ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Relaxing the Goldschmidt Tolerance Factor: Sizable Incorporation of the Guanidinium Cation into a Two-Dimensional Ruddlesden–Popper Perovskite

  • Susana Ramos-Terrón
    Susana Ramos-Terrón
    Departamento de Quı́mica Fı́sica y Termodinámica Aplicada, Instituto Universitario de Investigación en Quı́mica Fina y Nanoquı́mica, IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
  • Alexander D. Jodlowski
    Alexander D. Jodlowski
    Departamento de Quı́mica Fı́sica y Termodinámica Aplicada, Instituto Universitario de Investigación en Quı́mica Fina y Nanoquı́mica, IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
  • Cristóbal Verdugo-Escamilla
    Cristóbal Verdugo-Escamilla
    Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, E-18100 Armilla, Granada, Spain
  • Luis Camacho
    Luis Camacho
    Departamento de Quı́mica Fı́sica y Termodinámica Aplicada, Instituto Universitario de Investigación en Quı́mica Fina y Nanoquı́mica, IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
    More by Luis Camacho
  • , and 
  • Gustavo de Miguel*
    Gustavo de Miguel
    Departamento de Quı́mica Fı́sica y Termodinámica Aplicada, Instituto Universitario de Investigación en Quı́mica Fina y Nanoquı́mica, IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
    *Email: [email protected]
Cite this: Chem. Mater. 2020, 32, 9, 4024–4037
Publication Date (Web):April 15, 2020
https://doi.org/10.1021/acs.chemmater.0c00613
Copyright © 2020 American Chemical Society

    Article Views

    2527

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The two-dimensional (2D) hybrid perovskites, in particular the Ruddlesden–Popper (RP) phase, exhibit excellent optoelectronic properties, higher flexibility in the employed large organic cations, and an enhanced stability against the environmental agents compared to the three-dimensional (3D) perovskites. However, the small organic cations inserted into the octahedral voids have been limited so far to those three fulfilling the Goldschmidt tolerance factor (t) despite the relaxed structure of the 2D RP perovskites. In this work, the incorporation of the large guanidinium (Gua) cation into the octahedral sites of the “perovskite slabs” has been explored for the first time in 2D RP perovskites. Thus, the methylammonium (MA) cation in the PEA2MA2Pb3I10 perovskite (PEA = phenylethylammonium) has been gradually substituted by the Gua cation to synthesize thin films of the mixed-cation PEA2(MA1–xGuax)2Pb3I10 perovskite. X-ray diffraction (XRD) and grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements have revealed a regular expansion of the unit cell when increasing the Gua content up to 90%, proving the sequential insertion into the lattice of the Gua having a larger ionic radius than that of the MA cation. Furthermore, the preferential orientation of the PEA2MA2Pb3I10 perovskite films with the (hk0) planes parallel to the substrate is maintained up to a limit value of 60% Gua content. Importantly, the combined analysis of the steady-state and time-resolved absorption and photoluminescence (PL) spectra has revealed a change in the distribution of the n-members of the 2D RP perovskites toward phases with lower n values upon increasing the Gua content. The position and intensity of the photoluminescence can be modulated within the low-dimensional perovskites (n = 2, 3, 4, and 5) at high Gua content (≥70%). We have fabricated solar cells based on the mixed-cation PEA2(MA1–xGuax)2Pb3I10 perovskites with power conversion efficiency (PCE) values similar to those of the reference cell (∼2.5%) up to percentages of Gua of 20%. The unencapsulated devices have shown a significant enhancement in the stability after 750 h, demonstrating the positive effect of the Gua cation on the degradation of the 2D RP perovskites.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemmater.0c00613.

    • Details about the film and device fabrication, 1H NMR spectra of the precursor solution, SEM images at different HC temperatures, XRD data of films prepared at different concentrations of the precursors, used DMF:DMSO ratio and different initial stoichiometries, XRD data of powders, 2D GIWAXS patterns, theoretical simulated structures, SEM images of the other Gua contents, EDX profile analysis and mapping, time-resolved PL data, femto- to picosecond transient absorption spectroscopy, XRD data of the films at different times, and stability tests of the solar devices (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 29 publications.

    1. Mario Calora, Antonella Giuri, Nadir Vanni, Rosanna Mastria, Gianluca Accorsi, Sonia Carallo, Gianluca Quarta, Lucio Calcagnile, Felix Pino, Jessica Carolina Alvarez Delgado, Sara Maria Carturan, Sandra Moretto, Matteo Polo, Alberto Quaranta, Aurora Rizzo, Anna Paola Caricato. 2D Metal-Halide Perovskite-Thin Polycrystalline Films Enable Bright and Fast Scintillations. ACS Applied Optical Materials 2024, Article ASAP.
    2. Mantas Simenas, Anna Gagor, Juras Banys, Miroslaw Maczka. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chemical Reviews 2024, 124 (5) , 2281-2326. https://doi.org/10.1021/acs.chemrev.3c00532
    3. Hairui Liu, Rui Gao, Jien Yang, Rohan Dinesh Banthia, Feng Yang, Tianxing Wang, Hari Upadhyaya, Sagar M. Jain. Graphene-like Dispersion and Strong Optical Absorption in Two-Dimensional RP-type Sr3Ti2S7 Perovskite. Crystal Growth & Design 2023, 23 (12) , 8575-8583. https://doi.org/10.1021/acs.cgd.3c00608
    4. Yang Guo, Mingyuan Sun, Wenjian Yang, Songyang Yuan, Hui Xiong, Ziyu Tan, Jiandong Fan, Wenzhe Li. Enhanced Charge Transport by Regulating the Electronic Structure in 2D Tin-Based Perovskite Solar Cells. The Journal of Physical Chemistry C 2022, 126 (22) , 9425-9436. https://doi.org/10.1021/acs.jpcc.2c02830
    5. Sushant Ghimire, Kevin Oldenburg, Stephan Bartling, Rostyslav Lesyuk, Christian Klinke. Structural Reconstruction in Lead-Free Two-Dimensional Tin Iodide Perovskites Leading to High Quantum Yield Emission. ACS Energy Letters 2022, 7 (3) , 975-983. https://doi.org/10.1021/acsenergylett.1c02777
    6. Jonghee Yang, Seong Chan Cho, Seungjin Lee, Jung Won Yoon, Woo Hyeon Jeong, Hochan Song, Jae Taek Oh, Seul Gi Lim, Sung Yong Bae, Bo Ram Lee, Mahshid Ahmadi, Edward H. Sargent, Whikun Yi, Sang Uck Lee, Hyosung Choi. Guanidinium-Pseudohalide Perovskite Interfaces Enable Surface Reconstruction of Colloidal Quantum Dots for Efficient and Stable Photovoltaics. ACS Nano 2022, 16 (1) , 1649-1660. https://doi.org/10.1021/acsnano.1c10636
    7. Eugenia S. Vasileiadou, Ido Hadar, Mikaël Kepenekian, Jacky Even, Qing Tu, Christos D. Malliakas, Daniel Friedrich, Ioannis Spanopoulos, Justin M. Hoffman, Vinayak P. Dravid, Mercouri G. Kanatzidis. Shedding Light on the Stability and Structure–Property Relationships of Two-Dimensional Hybrid Lead Bromide Perovskites. Chemistry of Materials 2021, 33 (13) , 5085-5107. https://doi.org/10.1021/acs.chemmater.1c01129
    8. Thomas Len, Tripti Chhabra, Annu Rusanen, Jose Estrada-Pomares, Gustavo de Miguel, Rafael Luque. CO 2 to solar fuel: design and reactivity of inorganic perovskites. Progress in Energy 2024, 6 (2) , 023001. https://doi.org/10.1088/2516-1083/ad1921
    9. Chenghao Ge, Lin Xie, Jie Yang, Kun Wei, Tai Wu, Linqin Wang, Licheng Sun, Jinbao Zhang, Yong Hua. Holistic Approach to Low‐Dimensional Perovskite Enveloping of Internal Interfaces and Grain Boundaries in Perovskite Solar Cells. Advanced Functional Materials 2024, 34 (13) https://doi.org/10.1002/adfm.202313688
    10. Chao Wang, Xinhe Dong, Feifan Chen, Guozhen Liu, Haiying Zheng. Recent progress of two-dimensional Ruddlesden–Popper perovskites in solar cells. Materials Chemistry Frontiers 2023, 7 (22) , 5786-5805. https://doi.org/10.1039/D3QM00547J
    11. Wouter T. M. Van Gompel, Laurence Lutsen, Dirk Vanderzande. 2D and quasi-2D hybrid perovskites containing organic cations with an extended conjugated system: opportunities and challenges. Journal of Materials Chemistry C 2023, 11 (38) , 12877-12893. https://doi.org/10.1039/D3TC02553E
    12. Nastaran Meftahi, Maciej Adam Surmiak, Sebastian O. Fürer, Kevin James Rietwyk, Jianfeng Lu, Sonia Ruiz Raga, Caria Evans, Monika Michalska, Hao Deng, David P. McMeekin, Tuncay Alan, Doojin Vak, Anthony S.R. Chesman, Andrew J. Christofferson, David A. Winkler, Udo Bach, Salvy P. Russo. Machine Learning Enhanced High‐Throughput Fabrication and Optimization of Quasi‐2D Ruddlesden–Popper Perovskite Solar Cells. Advanced Energy Materials 2023, 13 (38) https://doi.org/10.1002/aenm.202203859
    13. HongBing RAN, QiYu QU, XinTang HUANG, YiWen TANG. Perovskite solar cells passivated by guanidine-based materials. SCIENTIA SINICA Physica, Mechanica & Astronomica 2023, 53 (9) , 290010. https://doi.org/10.1360/SSPMA-2023-0066
    14. Pengfei Wu, Dewang Li, Shirong Wang, Fei Zhang. Magic guanidinium cations in perovskite solar cells: from bulk to interface. Materials Chemistry Frontiers 2023, 7 (13) , 2507-2527. https://doi.org/10.1039/D2QM01315K
    15. Jia Xu, Qiaohui Wu, Yiwu He, Meina Cui, Huifang Han, Huijing Liu, Jianxi Yao. Efficient two-dimensional Cs 2 PbI 2 (SCN) 2 perovskite solar cells via intermediate-modulated crystallization. Journal of Materials Chemistry A 2023, 11 (10) , 5380-5389. https://doi.org/10.1039/D2TA08625E
    16. Shaofu Wang, Yumin Liu, Junjie Zou, Junjun Jin, Yun Jiang, Tao Zeng, Wenyan Zhao, Rong‐Xiang He, Bolei Chen, Yu Chen, Shuoxue Jin, Hong‐Xiang Li, Zhipeng Xie, Chang‐An Wang, Weiwei Sun, Qiang Cao, Xing‐Zhong Zhao. Intermediate phase assisted sequential deposition of reverse‐graded quasi‐ 2D alternating cation perovskites for MA‐free perovskite solar cells. InfoMat 2023, 5 (3) https://doi.org/10.1002/inf2.12396
    17. Xinwei Zhao, Ting Zheng, Weiwei Zhao, Yuanfang Yu, Wenhui Wang, Zhenhua Ni. Photoluminescence Modulation of Ruddlesden-Popper Perovskite via Phase Distribution Regulation. Nanomaterials 2023, 13 (3) , 571. https://doi.org/10.3390/nano13030571
    18. Zhuo-Zhen Zhang, Tian-Meng Guo, Zhi-Gang Li, Fei-Fei Gao, Wei Li, Fengxia Wei, Xian-He Bu. Machine learning assisted synthetic acceleration of Ruddlesden-Popper and Dion-Jacobson 2D lead halide perovskites. Acta Materialia 2023, 245 , 118638. https://doi.org/10.1016/j.actamat.2022.118638
    19. Yi Wei, Wei Wang, Zhennan Wang, Hang Yang, Xinyu You, Yunna Zhao, Peipei Dang, Hongzhou Lian, Jianhua Hao, Guogang Li, Jun Lin. Recent Progress of Bismuth Effect on All‐Inorganic Lead‐Free Metal Halide Derivatives: Crystals Structure, Luminescence Properties, and Applications. Advanced Functional Materials 2023, 33 (2) https://doi.org/10.1002/adfm.202205829
    20. Rui Liu, Yue Yu, Chang Liu, Hua Yang, Xiao-Lei Shi, Hua Yu, Zhi-Gang Chen. A-site cation engineering enables oriented Ruddlesden-Popper perovskites towards efficient solar cells. Science China Chemistry 2022, 65 (12) , 2468-2475. https://doi.org/10.1007/s11426-022-1349-6
    21. Ekaterina I. Marchenko, Sergey A. Fateev, Eugene A. Goodilin, Alexey B. Tarasov. Band Gap and Topology of 1D Perovskite-Derived Hybrid Lead Halide Structures. Crystals 2022, 12 (5) , 657. https://doi.org/10.3390/cryst12050657
    22. Qing Yao, Jie Zhang, Kaiyu Wang, Changqian Li, Chenyu Shang, Haiqing Sun, Weiwei Zhang, Tianliang Zhou, Huiling Zhu, Jianxu Ding. Controlling screw dislocation evolution towards highly homogeneous quasi-two-dimensional (BA) 2 (MA) n −1 Pb n I 3 n +1 single crystals for high-response photo-detectors. Journal of Materials Chemistry C 2022, 10 (10) , 3826-3837. https://doi.org/10.1039/D1TC06084H
    23. Hsinhan Tsai, Jeremy Tisdale, Shreetu Shrestha, Fangze Liu, Wanyi Nie. Emerging Lead-Halide Perovskite Semiconductor for Solid-State Detectors. 2022, 35-58. https://doi.org/10.1007/978-3-030-64279-2_2
    24. Susana Ramos-Terrón, José Francisco Illanes, Diego Bohoyo-Gil, Luis Camacho, Gustavo de Miguel. Insight into the Role of Guanidinium and Cesium in Triple Cation Lead Halide Perovskites. Solar RRL 2021, 5 (12) https://doi.org/10.1002/solr.202100586
    25. Shadrack J. Adjogri, Edson L. Meyer. Chalcogenide Perovskites and Perovskite-Based Chalcohalide as Photoabsorbers: A Study of Their Properties, and Potential Photovoltaic Applications. Materials 2021, 14 (24) , 7857. https://doi.org/10.3390/ma14247857
    26. Susana Ramos‐Terrón, Cristóbal Verdugo‐Escamilla, Luis Camacho, Gustavo de Miguel. A‐Site Cation Engineering in 2D Ruddlesden–Popper (BA) 2 (MA 1‐ x A x ) 2 Pb 3 I 10 Perovskite Films. Advanced Optical Materials 2021, 9 (18) https://doi.org/10.1002/adom.202100114
    27. Sushant Ghimire, Christian Klinke. Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. Nanoscale 2021, 13 (29) , 12394-12422. https://doi.org/10.1039/D1NR02769G
    28. M. Jeevaraj, S. Sudhahar, M. Krishna Kumar. Evolution of stability enhancement in organo-metallic halide perovskite photovoltaics-a review. Materials Today Communications 2021, 27 , 102159. https://doi.org/10.1016/j.mtcomm.2021.102159
    29. Pengyun Liu, Ning Han, Wei Wang, Ran Ran, Wei Zhou, Zongping Shao. High‐Quality Ruddlesden–Popper Perovskite Film Formation for High‐Performance Perovskite Solar Cells. Advanced Materials 2021, 33 (10) https://doi.org/10.1002/adma.202002582

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect