Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

p-Type Ultrawide-Band-Gap Spinel ZnGa2O4: New Perspectives for Energy Electronics

  • Ekaterine Chikoidze*
    Ekaterine Chikoidze
    Groupe d’Etude de la Matière Condensée (GEMaC), Université de Versailles Saint Quentin en Y- CNRS, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles Cedex, France
    *Email for E.C.: [email protected]
  • Corinne Sartel
    Corinne Sartel
    Groupe d’Etude de la Matière Condensée (GEMaC), Université de Versailles Saint Quentin en Y- CNRS, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles Cedex, France
  • Ismail Madaci
    Ismail Madaci
    Groupe d’Etude de la Matière Condensée (GEMaC), Université de Versailles Saint Quentin en Y- CNRS, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles Cedex, France
  • Hagar Mohamed
    Hagar Mohamed
    Groupe d’Etude de la Matière Condensée (GEMaC), Université de Versailles Saint Quentin en Y- CNRS, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles Cedex, France
    Solid State Physics Department, National Research Center, El-Behooth Street 12311 Dokki, Giza, Egypt
  • Christele Vilar
    Christele Vilar
    Groupe d’Etude de la Matière Condensée (GEMaC), Université de Versailles Saint Quentin en Y- CNRS, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles Cedex, France
  • Belén Ballesteros
    Belén Ballesteros
    Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain
  • Francisco Belarre
    Francisco Belarre
    Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain
  • Elena del Corro
    Elena del Corro
    Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain
  • Pablo Vales-Castro
    Pablo Vales-Castro
    Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain
  • Guillaume Sauthier
    Guillaume Sauthier
    Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain
  • Lijie Li
    Lijie Li
    College of Engineering, Swansea University, Bay Campus, Fabian Way, Crymlyn Burrows, Swansea SA1 8EN, U.K.
    More by Lijie Li
  • Mike Jennings
    Mike Jennings
    College of Engineering, Swansea University, Bay Campus, Fabian Way, Crymlyn Burrows, Swansea SA1 8EN, U.K.
  • Vincent Sallet
    Vincent Sallet
    Groupe d’Etude de la Matière Condensée (GEMaC), Université de Versailles Saint Quentin en Y- CNRS, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles Cedex, France
  • Yves Dumont
    Yves Dumont
    Groupe d’Etude de la Matière Condensée (GEMaC), Université de Versailles Saint Quentin en Y- CNRS, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles Cedex, France
    More by Yves Dumont
  • , and 
  • Amador Pérez-Tomás*
    Amador Pérez-Tomás
    Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain
    *Email for A.P.-T.: [email protected]
Cite this: Cryst. Growth Des. 2020, 20, 4, 2535–2546
Publication Date (Web):March 6, 2020
https://doi.org/10.1021/acs.cgd.9b01669
Copyright © 2020 American Chemical Society

    Article Views

    3889

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The family of spinel compounds is a large and important class of multifunctional materials of general formulation AB2X4 with many advanced applications in energy and optoelectronic areas such as fuel cells, batteries, catalysis, photonics, spintronics, and thermoelectricity. In this work, it is demonstrated that the ternary ultrawide-band-gap (∼5 eV) spinel zinc gallate (ZnGa2O4) arguably is the native p-type ternary oxide semiconductor with the largest Eg value (in comparison with the recently discovered binary p-type monoclinic β-Ga2O3 oxide). For nominally undoped ZnGa2O4 the high-temperature Hall effect hole concentration was determined to be as large as p = 2 × 1015 cm–3, while hole mobilities were found to be μh = 7–10 cm2/(V s) (in the 680–850 K temperature range). An acceptor-like small Fermi level was further corroborated by X-ray spectroscopy and by density functional theory calculations. Our findings, as an important step toward p-type doping, opens up further perspectives for ultrawide-band-gap bipolar spinel electronics and further promotes ultrawide-band-gap ternary oxides such as ZnGa2O4 to the forefront of the quest of the next generation of semiconductor materials for more efficient energy optoelectronics and power electronics.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 73 publications.

    1. Francesco Di Quarto, Andrea Zaffora, Francesco Di Franco, Monica Santamaria. Modeling of Optical Band-Gap Values of Mixed Oxides Having Spinel Structure AB2O4 (A = Mg, Zn and B = Al, Ga) by a Semiempirical Approach. ACS Organic & Inorganic Au 2024, 4 (1) , 120-134. https://doi.org/10.1021/acsorginorgau.3c00030
    2. Owen Kendall, Lesly V. Melendez, Jiawen Ren, Samantha Prabath Ratnayake, Billy J. Murdoch, Edwin L. H. Mayes, Joel van Embden, Daniel E. Gómez, Arrigo Calzolari, Enrico Della Gaspera. Photoactive p-Type Spinel CuGa2O4 Nanocrystals. Nano Letters 2023, 23 (7) , 2974-2980. https://doi.org/10.1021/acs.nanolett.3c00359
    3. Yoshihiro Kusano, Taiki Furuta, Ryosuke Maki, Tomoyuki Ogawa, Tatsuo Fujii. Spinodal Decomposition in the Mg–Al–Fe–O System. Inorganic Chemistry 2022, 61 (45) , 18170-18180. https://doi.org/10.1021/acs.inorgchem.2c02843
    4. Nikhil Bhalla, Shilpa Taneja, Preeti Thakur, Preetam Kumar Sharma, Davide Mariotti, Chiranjeevi Maddi, Oxana Ivanova, Dmitry Petrov, Alexander Sukhachev, Irina S. Edelman, Atul Thakur. Doping Independent Work Function and Stable Band Gap of Spinel Ferrites with Tunable Plasmonic and Magnetic Properties. Nano Letters 2021, 21 (22) , 9780-9788. https://doi.org/10.1021/acs.nanolett.1c03767
    5. Chaofan Liu, Zhengxin Chen, Chunliang Ding, Shengde Jin, Jiafan Wang, Jiawei Feng, Jiang Wu, Heping Huang, Jia Lin, Jingfei Yu, Yuyue Quan, Kaiyuan Zhang. Accelerating the discovery of direct bandgap doped-spinel photovoltaic materials: A target-driven approach using interpretable machine learning. Solar Energy Materials and Solar Cells 2024, 271 , 112881. https://doi.org/10.1016/j.solmat.2024.112881
    6. Umer Mushtaq, Irfan Ayoub, M. Y. A. Yagoub, Shivaramu N. J., E. Coetsee, Hendrik C. Swart, Vijay Kumar. Effect of Li+ monovalent ion on the structural and optical properties of Dy3+ doped ZnGa2O4 phosphor. Applied Physics A 2024, 130 (7) https://doi.org/10.1007/s00339-024-07634-0
    7. Yangmei Xin, Wenfei Zhang, Zhen Gao, Junshan Xiu, Dan Yu, Zhao Li, Minmin Zhu. Preparation of ZnGa2O4-based deep ultraviolet photodetector with high photodetectivity by magnetron sputtering. Vacuum 2024, 224 , 113165. https://doi.org/10.1016/j.vacuum.2024.113165
    8. Mohammad M. Afandi, Jongsu Kim. Near-infrared thin-film electroluminescent device from ZnGa2O4:Cr3+ on silicon wafer. Materials Science and Engineering: B 2024, 303 , 117275. https://doi.org/10.1016/j.mseb.2024.117275
    9. Ning Cao, Lichun Zhang, Xin Li, Xianling Meng, Doudou Liang, Yadan Zhu, Fengzhou Zhao. Deep-ultraviolet n-ZnGa 2 O 4 /p-GaN heterojunction photodetector fabricated by pulsed laser deposition. Optics Letters 2024, 49 (9) , 2309. https://doi.org/10.1364/OL.519668
    10. Dong-Mei Zhou, Li-Jian Chen, Xu Zhao, Li-Xia Yan, Xiu-Ping Yan. Persistent production of multiple active species with copper doped zinc gallate nanoparticles for light-independent photocatalytic degradation of organic pollutants. Journal of Colloid and Interface Science 2024, 5 https://doi.org/10.1016/j.jcis.2024.04.135
    11. Ning Cao, Lichun Zhang, Xin Li, Ruhan Luan, Chuanlong Sun, Jiangang Yu, Taiping Lu, Yadan Zhu, Doudou Liang, Fengzhou Zhao. Self-powered deep ultraviolet photodetector based on p-CuI/n-ZnGa 2 O 4 heterojunction with high sensitivity and fast speed. Optics Express 2024, 32 (7) , 11573. https://doi.org/10.1364/OE.520649
    12. Subrata Karmakar, Injamamul Hoque Emu, Md Abdul Halim, Pallab Kumar Sarkar, Maria Sultana, Ayesha Tasnim, Md Abdul Hamid, Istiaq Firoz Shiam, Ravi Droopad, Ariful Haque. Growth optimization, optical, and dielectric properties of heteroepitaxially grown ultrawide-bandgap ZnGa2O4 (111) thin film. Journal of Applied Physics 2024, 135 (11) https://doi.org/10.1063/5.0190906
    13. Martins Zubkins, Edvards Strods, Viktors Vibornijs, Anatolijs Sarakovskis, Ramūnas Nedzinskas, Reinis Ignatans, Edgars Butanovs, Juris Purans, Andris Azens. Deposition and photoluminescence of zinc gallium oxide thin films with varied stoichiometry made by reactive magnetron co-sputtering. Journal of Alloys and Compounds 2024, 976 , 173218. https://doi.org/10.1016/j.jallcom.2023.173218
    14. Claire Mével, Julie Carreaud, Céline Caillaud, Francesco Bour, Gaëlle Delaizir, Victor Castaing, Bruno Viana, Pierre Carles, François Brisset, Cécile Genevois, Mathieu Allix, Sébastien Chenu. Sintering of lixiviated nano glass-ceramics: An original route to elaborate transparent ceramics. Journal of the European Ceramic Society 2024, 44 (1) , 393-400. https://doi.org/10.1016/j.jeurceramsoc.2023.09.004
    15. Minghui Jin, Tao Zhang, Ji‐Guang Li, Qi Zhu. Incorporation of Eu 3+ in ZnGa 2 O 4 :Ni 2+ for improved NIR persistent luminescence located in second transparency window. Journal of the American Ceramic Society 2024, 107 (1) , 265-275. https://doi.org/10.1111/jace.19442
    16. Kang Ling, Kuangkuang Li, Wenbo Li, Wanli Zhang, Zongyu Wang, Xingzhao Liu. Enhancing the performance of ZnGa2O4 metal-semiconductor-metal ultraviolet solar-blind photodetectors by surface fluorine plasma sensitization. Journal of Alloys and Compounds 2023, 969 , 172036. https://doi.org/10.1016/j.jallcom.2023.172036
    17. Umer Mushtaq, Vijay Kumar. Host-sensitized colour-tunable emission and Judd-ofelt analysis for Dy3+-doped ZnGa2O4 phosphor through exciton-mediated energy transfer. Optical Materials 2023, 146 , 114554. https://doi.org/10.1016/j.optmat.2023.114554
    18. Zeyu Chi, Corinne Sartel, Yunlin Zheng, Sushrut Modak, Leonid Chernyak, Christian M. Schaefer, Jessica Padilla, Jose Santiso, Arie Ruzin, Anne-Marie Gonçalves, Jurgen von Bardeleben, Gérard Guillot, Yves Dumont, Amador Pérez-Tomás, Ekaterine Chikoidze. Native defects association enabled room-temperature p-type conductivity in β-Ga2O3. Journal of Alloys and Compounds 2023, 969 , 172454. https://doi.org/10.1016/j.jallcom.2023.172454
    19. Dongyang Han, Yuxia Yang, Lin Meng, Shudong Hu, Kaisen Liu, Haobo Lin, Ningtao Liu, Wenrui Zhang, Jichun Ye. High-performance self-powered solar-blind ultraviolet photodetector based on a 4H-SiC/ZnGa2O4 heterojunction and its application in optical communication. Applied Physics Letters 2023, 123 (20) https://doi.org/10.1063/5.0178815
    20. Kaitian Zhang, Vijay Gopal Thirupakuzi Vangipuram, Hsien‐Lien Huang, Jinwoo Hwang, Hongping Zhao. Discovery of a Robust P ‐Type Ultrawide Bandgap Oxide Semiconductor: LiGa 5 O 8. Advanced Electronic Materials 2023, 103 https://doi.org/10.1002/aelm.202300550
    21. Yuxia Yang, Liu Wang, Shudong Hu, Dongyang Han, Simiao Wu, Zilong Wang, Wenrui Zhang, Jichun Ye. Combinatorial tuning of structure and optoelectronic properties of Zn-Ga-O thin films for deep ultraviolet photodetection. Applied Surface Science 2023, 638 , 158031. https://doi.org/10.1016/j.apsusc.2023.158031
    22. Santosh Kumar Gupta, Brindaban Modak, Malini Abraham, Subrata Das, Ruma Gupta, K.G. Girija, Manoj Mohapatra, Kathi Sudarshan. Defect induced tunable light emitting diodes of compositionally modulated zinc gallium germanium oxides. Chemical Engineering Journal 2023, 474 , 145595. https://doi.org/10.1016/j.cej.2023.145595
    23. N. Sasidhar, Y.S. Vidya, H.C. Manjunatha, R. Soundar, R. Munirathnam, L. Seenappa, K.N. Sridhar, S. Manjunatha, E. Krishnakanth. Pioneering ginger juice extract–Mediated synthesis magnesium indate nanoparticles. Journal of Physics and Chemistry of Solids 2023, 328 , 111682. https://doi.org/10.1016/j.jpcs.2023.111682
    24. Edgars Butanovs, Martins Zubkins, Ramunas Nedzinskas, Veronika Zadin, Boris Polyakov. Comparison of two methods for one-dimensional Ga2O3-ZnGa2O4 core–shell heterostructure synthesis. Journal of Crystal Growth 2023, 618 , 127319. https://doi.org/10.1016/j.jcrysgro.2023.127319
    25. G. Souadi, Ümit H. Kaynar, M. Ayvacikli, N. Can. Luminescence of undoped and Eu3+ activated zinc gallate phosphor: Synthesis, unusual intense 5D0 → 7F4 red emission. Applied Radiation and Isotopes 2023, 199 , 110905. https://doi.org/10.1016/j.apradiso.2023.110905
    26. Javier García-Fernández, María Hernando, Almudena Torres-Pardo, María Luisa López, María Teresa Fernández-Díaz, Qing Zhang, Osamu Terasaki, Julio Ramírez-Castellanos, José M. González-Calbet. Characterization of Tunneled Wide Band Gap Mixed Conductors: The Na2O-Ga2O3-TiO2 System. Nanomaterials 2023, 13 (14) , 2054. https://doi.org/10.3390/nano13142054
    27. Dalia Téllez-Flores, Manuel Sánchez-Cantú, María de Lourdes Ruiz-Peralta, Esteban López-Salinas, Armando Pérez-Centeno, Francisco Tzompantzi, Alejandro Escobedo-Morales. Aqueous Chemical Synthesis of Nanosized ZnGa2O4 Using Mild Reaction Conditions: Effect of pH on the Structural, Morphological, Textural, Electronic, and Photocatalytic Properties. Crystals 2023, 13 (6) , 952. https://doi.org/10.3390/cryst13060952
    28. Kang Ling, Kuangkuang Li, Wanli Zhang, Xingzhao Liu. Highly Sensitive and Stable Self‐Powered UV Photodetector Based on Amorphous ZnGa 2 O 4 /NiO Type‐II p–n Heterojunction via Low‐Temperature and Band Alignment. Advanced Optical Materials 2023, 11 (7) https://doi.org/10.1002/adom.202202456
    29. Konstantinos Kappis, Joan Papavasiliou, Marcin Kuśmierz, Grzegorz Słowik, Yifan Li, Haibin Li, Wojciech Gac, George Avgouropoulos. Steam reforming of methanol over combustion synthesized CuZnOx-based catalysts for fuel cell applications. Chemical Engineering Journal 2023, 461 , 142098. https://doi.org/10.1016/j.cej.2023.142098
    30. Zeyu Chi, Tamar Tchelidze, Corinne Sartel, Tsotne Gamsakhurdashvili, Ismail Madaci, Hayate Yamano, Vincent Sallet, Yves Dumont, Amador Pérez-Tomás, Farid Medjdoub, Ekaterine Chikoidze. Assessment of large critical electric field in ultra-wide bandgap p-type spinel ZnGa 2 O 4. Journal of Physics D: Applied Physics 2023, 56 (10) , 105102. https://doi.org/10.1088/1361-6463/acbb14
    31. Xuan Sun, Kewei Liu, Xing Chen, Qichao Hou, Zhen Cheng, Jialin Yang, Qiu Ai, Yongxue Zhu, Binghui Li, Lei Liu, Dezhen Shen. Structural and optoelectronic characteristics of β-Ga 2 O 3 epitaxial films with Zn alloying and subsequent oxygen annealing. Journal of Materials Chemistry C 2023, 11 (9) , 3227-3234. https://doi.org/10.1039/D2TC05204K
    32. Mohammad M. Afandi, Jongsu Kim. Full-Color AC-Driven Electroluminescences From Rare Earths-Doped ZnGa 2 O 4 in MOS Structure. IEEE Electron Device Letters 2023, 44 (3) , 484-487. https://doi.org/10.1109/LED.2023.3241217
    33. Premrudee Promdet, Claire J. Carmalt, Ivan P. Parkin. Preparation and photocatalytic activity of ZnGa 2 O 4 -β-Ga 2 O 3 thin films. Materials Advances 2023, 4 (3) , 910-916. https://doi.org/10.1039/D2MA01016J
    34. Olga N. Kondrat'eva, Maria N. Smirnova, Galina E. Nikiforova, Alexander V. Tyurin, Marina V. Likholetova, Eugene V. Shevchenko, Timofey N. Igonin, Sergey Yu. Gavrilkin, Alexey Yu. Tsvetkov. Thermophysical properties of zinc gallate. Ceramics International 2023, 49 (1) , 179-187. https://doi.org/10.1016/j.ceramint.2022.08.326
    35. José A.S. Laranjeira, Sérgio A. Azevedo, Guilherme S.L. Fabris, Anderson R. Albuquerque, Mateus M. Ferrer, Julio R. Sambrano. Surface-dependent properties and morphological transformations of rutile GeO2 nanoparticles. Applied Surface Science 2023, 609 , 155321. https://doi.org/10.1016/j.apsusc.2022.155321
    36. Musa Mutlu Can, Yeşim Akbaba, Shalima Shawuti, Satoru Kaneko. Blue shift in optical emission spectra of ZnGa2O4 by lattice deformation due to Eu atom amount in spinel lattice. Applied Physics A 2022, 128 (12) https://doi.org/10.1007/s00339-022-06203-7
    37. Lin Xiang, Xianju Zhou, Yongjie Wang, Li Li, Sha Jiang, Guotao Xiang, Chuan Jing, Jingfang Li, Lu Yao. Environmentally-friendly and low-cost Fe3+-doped broadband NIR light-emitting phosphors. Journal of Luminescence 2022, 252 , 119293. https://doi.org/10.1016/j.jlumin.2022.119293
    38. Emily M. Garrity, Cheng-Wei Lee, Prashun Gorai, M. Brooks Tellekamp, Andriy Zakutayev, Vladan Stevanović. Computational Identification of Ternary Wide-Band-Gap Oxides for High-Power Electronics. PRX Energy 2022, 1 (3) https://doi.org/10.1103/PRXEnergy.1.033006
    39. Jinyang Liu, Zhengyuan Li, Weibing Hao, Wenxiang Mu, Qiming He, Xuanze Zhou, Xiaolong Zhao, Guangwei Xu, Zhitai Jia, Xutang Tao, Shibing Long. Pt/ZnGa₂O₄ Schottky Barrier Diodes Fabricated by Using Single Crystal n-ZnGa₂O₄ (111) Substrates. IEEE Electron Device Letters 2022, 43 (12) , 2061-2064. https://doi.org/10.1109/LED.2022.3219073
    40. Jamal Ahmad Khan, Yogita Maithani, Ray Hua Horng, J.P. Singh. Investigating mechanical properties of sintered ZnGa2O4 ceramics using nanoindentation. Ceramics International 2022, 48 (18) , 27064-27075. https://doi.org/10.1016/j.ceramint.2022.06.018
    41. Yitao Zhao, Junjun Cheng, Peng Zhang, Xinhui Liu, Jianguo Zhuang, Yijun Yu, Qichao Zhao, Yuchen Wang, Xuedong Zhu, Fan Yang. Examination of key factors determining the catalytic performance of Zn-Ga/HZSM-5 bifunctional catalysts and establishment of reaction network in alkylation of benzene with carbon dioxide. Applied Catalysis A: General 2022, 643 , 118785. https://doi.org/10.1016/j.apcata.2022.118785
    42. Wenli Yang, Fernando D. Cortés Vega, Kamyar Ahmadi, Arti Rani, Viktor G. Hadjiev, Hector A. Calderon, Stanko R. Brankovic, Francisco C. Robles Hernández. Bandgap tuning of pseudoboehmite nanoparticles induced by quantum confinement. Ceramics International 2022, 48 (15) , 21893-21897. https://doi.org/10.1016/j.ceramint.2022.04.175
    43. Mohammad M. Afandi, Jehong Park, Jongho Ryu, Jongsu Kim. AC-Driven Ultraviolet-B Electroluminescence From Gd 3+ -Doped ZnGa 2 O 4 Film on SiO x /Silicon Substrate. IEEE Electron Device Letters 2022, 43 (8) , 1267-1270. https://doi.org/10.1109/LED.2022.3182477
    44. Zhaojun Shi, Dekun Shi, Lixin Zhang, Yaan Cao. Regulating the band structure by modifying Ti3C2 and doping Fe ions improved photocatalytic activity and selectivity of ZnGa2O4–Ti3C2–Fe for photoreducted CO2 into CH4. Journal of Power Sources 2022, 535 , 231421. https://doi.org/10.1016/j.jpowsour.2022.231421
    45. Ekaterine Chikoidze, Corinne Sartel, Hayate Yamano, Zeyu Chi, Guillaume Bouchez, François Jomard, Vincent Sallet, Gérard Guillot, Kamel Boukheddaden, Amador Pérez-Tomás, Tamar Tchelidze, Yves Dumont. Electrical properties of p -type Zn:Ga2O3 thin films. Journal of Vacuum Science & Technology A 2022, 40 (4) https://doi.org/10.1116/6.0001766
    46. Satoshi Ishii, Satoru Suzuki, Chengwei Kang, Michiyuki Yoshida, Takayuki Nakane, Minako Nakayama, Takashi Naka. Structural and optical properties of Zn-deficient ZnGa2O4 nanoparticles hydrothermally synthesized at low temperature by rapid heating using microwaves. Journal of Materials Science: Materials in Electronics 2022, 33 (18) , 15254-15262. https://doi.org/10.1007/s10854-022-08444-x
    47. Fernando P. Sabino, Intuon Chatratin, Anderson Janotti, Gustavo M. Dalpian. Hole conductivity through a defect band in ZnGa 2 O 4 . Physical Review Materials 2022, 6 (6) https://doi.org/10.1103/PhysRevMaterials.6.064602
    48. Jialin Yang, Kewei Liu, Xing Chen, Dezhen Shen. Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors. Progress in Quantum Electronics 2022, 83 , 100397. https://doi.org/10.1016/j.pquantelec.2022.100397
    49. Matthew Hilfiker, Emma Williams, Ufuk Kilic, Yousra Traouli, Nate Koeppe, Jose Rivera, Assya Abakar, Megan Stokey, Rafał Korlacki, Zbigniew Galazka, Klaus Irmscher, Mathias Schubert. Elevated temperature spectroscopic ellipsometry analysis of the dielectric function, exciton, band-to-band transition, and high-frequency dielectric constant properties for single-crystal ZnGa2O4. Applied Physics Letters 2022, 120 (13) https://doi.org/10.1063/5.0087623
    50. Felix Reichmann, Jaroslaw Dabrowski, Andreas Paul Becker, Wolfgang Matthias Klesse, Klaus Irmscher, Robert Schewski, Zbigniew Galazka, Mattia Mulazzi. Experimental and Theoretical Investigation of the Surface Electronic Structure of ZnGa 2 O 4 (100) Single‐Crystals. physica status solidi (b) 2022, 259 (3) https://doi.org/10.1002/pssb.202100452
    51. Maria S. Batista, Joana Rodrigues, Maria S. Relvas, Júlia Zanoni, Ana V. Girão, Ana Pimentel, Florinda M. Costa, Sónia O. Pereira, Teresa Monteiro. Optical Studies in Red/NIR Persistent Luminescent Cr-Doped Zinc Gallogermanate (ZGGO:Cr). Applied Sciences 2022, 12 (4) , 2104. https://doi.org/10.3390/app12042104
    52. Zeyu Chi, Jacob J. Asher, Michael R. Jennings, Ekaterine Chikoidze, Amador Pérez-Tomás. Ga2O3 and Related Ultra-Wide Bandgap Power Semiconductor Oxides: New Energy Electronics Solutions for CO2 Emission Mitigation. Materials 2022, 15 (3) , 1164. https://doi.org/10.3390/ma15031164
    53. Syed Sarmad Ali Shah, Nisar Muhammad, G. Murtaza, Afzal Khan, Muhammad Waqar Ashraf, Shamim Khan. Hybrid functional calculations of optoelectronic properties of ultra-wide bandgap LiSmO2: A first-principle study. Solid State Communications 2022, 342 , 114619. https://doi.org/10.1016/j.ssc.2021.114619
    54. John L. Lyons. Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides. Journal of Applied Physics 2022, 131 (2) https://doi.org/10.1063/5.0077030
    55. Tianpeng Liu, Zhiyuan Liu, Jiao Wu, Kang Zhang, Hongxiang An, Zhiyu Hu, Shuwei Deng, Xiaoshuang Li, Haifeng Li. Broadband near-infrared persistent luminescence in Ni 2+ -doped transparent glass-ceramic ZnGa 2 O 4. New Journal of Chemistry 2022, 46 (2) , 851-856. https://doi.org/10.1039/D1NJ04496F
    56. William Nunn, Tristan K. Truttmann, Bharat Jalan. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. Journal of Materials Research 2021, 36 (23) , 4846-4864. https://doi.org/10.1557/s43578-021-00377-1
    57. Dinesh K. Patel, K.G. Girija, Boddu S. Naidu, B. Vishwanadh, Farheen N. Sayed, R.K. Vatsa, V. Sudarsan, S.K. Kulshreshtha. In3+ doped ZnGa2O4 nanoparticles: Difference in the luminescence properties upon optical and electrical excitations. Journal of Alloys and Compounds 2021, 884 , 161021. https://doi.org/10.1016/j.jallcom.2021.161021
    58. Ribhu Sharma, Mark E. Law, Fan Ren, Alexander Y. Polyakov, Stephen J. Pearton. Diffusion of dopants and impurities in β-Ga2O3. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2021, 39 (6) https://doi.org/10.1116/6.0001307
    59. Jialong Guo, Zhiwei Liu, Zongguo Wang, Yuhang Hu, Jue Wang, Yangang Wang. A Genetic Algorithm-Based Artificial Network Method for Material Feature Recombination. 2021, 144-148. https://doi.org/10.1109/SmartCloud52277.2021.00032
    60. Z. Chi, Fu-Gow Tarntair, M. Frégnaux, Wan-Yu Wu, C. Sartel, I. Madaci, P. Chapon, V. Sallet, Y. Dumont, A. Pérez-Tomás, R.H. Horng, E. Chikoidze. Bipolar self-doping in ultra-wide bandgap spinel ZnGa2O4. Materials Today Physics 2021, 20 , 100466. https://doi.org/10.1016/j.mtphys.2021.100466
    61. Anoop Kumar Singh, Shiau-Yuan Huang, Po-Wei Chen, Jung-Lung Chiang, Dong-Sing Wuu. The Effect of Annealing Ambience on the Material and Photodetector Characteristics of Sputtered ZnGa2O4 Films. Nanomaterials 2021, 11 (9) , 2316. https://doi.org/10.3390/nano11092316
    62. Dongyang Han, Kewei Liu, Jialin Yang, Xing Chen, Binghui Li, Lei Liu, Dezhen Shen. Performance enhancement of a p-Si/n-ZnGa 2 O 4 heterojunction solar-blind UV photodetector through interface engineering. Journal of Materials Chemistry C 2021, 9 (31) , 10013-10019. https://doi.org/10.1039/D1TC01705E
    63. Claire Mével, Julie Carreaud, Gaëlle Delaizir, Jean-René Duclère, François Brisset, Julie Bourret, Pierre Carles, Cécile Genevois, Mathieu Allix, Sébastien Chenu. First ZnGa2O4 transparent ceramics. Journal of the European Ceramic Society 2021, 41 (9) , 4934-4941. https://doi.org/10.1016/j.jeurceramsoc.2021.03.038
    64. Liu Wang, Wenrui Zhang, Ningtao Liu, Tan Zhang, Zilong Wang, Simiao Wu, Zhaolin Zhan, Jichun Ye. Epitaxial Growth and Stoichiometry Control of Ultrawide Bandgap ZnGa2O4 Films by Pulsed Laser Deposition. Coatings 2021, 11 (7) , 782. https://doi.org/10.3390/coatings11070782
    65. Sieun Chae, Kelsey Mengle, Kyle Bushick, Jihang Lee, Nocona Sanders, Zihao Deng, Zetian Mi, Pierre F. P. Poudeu, Hanjong Paik, John T. Heron, Emmanouil Kioupakis. Toward the predictive discovery of ambipolarly dopable ultra-wide-band-gap semiconductors: The case of rutile GeO2. Applied Physics Letters 2021, 118 (26) https://doi.org/10.1063/5.0056674
    66. Lijie Li. Piezoelectric properties of substitutionally doped β -Ga2O3. AIP Advances 2021, 11 (6) https://doi.org/10.1063/5.0048975
    67. Zhilong Wang, Haikuo Zhang, Jinjin Li. Accelerated discovery of stable spinels in energy systems via machine learning. Nano Energy 2021, 81 , 105665. https://doi.org/10.1016/j.nanoen.2020.105665
    68. Radi A. Jishi, Robert J. Appleton, David M. Guzman. Electronic and optical properties of ultrawide bandgap perovskite semiconductors via first principles calculations. Applied Physics Letters 2020, 117 (23) https://doi.org/10.1063/5.0027881
    69. E. Chikoidze, T. Tchelidze, C. Sartel, Z. Chi, R. Kabouche, I. Madaci, C. Rubio, H. Mohamed, V. Sallet, F. Medjdoub, A. Perez-Tomas, Y. Dumont. Ultra-high critical electric field of 13.2 MV/cm for Zn-doped p-type β-Ga2O3. Materials Today Physics 2020, 15 , 100263. https://doi.org/10.1016/j.mtphys.2020.100263
    70. Marisa C. Oliveira, Renan A. P. Ribeiro, Elson Longo, Mauricio R. D. Bomio, Sergio R. de Lázaro. Quantum mechanical modeling of Zn‐based spinel oxides: Assessing the structural, vibrational, and electronic properties. International Journal of Quantum Chemistry 2020, 120 (22) https://doi.org/10.1002/qua.26368
    71. Mu-I Chen, Anoop Kumar Singh, Jung-Lung Chiang, Ray-Hua Horng, Dong-Sing Wuu. Zinc Gallium Oxide—A Review from Synthesis to Applications. Nanomaterials 2020, 10 (11) , 2208. https://doi.org/10.3390/nano10112208
    72. Sijun Luo, George F. Harrington, Kuan-Ting Wu, Thomas Lippert. Heteroepitaxial (111) ZnGa 2 O 4 Thin Films Grown on (00.1) Sapphire by Pulsed Laser Deposition. physica status solidi (RRL) – Rapid Research Letters 2020, 14 (9) https://doi.org/10.1002/pssr.202000270
    73. David C. Look, Kevin D. Leedy, Ray-Hua Horng, Marco D. Santia, Stefan C. Badescu. Electrical and optical properties of degenerate and semi-insulating ZnGa2O4: Electron/phonon scattering elucidated by quantum magnetoconductivity. Applied Physics Letters 2020, 116 (25) https://doi.org/10.1063/5.0014827