ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

A Selective Toolbox for Nanofabrication

Cite this: Chem. Mater. 2020, 32, 8, 3323–3324
Publication Date (Web):April 14, 2020
https://doi.org/10.1021/acs.chemmater.0c00838

Copyright © 2020 American Chemical Society. This publication is available under these Terms of Use.

  • Free to Read

Article Views

2735

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (769 KB)

Since the early days of integrated circuits, the microfabrication process has been the most effective way to make micro- and nanoscale electronic systems with high volume manufacturing capability. Although there are many individual steps, much of microfabrication can be grouped into three overarching processes: adding materials (thin film deposition), defining patterns (photolithography), and removing materials (etching). As microfabrication has evolved into nanofabrication over the last decades, there have been many progressive changes in the individual processes to overcome the size limitations of fabrication, and today, the need to meet the length scale of just a few nanometers for modern devices places strong technological demands on nanofabrication.

In thin film research, selective deposition is an increasingly attractive approach to deposit materials only on a specific area of a surface but not on other areas by utilizing differential properties of the substrate, such as material type, (1,2) chemical surface species, (3−5) or microstructure. (6) Ideally, since 100% deposition selectivity is desired, the difference in the properties on the two surface areas should be as large as possible. Although selective thin film deposition using both physical and chemical deposition processes has been studied, the use of chemical approaches, such as chemical vapor deposition (CVD), is more common due to the easier influence over suppression and promotion of thin film growth by controlling chemical reactivity. (7,8) The concept of selective CVD has relied primarily on surface reaction control of deposition by modifying surface chemical species. As a simple example, H-terminated and OH-terminated Si surfaces are a well-known system encompassing a significant difference in chemical reactivity. Similar to CVD, atomic layer deposition (ALD) is a thin film deposition method based on surface chemical reactions of gas phase precursors but in which the surface reaction takes place through self-saturated gas-surface reaction mechanisms. (9,10) Therefore, one may expect even better control of deposition in ALD by simply changing the surface properties.

In early studies of selective deposition by ALD, the primary question tackled was how the surface properties could be controlled with high selectivity. One answer to this question was self-assembled monolayers (SAMs), which have been extensively studied as a surface chemical reactivity inhibitor and promotor. (11) SAMs themselves selectively adsorb on a specific surface because their headgroups generally react with only specific surface species; e.g., an −SiCl3 headgroup of an organosilane reacts with Si–OH but not with Si–H species. In 2004, two early groups (12,13) independently approached selective ALD by using SAMs, and the results showed good deposition selectivity across a number of SAM types and ALD materials. At that time, however, the tech-forward research received limited industrial attention because it was not yet in a position to meet the technological demands in nanofabrication.

About 10 years later, by 2014, as the minimum feature size of electronic devices approached 10 nm, nanofabrication needed a break-through technology to enable precise fabrication in 3D structures within the few nanometer scale. Area selective ALD (AS-ALD) was recognized as having many advantages for this challenge because it is a bottom-up patterning approach with high conformality in 3D structures. In other words, once the first patterned surface is designed well, the patterns can be transferred to upper layers without complicated etching processes even inside 3D structures (Figure 1). (9) In addition to 3D nanofabrication, this area selective approach can bring process simplification in high volume manufacturing. Today, many researchers are pursuing this research topic and are proposing various ideas to control surface properties for better selectivity. In addition to SAMs, research is exploring electron beams, (14) polymers, (15) other ALD precursors, (16) and even the microstructure of surfaces. (17) From industry, a specific application within the current commercialized Si device fabrication process for which the approach can be applied has been suggested: AS-ALD of a dielectric layer onto the interlayer dielectric that separates Cu lines of Si devices, named dielectric on dielectric (DoD), can prevent side effects from the edge displacement error problem which is an inherent limit in current photolithography technology. (18)

Figure 1

Figure 1. Concept of pattern transfer to upper layers in AS-ALD.

The research field has also begun to address advancing topics of AS-ALD that deserve attention. Edge effects introduced by AS-ALD onto 3D nanoscale patterns, mushrooming or undercutting of deposits due to the finite size of inhibitors, avoiding cross-contamination by inhibitor species, and improvement of selectivity by combining deposition with simultaneous etching are some of the topics. Due to the evolution of the AS-ALD field, both industry and academia are pursuing similar research interests and sharing technological insights, leading to exciting and productive exchanges between the business-oriented industry and research-oriented academia. Because the ability to achieve AS-ALD is largely based on surface reactions at a molecular level, a fundamental understanding about materials chemistry at the surface is essential to realizing AS-ALD in commercial systems. In other words, the gap between academic research and commercialization in industry is narrowing, and academic research on materials chemistry can significantly contribute to the final products.

The purpose of this editorial and virtual issue is to compile some of the recent, scientifically innovative papers in AS-ALD research published in Chemistry of Materials and other ACS journals for readers who are interested in this research field. Although the papers in this issue are focused on those published recently, we also include a few older published papers to provide some context about the main research history.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
  • Author
  • Notes
    Views expressed in this editorial are those of the authors and not necessarily the views of the ACS.

References

ARTICLE SECTIONS
Jump To

This article references 18 other publications.

  1. 1
    Zyulkov, I.; Krishtab, M.; De Gendt, S.; Armini, S. Selective Ru ALD as a Catalyst for Sub-Seven-Nanometer Bottom-Up Metal Interconnects. ACS Appl. Mater. Interfaces 2017, 9 (36), 3103131041,  DOI: 10.1021/acsami.7b07811
  2. 2
    Ellinger, C. R.; Nelson, S. F. Selective Area Spatial Atomic Layer Deposition of ZnO, Al2O3, and Aluminum-Doped ZnO Using Poly(Vinyl Pyrrolidone). Chem. Mater. 2014, 26 (4), 15141522,  DOI: 10.1021/cm402464z
  3. 3
    Lee, H. B. R.; Mullings, M. N.; Jiang, X.; Clemens, B. M.; Bent, S. F. Nucleation-Controlled Growth of Nanoparticles by Atomic Layer Deposition. Chem. Mater. 2012, 24 (21), 40514059,  DOI: 10.1021/cm3014978
  4. 4
    Bae, C.; Shin, H.; Moon, J.; Sung, M. M. Contact Area Lithography (CAL): A New Approach to Direct Formation of Nanometric Chemical Patterns. Chem. Mater. 2006, 18 (5), 10851088,  DOI: 10.1021/cm052084m
  5. 5
    Kwon, J.; Saly, M.; Halls, M. D.; Kanjolia, R. K.; Chabal, Y. J. Substrate Selectivity of (t Bu-Allyl)Co(CO)3 during Thermal Atomic Layer Deposition of Cobalt. Chem. Mater. 2012, 24 (6), 10251030,  DOI: 10.1021/cm2029189
  6. 6
    Lee, H. B. R.; Bent, S. F. Microstructure-Dependent Nucleation in Atomic Layer Deposition of Pt on TiO2. Chem. Mater. 2012, 24 (2), 279286,  DOI: 10.1021/cm202764b
  7. 7
    Simmonds, M. G.; Taupin, I.; Gladfelter, W. L. Selective Area Chemical Vapor Deposition of Aluminum Using Dimethylethylamine Alane. Chem. Mater. 1994, 6 (7), 935942,  DOI: 10.1021/cm00043a012
  8. 8
    Reinke, M.; Kuzminykh, Y.; Hoffmann, P. Selective Growth of Titanium Dioxide by Low-Temperature Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2015, 7 (18), 97369743,  DOI: 10.1021/acsami.5b01561
  9. 9
    Lee, H.-B.-R. The Era of Atomic Crafting. Chem. Mater. 2019, 31 (5), 1471,  DOI: 10.1021/acs.chemmater.9b00654
  10. 10
    Mackus, A. J. M.; Merkx, M. J. M.; Kessels, W. M. M. From the Bottom-Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity. Chem. Mater. 2019, 31 (1), 212,  DOI: 10.1021/acs.chemmater.8b03454
  11. 11
    Bent, S. F. Heads or Tails: Which Is More Important in Molecular Self-Assembly?. ACS Nano 2007, 1 (1), 1012,  DOI: 10.1021/nn700118k
  12. 12
    Chen, R.; Kim, H. H.; McIntyre, P. C.; Bent, S. F. Self-Assembled Monolayer Resist for Atomic Layer Deposition of HfO2 and ZrO2 High-κ Gate Dielectrics. Appl. Phys. Lett. 2004, 84 (20), 4017,  DOI: 10.1063/1.1751211
  13. 13
    Seo, E. K.; Lee, J. W.; Sung-Suh, H. M.; Sung, M. M. Atomic Layer Deposition of Titanium Oxide on Self-Assembled-Monolayer-Coated Gold. Chem. Mater. 2004, 16 (10), 18781883,  DOI: 10.1021/cm035140x
  14. 14
    Mackus, A. J. M.; Mulders, J. J. L.; van de Sanden, M. C. M.; Kessels, W. M. M. Local Deposition of High-Purity Pt Nanostructures by Combining Electron Beam Induced Deposition and Atomic Layer Deposition. J. Appl. Phys. 2010, 107 (11), 116102,  DOI: 10.1063/1.3431351
  15. 15
    Mullings, M. N.; Lee, H.-B.-R.; Marchack, N.; Jiang, X.; Chen, Z.; Gorlin, Y.; Lin, K.-P.; Bent, S. F. Area Selective Atomic Layer Deposition by Microcontact Printing with a Water-Soluble Polymer. J. Electrochem. Soc. 2010, 157 (12), D600D604,  DOI: 10.1149/1.3491376
  16. 16
    Khan, R.; Shong, B.; Ko, B. G.; Lee, J. K.; Lee, H.; Park, J. Y.; Oh, I.-K.; Raya, S. S.; Hong, H. M.; Chung, K.-B.; Luber, E. J.; Kim, Y.-S.; Lee, C.-H.; Kim, W.-H.; Lee, H.-B.-R. Area-Selective Atomic Layer Deposition Using Si Precursors as Inhibitors. Chem. Mater. 2018, 30 (21), 7603,  DOI: 10.1021/acs.chemmater.8b02774
  17. 17
    Cao, K.; Shi, L.; Gong, M.; Cai, J.; Liu, X.; Chu, S.; Lang, Y.; Shan, B.; Chen, R. Nanofence Stabilized Platinum Nanoparticles Catalyst via Facet-Selective Atomic Layer Deposition. Small 2017, 13 (32), 1700648,  DOI: 10.1002/smll.201700648
  18. 18
    Mulkens, J.; Hanna, M.; Wei, H.; Vaenkatesan, V.; Megens, H.; Slotboom, D. Overlay and Edge Placement Control Strategies for the 7nm Node Using EUV and ArF Lithography. Proc. SPIE 2015, 9422 (March 2015), 94221Q,  DOI: 10.1117/12.2085761

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 20 publications.

  1. Abash Sharma, Yu Zhu, Eric J. Spangler, Thang B. Hoang, Mohamed Laradji. Highly Ordered Nanoassemblies of Janus Spherocylindrical Nanoparticles Adhering to Lipid Vesicles. ACS Nano 2024, 18 (20) , 12957-12969. https://doi.org/10.1021/acsnano.4c01099
  2. Josiah Yarbrough, Stacey F. Bent. Area-Selective Deposition by Cyclic Adsorption and Removal of 1-Nitropropane. The Journal of Physical Chemistry A 2023, 127 (37) , 7858-7868. https://doi.org/10.1021/acs.jpca.3c04339
  3. João Pedro Vale, Abderrahime Sekkat, Thomas Gheorghin, Semih Sevim, Eirini Mavromanolaki, Andreas D. Flouris, Salvador Pané, David Muñoz-Rojas, Josep Puigmartí-Luis, Tiago Sotto Mayor. Can We Rationally Design and Operate Spatial Atomic Layer Deposition Systems for Steering the Growth Regime of Thin Films?. The Journal of Physical Chemistry C 2023, 127 (19) , 9425-9436. https://doi.org/10.1021/acs.jpcc.3c02262
  4. Ethan P. Kamphaus, Jessica Catharine Jones, Nannan Shan, Alex B. F. Martinson, Lei Cheng. Site-Selective Atomic Layer Deposition on Rutile TiO2: Selective Hydration as a Route to Target Point Defects. The Journal of Physical Chemistry C 2023, 127 (3) , 1397-1406. https://doi.org/10.1021/acs.jpcc.2c06992
  5. Zhimin Chai, Anthony Childress, Ahmed A. Busnaina. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS Nano 2022, 16 (11) , 17641-17686. https://doi.org/10.1021/acsnano.2c07910
  6. Yicheng Li, Yuxiao Lan, Kun Cao, Jingming Zhang, Yanwei Wen, Bin Shan, Rong Chen. Surface Acidity-Induced Inherently Selective Atomic Layer Deposition of Tantalum Oxide on Dielectrics. Chemistry of Materials 2022, 34 (20) , 9013-9022. https://doi.org/10.1021/acs.chemmater.2c00851
  7. Benjamin A. Rorem, Tae H. Cho, Nazanin Farjam, Julia D. Lenef, Kira Barton, Neil P. Dasgupta, L. Jay Guo. Integrating Structural Colors with Additive Manufacturing Using Atomic Layer Deposition. ACS Applied Materials & Interfaces 2022, 14 (27) , 31099-31108. https://doi.org/10.1021/acsami.2c05940
  8. Josiah Yarbrough, Fabian Pieck, Daniel Grigjanis, Il-Kwon Oh, Patrick Maue, Ralf Tonner-Zech, Stacey F. Bent. Tuning Molecular Inhibitors and Aluminum Precursors for the Area-Selective Atomic Layer Deposition of Al2O3. Chemistry of Materials 2022, 34 (10) , 4646-4659. https://doi.org/10.1021/acs.chemmater.2c00513
  9. Yunil Cho, Christopher F. Ahles, Jong Youn Choi, James Huang, Antony Jan, Keith Wong, Srinivas Nemani, Ellie Yieh, Andrew C. Kummel. Inherently Selective Water-Free Deposition of Titanium Dioxide on the Nanoscale: Implications for Nanoscale Patterning. ACS Applied Nano Materials 2022, 5 (1) , 476-485. https://doi.org/10.1021/acsanm.1c03311
  10. Il-Kwon Oh, Tania E. Sandoval, Tzu-Ling Liu, Nathaniel E. Richey, Stacey F. Bent. Role of Precursor Choice on Area-Selective Atomic Layer Deposition. Chemistry of Materials 2021, 33 (11) , 3926-3935. https://doi.org/10.1021/acs.chemmater.0c04718
  11. Philip Klement, Daniel Anders, Lukas Gümbel, Michele Bastianello, Fabian Michel, Jörg Schörmann, Matthias T. Elm, Christian Heiliger, Sangam Chatterjee. Surface Diffusion Control Enables Tailored-Aspect-Ratio Nanostructures in Area-Selective Atomic Layer Deposition. ACS Applied Materials & Interfaces 2021, 13 (16) , 19398-19405. https://doi.org/10.1021/acsami.0c22121
  12. Pengcheng Xu, Xinxin Li, Haitao Yu. Thermodynamic Phase-like Transition Effect of Molecular Self-assembly. The Journal of Physical Chemistry Letters 2021, 12 (1) , 126-131. https://doi.org/10.1021/acs.jpclett.0c03248
  13. Tae H. Cho, Nazanin Farjam, Christopher R. Allemang, Christopher P. Pannier, Eric Kazyak, Carli Huber, Mattison Rose, Orlando Trejo, Rebecca L. Peterson, Kira Barton, Neil P. Dasgupta. Area-Selective Atomic Layer Deposition Patterned by Electrohydrodynamic Jet Printing for Additive Manufacturing of Functional Materials and Devices. ACS Nano 2020, 14 (12) , 17262-17272. https://doi.org/10.1021/acsnano.0c07297
  14. Fabio Grillo, Job Soethoudt, Esteban A. Marques, Lilian de Martín, Kaat Van Dongen, J. Ruud van Ommen, Annelies Delabie. Area-Selective Deposition of Ruthenium by Area-Dependent Surface Diffusion. Chemistry of Materials 2020, 32 (22) , 9560-9572. https://doi.org/10.1021/acs.chemmater.0c02588
  15. Yicheng Li, Zilian Qi, Yuxiao Lan, Kun Cao, Yanwei Wen, Jingming Zhang, Eryan Gu, Junzhou Long, Jin Yan, Bin Shan, Rong Chen. Self-aligned patterning of tantalum oxide on Cu/SiO2 through redox-coupled inherently selective atomic layer deposition. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40249-2
  16. Takezo Mawaki, Akinobu Teramoto, Katsutoshi Ishii, Yoshinobu Shiba, Rihito Kuroda, Tomoyuki Suwa, Shuji Azumo, Akira Shimizu, Kota Umezawa, Yasuyuki Shirai, Shigetoshi Sugawa. Adsorption and surface reaction of isopropyl alcohol on SiO2 surfaces. Journal of Vacuum Science & Technology A 2022, 40 (5) https://doi.org/10.1116/6.0002002
  17. J. Ruud van Ommen, Aristeidis Goulas, Riikka L. Puurunen. Atomic Layer Deposition. 2021, 1-42. https://doi.org/10.1002/0471238961.koe00059
  18. Chengwu Zhang, Tuo Gao, Donal Sheets, Jason N. Hancock, Jason Tresback, Brian Willis. Tunable and scalable fabrication of plasmonic dimer arrays with sub-10 nm nanogaps by area-selective atomic layer deposition. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2021, 39 (5) https://doi.org/10.1116/6.0001205
  19. Wook Kim, Sumaira Yasmeen, Chi Thang Nguyen, Han-Bo-Ram Lee, Dukhyun Choi. Toward Enhanced Humidity Stability of Triboelectric Mechanical Sensors via Atomic Layer Deposition. Nanomaterials 2021, 11 (7) , 1795. https://doi.org/10.3390/nano11071795
  20. Cesar Arturo Masse de la Huerta, Viet H. Nguyen, Abderrahime Sekkat, Chiara Crivello, Fidel Toldra‐Reig, Pedro Brandao Veiga, Serge Quessada, Carmen Jimenez, David Muñoz‐Rojas. Gas‐Phase 3D Printing of Functional Materials. Advanced Materials Technologies 2020, 5 (12) https://doi.org/10.1002/admt.202000657
  • Figure 1

    Figure 1. Concept of pattern transfer to upper layers in AS-ALD.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 18 other publications.

    1. 1
      Zyulkov, I.; Krishtab, M.; De Gendt, S.; Armini, S. Selective Ru ALD as a Catalyst for Sub-Seven-Nanometer Bottom-Up Metal Interconnects. ACS Appl. Mater. Interfaces 2017, 9 (36), 3103131041,  DOI: 10.1021/acsami.7b07811
    2. 2
      Ellinger, C. R.; Nelson, S. F. Selective Area Spatial Atomic Layer Deposition of ZnO, Al2O3, and Aluminum-Doped ZnO Using Poly(Vinyl Pyrrolidone). Chem. Mater. 2014, 26 (4), 15141522,  DOI: 10.1021/cm402464z
    3. 3
      Lee, H. B. R.; Mullings, M. N.; Jiang, X.; Clemens, B. M.; Bent, S. F. Nucleation-Controlled Growth of Nanoparticles by Atomic Layer Deposition. Chem. Mater. 2012, 24 (21), 40514059,  DOI: 10.1021/cm3014978
    4. 4
      Bae, C.; Shin, H.; Moon, J.; Sung, M. M. Contact Area Lithography (CAL): A New Approach to Direct Formation of Nanometric Chemical Patterns. Chem. Mater. 2006, 18 (5), 10851088,  DOI: 10.1021/cm052084m
    5. 5
      Kwon, J.; Saly, M.; Halls, M. D.; Kanjolia, R. K.; Chabal, Y. J. Substrate Selectivity of (t Bu-Allyl)Co(CO)3 during Thermal Atomic Layer Deposition of Cobalt. Chem. Mater. 2012, 24 (6), 10251030,  DOI: 10.1021/cm2029189
    6. 6
      Lee, H. B. R.; Bent, S. F. Microstructure-Dependent Nucleation in Atomic Layer Deposition of Pt on TiO2. Chem. Mater. 2012, 24 (2), 279286,  DOI: 10.1021/cm202764b
    7. 7
      Simmonds, M. G.; Taupin, I.; Gladfelter, W. L. Selective Area Chemical Vapor Deposition of Aluminum Using Dimethylethylamine Alane. Chem. Mater. 1994, 6 (7), 935942,  DOI: 10.1021/cm00043a012
    8. 8
      Reinke, M.; Kuzminykh, Y.; Hoffmann, P. Selective Growth of Titanium Dioxide by Low-Temperature Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2015, 7 (18), 97369743,  DOI: 10.1021/acsami.5b01561
    9. 9
      Lee, H.-B.-R. The Era of Atomic Crafting. Chem. Mater. 2019, 31 (5), 1471,  DOI: 10.1021/acs.chemmater.9b00654
    10. 10
      Mackus, A. J. M.; Merkx, M. J. M.; Kessels, W. M. M. From the Bottom-Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity. Chem. Mater. 2019, 31 (1), 212,  DOI: 10.1021/acs.chemmater.8b03454
    11. 11
      Bent, S. F. Heads or Tails: Which Is More Important in Molecular Self-Assembly?. ACS Nano 2007, 1 (1), 1012,  DOI: 10.1021/nn700118k
    12. 12
      Chen, R.; Kim, H. H.; McIntyre, P. C.; Bent, S. F. Self-Assembled Monolayer Resist for Atomic Layer Deposition of HfO2 and ZrO2 High-κ Gate Dielectrics. Appl. Phys. Lett. 2004, 84 (20), 4017,  DOI: 10.1063/1.1751211
    13. 13
      Seo, E. K.; Lee, J. W.; Sung-Suh, H. M.; Sung, M. M. Atomic Layer Deposition of Titanium Oxide on Self-Assembled-Monolayer-Coated Gold. Chem. Mater. 2004, 16 (10), 18781883,  DOI: 10.1021/cm035140x
    14. 14
      Mackus, A. J. M.; Mulders, J. J. L.; van de Sanden, M. C. M.; Kessels, W. M. M. Local Deposition of High-Purity Pt Nanostructures by Combining Electron Beam Induced Deposition and Atomic Layer Deposition. J. Appl. Phys. 2010, 107 (11), 116102,  DOI: 10.1063/1.3431351
    15. 15
      Mullings, M. N.; Lee, H.-B.-R.; Marchack, N.; Jiang, X.; Chen, Z.; Gorlin, Y.; Lin, K.-P.; Bent, S. F. Area Selective Atomic Layer Deposition by Microcontact Printing with a Water-Soluble Polymer. J. Electrochem. Soc. 2010, 157 (12), D600D604,  DOI: 10.1149/1.3491376
    16. 16
      Khan, R.; Shong, B.; Ko, B. G.; Lee, J. K.; Lee, H.; Park, J. Y.; Oh, I.-K.; Raya, S. S.; Hong, H. M.; Chung, K.-B.; Luber, E. J.; Kim, Y.-S.; Lee, C.-H.; Kim, W.-H.; Lee, H.-B.-R. Area-Selective Atomic Layer Deposition Using Si Precursors as Inhibitors. Chem. Mater. 2018, 30 (21), 7603,  DOI: 10.1021/acs.chemmater.8b02774
    17. 17
      Cao, K.; Shi, L.; Gong, M.; Cai, J.; Liu, X.; Chu, S.; Lang, Y.; Shan, B.; Chen, R. Nanofence Stabilized Platinum Nanoparticles Catalyst via Facet-Selective Atomic Layer Deposition. Small 2017, 13 (32), 1700648,  DOI: 10.1002/smll.201700648
    18. 18
      Mulkens, J.; Hanna, M.; Wei, H.; Vaenkatesan, V.; Megens, H.; Slotboom, D. Overlay and Edge Placement Control Strategies for the 7nm Node Using EUV and ArF Lithography. Proc. SPIE 2015, 9422 (March 2015), 94221Q,  DOI: 10.1117/12.2085761

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect