
    42. 42
      Fukaya, Y.; Sugimoto, A.; Ohno, H. Superior Solubility of Polysaccharides in Low Viscosity, Polar, and Halogen-Free 1,3-Dialkylimidazolium Formates. Biomacromolecules 2006, 7, 32953297,  DOI: 10.1021/bm060327d
    43. 43
      Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P. T.; Ikkala, O.; Lindström, T. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules 2007, 8, 19341941,  DOI: 10.1021/bm061215p
    44. 44
      Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules 2007, 8, 24852491,  DOI: 10.1021/bm0703970
    45. 45
      Lawrie, G.; Keen, I.; Drew, B.; Chandler-Temple, A.; Rintoul, L.; Fredericks, P.; Grøndahl, L. Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules 2007, 8, 25332541,  DOI: 10.1021/bm070014y
    46. 46
      Abe, K.; Iwamoto, S.; Yano, H. Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood. Biomacromolecules 2007, 8, 32763278,  DOI: 10.1021/bm700624p
    47. 47
      Cerritelli, S.; Velluto, D.; Hubbell, J. A. PEG-SS-PPS: Reduction-Sensitive Disulfide Block Copolymer Vesicles for Intracellular Drug Delivery. Biomacromolecules 2007, 8, 19661972,  DOI: 10.1021/bm070085x
    48. 48
      Cao, X.; Dong, H.; Li, C. M. New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane. Biomacromolecules 2007, 8, 899904,  DOI: 10.1021/bm0610368
    49. 49
      Henriksson, M.; Berglund, L. A.; Isaksson, P.; Lindström, T.; Nishino, T. Cellulose Nanopaper Structures of High Toughness. Biomacromolecules 2008, 9, 15791585,  DOI: 10.1021/bm800038n
    50. 50
      Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.-L.; Heux, L.; Dubreuil, F.; Rochas, C. The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules 2008, 9, 5765,  DOI: 10.1021/bm700769p
    51. 51
      Ladd, J.; Zhang, Z.; Chen, S.; Hower, J. C.; Jiang, S. Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules 2008, 9, 13571361,  DOI: 10.1021/bm701301s
    52. 52
      Sahu, A.; Kasoju, N.; Bora, U. Fluorescence Study of the Curcumin–Casein Micelle Complexation and Its Application as a Drug Nanocarrier to Cancer Cells. Biomacromolecules 2008, 9, 29052912,  DOI: 10.1021/bm800683f
    53. 53
      Liang, L.; Tajmir-Riahi, H. A.; Subirade, M. Interaction of β-Lactoglobulin with Resveratrol and its Biological Implications. Biomacromolecules 2008, 9, 5056,  DOI: 10.1021/bm700728k
    54. 54
      Iwamoto, S.; Abe, K.; Yano, H. The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics. Biomacromolecules 2008, 9, 10221026,  DOI: 10.1021/bm701157n
    55. 55
      Fukuzumi, H.; Saito, T.; Iwata, T.; Kumamoto, Y.; Isogai, A. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation. Biomacromolecules 2009, 10, 162165,  DOI: 10.1021/bm801065u
    56. 56
      Siqueira, G.; Bras, J.; Dufresne, A. Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites. Biomacromolecules 2009, 10, 425432,  DOI: 10.1021/bm801193d
    57. 57
      Saito, T.; Hirota, M.; Tamura, N.; Kimura, S.; Fukuzumi, H.; Heux, L.; Isogai, A. Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions. Biomacromolecules 2009, 10, 19921996,  DOI: 10.1021/bm900414t
    58. 58
      Iwamoto, S.; Kai, W.; Isogai, A.; Iwata, T. Elastic Modulus of Single Cellulose Microfibrils from Tunicate Measured by Atomic Force Microscopy. Biomacromolecules 2009, 10, 25712576,  DOI: 10.1021/bm900520n
    59. 59
      Hu, Y.-J.; Liu, Y.; Xiao, X.-H. Investigation of the Interaction between Berberine and Human Serum Albumin. Biomacromolecules 2009, 10, 517521,  DOI: 10.1021/bm801120k
    60. 60
      Travan, A.; Pelillo, C.; Donati, I.; Marsich, E.; Benincasa, M.; Scarpa, T.; Semeraro, S.; Turco, G.; Gennaro, R.; Paoletti, S. Non-cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites with Antimicrobial Activity. Biomacromolecules 2009, 10, 14291435,  DOI: 10.1021/bm900039x
    61. 61
      Fan, H.; Wang, L.; Zhao, K.; Li, N.; Shi, Z.; Ge, Z.; Jin, Z. Fabrication, Mechanical Properties, and Biocompatibility of Graphene-Reinforced Chitosan Composites. Biomacromolecules 2010, 11, 23452351,  DOI: 10.1021/bm100470q
    62. 62
      Vergaro, V.; Abdullayev, E.; Lvov, Y. M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S. Cytocompatibility and Uptake of Halloysite Clay Nanotubes. Biomacromolecules 2010, 11, 820826,  DOI: 10.1021/bm9014446