ACS Publications. Most Trusted. Most Cited. Most Read
Understanding the Interplay of Dispersion, Charge Transfer, and Electrostatics in Noncovalent Interactions: The Case of Bromine–Carbonyl Short Contacts
My Activity

Figure 1Loading Img
    Article

    Understanding the Interplay of Dispersion, Charge Transfer, and Electrostatics in Noncovalent Interactions: The Case of Bromine–Carbonyl Short Contacts
    Click to copy article linkArticle link copied!

    • Jorge Echeverría*
      Jorge Echeverría
      Departament de Quı́mica Inorgànica i Orgànica (Secció Inorgànica) and Institut de Quı́mica Teòrica i Computacional IQTC-UB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
      *Email: [email protected]
    • Juan D. Velásquez
      Juan D. Velásquez
      Departament de Quı́mica Inorgànica i Orgànica (Secció Inorgànica) and Institut de Quı́mica Teòrica i Computacional IQTC-UB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
    • Santiago Alvarez
      Santiago Alvarez
      Departament de Quı́mica Inorgànica i Orgànica (Secció Inorgànica) and Institut de Quı́mica Teòrica i Computacional IQTC-UB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
    Other Access OptionsSupporting Information (1)

    Crystal Growth & Design

    Cite this: Cryst. Growth Des. 2020, 20, 11, 7180–7187
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.cgd.0c00791
    Published October 2, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We have performed a combined structural and computational analysis of short contacts between bromine and the carbon atom of a carbonyl group. Surprisingly, 9% of such contacts are arranged in such a way that the positively charged regions of the two atoms involved, i.e., Br and C, are in close contact, so the interaction geometry cannot be predicted in terms of molecular electrostatic potential maps. Remarkably, despite this like-like electrostatic configuration, the interaction energies associated with these contacts are attractive and considerably large (ca. 1 kcal/mol). Comprehensive energy decomposition analysis and natural bond orbital analysis have allowed us to unveil the physical origin of these interactions, which arise from a precise balance between steric factors (Pauli and electrostatics), dispersion, and charge transfer. These results reinforce the idea of noncovalent interactions as a more or less subtle combination of attractive and repulsive forces rather than a “purely electrostatic” or a “purely orbital” process and open the way to explore new types of interactions beyond the electron density holes model.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.cgd.0c00791.

    • Interaction energies for all calculated systems, energy decomposition analysis complete results, and Cartesian coordinates of the model system bromobenzene···methyl formate (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 17 publications.

    1. Juan D. Velasquez, Jorge Echeverría, Santiago Alvarez. Structure and Bonding of Halonium Compounds. Inorganic Chemistry 2023, 62 (23) , 8980-8992. https://doi.org/10.1021/acs.inorgchem.3c00654
    2. Oliver Loveday, Jesús Jover, Jorge Echeverría. Anion Binding Based on Hg3 Anticrowns as Multidentate Lewis Acidic Hosts. Inorganic Chemistry 2022, 61 (32) , 12526-12533. https://doi.org/10.1021/acs.inorgchem.2c00921
    3. Mahmoud A. A. Ibrahim, Nayra A. M. Moussa, Sherif M. A. Saad, Muhammad Naeem Ahmed, Ahmed M. Shawky, Mahmoud E. S. Soliman, Gamal A. H. Mekhemer, Al-shimaa S. M. Rady. σ-Hole and LP-Hole Interactions of Pnicogen···Pnicogen Homodimers under the External Electric Field Effect: A Quantum Mechanical Study. ACS Omega 2022, 7 (13) , 11264-11275. https://doi.org/10.1021/acsomega.2c00176
    4. Alexander C. Marwitz, Aaron D. Nicholas, Leticia M. Breuer, Jeffery A. Bertke, Karah E. Knope. Harnessing Bismuth Coordination Chemistry to Achieve Bright, Long-Lived Organic Phosphorescence. Inorganic Chemistry 2021, 60 (21) , 16840-16851. https://doi.org/10.1021/acs.inorgchem.1c02748
    5. Oliver Loveday, Jorge Echeverría. Methyl Groups as Hydrogen Bond Acceptors via Their sp3 Carbon Atoms. Crystal Growth & Design 2021, 21 (10) , 5961-5966. https://doi.org/10.1021/acs.cgd.1c00853
    6. Steve Scheiner. Dissection of the Origin of π-Holes and the Noncovalent Bonds in Which They Engage. The Journal of Physical Chemistry A 2021, 125 (30) , 6514-6528. https://doi.org/10.1021/acs.jpca.1c05431
    7. Mahmoud A. A. Ibrahim, Nayra A. M. Moussa, Mahmoud E. S. Soliman, Mahmoud F. Moustafa, Jabir H. Al-Fahemi, H. R. Abd El-Mageed. On the Potentiality of X-T-X3 Compounds (T = C, Si, and Ge, and X = F, Cl, and Br) as Tetrel- and Halogen-Bond Donors. ACS Omega 2021, 6 (29) , 19330-19341. https://doi.org/10.1021/acsomega.1c03183
    8. Jorge Echeverría. Cooperative Effects between Hydrogen Bonds and C═O···S Interactions in the Crystal Structures of Sulfoxides. Crystal Growth & Design 2021, 21 (4) , 2481-2487. https://doi.org/10.1021/acs.cgd.1c00097
    9. Jorge Echeverría. Intermolecular Interactions between Thiocyanato Ligands in Metal Complexes. Crystal Growth & Design 2021, 21 (3) , 1636-1644. https://doi.org/10.1021/acs.cgd.0c01479
    10. Xiang Liu, Jian-Hua Chu, Zi-Xian Wang, Shao-Wei Hu, Zi-Yi Cheng, Ke-Ning Liu, Chao-Jie Zhang, Li-Qiang Zhang, Li-Dong Xing, Wei Wang. Design and optimization of carbon materials as anodes for advanced potassium-ion storage. Rare Metals 2024, 43 (11) , 5516-5548. https://doi.org/10.1007/s12598-024-02843-1
    11. Jorge Echeverría, Santiago Alvarez. The borderless world of chemical bonding across the van der Waals crust and the valence region. Chemical Science 2023, 14 (42) , 11647-11688. https://doi.org/10.1039/D3SC02238B
    12. Steve Scheiner. Does a halogen bond require positive potential on the acid and negative potential on the base?. Physical Chemistry Chemical Physics 2023, 25 (10) , 7184-7194. https://doi.org/10.1039/D3CP00379E
    13. Xiaolei Liu. The intermolecular interactions of ammonia with chlorine and bromine oxides: a theoretical study. Journal of Molecular Modeling 2023, 29 (1) https://doi.org/10.1007/s00894-022-05415-1
    14. Reza Kia, Faranak Heshmatnia. Structural and theoretical exploring of noncovalent interactions in Chlorido- and Nitrito-rhenium(I) tricarbonyl complexes bearing 2,3-Butadiene-bis(2-nitrobenzylidene)hydrazine Ligand: Intramolecular Re–κ1-endo-ONO(lone pair)…π*(C O) interaction. Inorganica Chimica Acta 2022, 540 , 121049. https://doi.org/10.1016/j.ica.2022.121049
    15. Yu Zhang, Weizhou Wang. Origin of the unexpected attractive interactions between positive σ-holes and positive π-lumps. Computational and Theoretical Chemistry 2022, 1213 , 113736. https://doi.org/10.1016/j.comptc.2022.113736
    16. Mahmoud A. A. Ibrahim, Rehab R. A. Saeed, Mohammed N. I. Shehata, Muhammad Naeem Ahmed, Ahmed M. Shawky, Manal M. Khowdiary, Eslam B. Elkaeed, Mahmoud E. S. Soliman, Nayra A. M. Moussa. Type I–IV Halogen⋯Halogen Interactions: A Comparative Theoretical Study in Halobenzene⋯Halobenzene Homodimers. International Journal of Molecular Sciences 2022, 23 (6) , 3114. https://doi.org/10.3390/ijms23063114
    17. Yanan Zhou, Hongzhi Ma, Zhongxing Yang, Chengjun Wu, Tiemin Sun. A systematic investigation on the impact of the level of oxidation at sulfur and the configuration of R / S -sulfoxide on the solid structure. CrystEngComm 2021, 23 (23) , 4181-4193. https://doi.org/10.1039/D1CE00346A

    Crystal Growth & Design

    Cite this: Cryst. Growth Des. 2020, 20, 11, 7180–7187
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.cgd.0c00791
    Published October 2, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    614

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.