ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

High Voltage Mg-Ion Battery Cathode via a Solid Solution Cr–Mn Spinel Oxide

  • Bob Jin Kwon*
    Bob Jin Kwon
    Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    *E-mail: [email protected]
    More by Bob Jin Kwon
  • Liang Yin
    Liang Yin
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
    More by Liang Yin
  • Haesun Park
    Haesun Park
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    More by Haesun Park
  • Prakash Parajuli
    Prakash Parajuli
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
  • Khagesh Kumar
    Khagesh Kumar
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
  • Sanghyeon Kim
    Sanghyeon Kim
    Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
  • Mengxi Yang
    Mengxi Yang
    Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    More by Mengxi Yang
  • Megan Murphy
    Megan Murphy
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
    More by Megan Murphy
  • Peter Zapol
    Peter Zapol
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    More by Peter Zapol
  • Chen Liao
    Chen Liao
    Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    More by Chen Liao
  • Timothy T. Fister
    Timothy T. Fister
    Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
  • Robert F. Klie
    Robert F. Klie
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
  • Jordi Cabana
    Jordi Cabana
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
    More by Jordi Cabana
  • John T. Vaughey
    John T. Vaughey
    Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
  • Saul H. Lapidus
    Saul H. Lapidus
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
  • , and 
  • Baris Key*
    Baris Key
    Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    *E-mail: [email protected]
    More by Baris Key
Cite this: Chem. Mater. 2020, 32, 15, 6577–6587
Publication Date (Web):July 14, 2020
https://doi.org/10.1021/acs.chemmater.0c01988
Copyright © 2020 American Chemical Society

    Article Views

    3015

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Lattice Mg2+ in a tailored solid solution spinel, MgCrMnO4, is electrochemically utilized at high Mn-redox potentials in a nonaqueous electrolyte. Complementary evidence from experimental and theoretical analyses supports bulk Mg2+ (de)intercalation throughout the designed oxide frame where strong electrostatic interaction between Mg2+ and O2– exists. Mg/Mn antisite inversion in the spinel is lowered to ∼10% via postannealing at 350 °C to further improve Mg2+ mobility. Spinel lattice is preserved upon removal of Mg2+ without any phase transformations, denoting structural stability at the charged state at a high potential ∼3.0 V (vs Mg/Mg2+). Clear remagnesiation upon first discharge, harvesting up to ∼180 Wh/kg at 60 °C is shown. In the remagnesiated state, insertion of Mg2+ into interstitial sites in the spinel is detected, possibly resulting in partial reversibility which needs to be addressed for structural stability. The observations constitute a first clear path to the development of a practical high voltage Mg-ion cathode using a spinel oxide.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemmater.0c01988.

    • Minimum energy pathways of Mg2+ in MgCr2O4; EDX spectra of pristine MgCrMnO4; particle size distribution of MgCrMnO4 nanocrystals; HAADF images of MgCrMnO4; SEM-EDX of charged MgCrMnO4; synchrotron XRD patterns of ex-situ electrodes; potential versus capacity profiles of MgCrMnO4; corresponding XRD patterns, particle size distribution; potential versus capacity profiles of MgCrMnO4 synthesized at 950 °C; synchrotron XRD patterns of the ex-situ electrodes; schematic description of the proposed mechanism; LAADF images and EELS spectra of pristine and charged MgCrMnO4; EDX mapping of discharged MgCrMnO4; Mn K-edge spectra of Mn spinel standards; Mn L-edge spectra of pristine and discharged MgCrMnO4 electrodes; Cr K-edge spectra; Mn K-edge extended X-ray absorption fine structure of standard Mn spinels; Cr K-edge extended X-ray absorption fine structure of MgCrMnO4; ground state hull of MgxCrMnO4 system; potential versus capacity profiles of MgCrMnO4 in a half- and full-cell; thermal gravimetric analysis of pristine MgCrMnO4; synchrotron XRD Rietveld refinement of post-MgCrMnO4; potential versus capacity profiles of MgCrMnO4 and post-MgCrMnO4 at various temperatures; potential versus capacity profiles of post-MgCrMnO4 at first and second cycle; an incremental capacity plot of cathodic reaction in post-MgCrMnO4 electrode; and synchrotron XRD pattern of the electrode after 50 cycles (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 48 publications.

    1. Jae Jin Kim, Bilash KC, Haesun Park, Aditya Sundar, Guennadi Evmenenko, D. Bruce Buchholz, Jinglong Guo, Brian J. Ingram, Peter Zapol, Robert F. Klie, Timothy T. Fister. Strain-Driven Surface Reactivity in Magnesium-Ion Battery Cathodes. Chemistry of Materials 2024, 36 (3) , 1342-1351. https://doi.org/10.1021/acs.chemmater.3c02490
    2. Erik Sarnello, Ian Johnson, Mengxi Yang, Chen Liao, Baris Key, Brian J. Ingram, Saul H. Lapidus. Monitoring Structural Changes during Electrochemical Cycling of Solid-Solution Spinel Oxide MgCrVO4. Inorganic Chemistry 2024, 63 (6) , 3091-3098. https://doi.org/10.1021/acs.inorgchem.3c04055
    3. Kentaro Yamamoto, Feilure Tuerxun, Toshiyuki Matsunaga, Toshiki Watanabe, Tomoki Uchiyama, Aierxiding Abulikemu, Kiyoshi Kanamura, Yoshiharu Uchimoto. Phase Transition Mechanism of ZnMn2O4 Spinel Oxide with Electrochemical Magnesium-Ion Insertion. The Journal of Physical Chemistry C 2024, 128 (5) , 1886-1892. https://doi.org/10.1021/acs.jpcc.3c06518
    4. Mohsin Javed, Afzal Shah, Jan Nisar, Suniya Shahzad, Abdul Haleem, Iltaf Shah. Nanostructured Design Cathode Materials for Magnesium-Ion Batteries. ACS Omega 2024, 9 (4) , 4229-4245. https://doi.org/10.1021/acsomega.3c06576
    5. Bob Jin Kwon, Saul H. Lapidus, John T. Vaughey, Gerbrand Ceder, Jordi Cabana, Baris Key. Design Strategies of Spinel Oxide Frameworks Enabling Reversible Mg-Ion Intercalation. Accounts of Chemical Research 2024, 57 (1) , 1-9. https://doi.org/10.1021/acs.accounts.3c00282
    6. Junghwa Kim, Shashwat Anand, Colin Gilgenbach, Ian D. Johnson, Megan Murphy, Tina Chen, Matthew Moy, Aubrey Penn, Jordi Cabana, Gerbrand Ceder, Brian J. Ingram, James M. LeBeau. Elucidating Structural Transition Dynamics in the Magnesium Cathode MgCr2O4. Chemistry of Materials 2023, 35 (20) , 8455-8463. https://doi.org/10.1021/acs.chemmater.3c01219
    7. Mohsen Sotoudeh, Manuel Dillenz, Johannes Döhn, Julian Hansen, Sonia Dsoke, Axel Groß. Oxide Spinels with Superior Mg Conductivity. Chemistry of Materials 2023, 35 (12) , 4786-4797. https://doi.org/10.1021/acs.chemmater.3c00634
    8. Xiatong Ye, Kohei Shimokawa, Yuto Kezuka, Takuya Hatakeyama, Hongyi Li, Tetsu Ichitsubo. Mg–Zn–Mn Oxide Systems for a Rechargeable Mg-Battery Cathode. The Journal of Physical Chemistry C 2023, 127 (11) , 5210-5218. https://doi.org/10.1021/acs.jpcc.2c09071
    9. Hiroaki Kobayashi, Yu Fukumi, Hiroto Watanabe, Reona Iimura, Naomi Nishimura, Toshihiko Mandai, Yoichi Tominaga, Masanobu Nakayama, Tetsu Ichitsubo, Itaru Honma, Hiroaki Imai. Ultraporous, Ultrasmall MgMn2O4 Spinel Cathode for a Room-Temperature Magnesium Rechargeable Battery. ACS Nano 2023, 17 (3) , 3135-3142. https://doi.org/10.1021/acsnano.2c12392
    10. Naoto Kitamura, Tomoya Imura, Naoya Ishida, Chiaki Ishibashi, Yasushi Idemoto. Facile Surface Modification of MgMn2O4 Positive-Electrode Material for Improving Cycle Performance of Magnesium Rechargeable Batteries. ACS Omega 2022, 7 (50) , 46915-46921. https://doi.org/10.1021/acsomega.2c06633
    11. Yanhui Liu, Wenbin Luo, Shuangxing Lu, Zhen Zhang, Zisheng Chao, JinCheng Fan. Novel Carbonyl Cathode for Green and Sustainable Aluminum Organic Batteries. ACS Applied Materials & Interfaces 2022, 14 (48) , 53702-53710. https://doi.org/10.1021/acsami.2c14365
    12. Noel J. Leon, Xiaowei Xie, Mengxi Yang, Darren M. Driscoll, Justin G. Connell, Sanghyeon Kim, Trevor Seguin, John T. Vaughey, Mahalingam Balasubramanian, Kristin A. Persson, Chen Liao. Room-Temperature Calcium Plating and Stripping Using a Perfluoroalkoxyaluminate Anion Electrolyte. The Journal of Physical Chemistry C 2022, 126 (32) , 13579-13584. https://doi.org/10.1021/acs.jpcc.2c03272
    13. Ian D. Johnson, Aashutosh N. Mistry, Liang Yin, Megan Murphy, Mark Wolfman, Timothy T. Fister, Saul H. Lapidus, Jordi Cabana, Venkat Srinivasan, Brian J. Ingram. Unconventional Charge Transport in MgCr2O4 and Implications for Battery Intercalation Hosts. Journal of the American Chemical Society 2022, 144 (31) , 14121-14131. https://doi.org/10.1021/jacs.2c03491
    14. Bob Jin Kwon, Liang Yin, Indrani Roy, Noel J. Leon, Khagesh Kumar, Jae Jin Kim, Jinhyup Han, Jihyeon Gim, Chen Liao, Saul H. Lapidus, Jordi Cabana, Baris Key. Facile Electrochemical Mg-Ion Transport in a Defect-Free Spinel Oxide. Chemistry of Materials 2022, 34 (8) , 3789-3797. https://doi.org/10.1021/acs.chemmater.2c00237
    15. Zachery W. B. Iton, Kimberly A. See. Multivalent Ion Conduction in Inorganic Solids. Chemistry of Materials 2022, 34 (3) , 881-898. https://doi.org/10.1021/acs.chemmater.1c04178
    16. Justin C. Hancock, Kent J. Griffith, Yunyeong Choi, Christopher J. Bartel, Saul H. Lapidus, John T. Vaughey, Gerbrand Ceder, Kenneth R. Poeppelmeier. Expanding the Ambient-Pressure Phase Space of CaFe2O4-Type Sodium Postspinel Host–Guest Compounds. ACS Organic & Inorganic Au 2022, 2 (1) , 8-22. https://doi.org/10.1021/acsorginorgau.1c00019
    17. Liang Yin, Bob Jin Kwon, Yunyeong Choi, Christopher J. Bartel, Mengxi Yang, Chen Liao, Baris Key, Gerbrand Ceder, Saul H. Lapidus. Operando X-ray Diffraction Studies of the Mg-Ion Migration Mechanisms in Spinel Cathodes for Rechargeable Mg-Ion Batteries. Journal of the American Chemical Society 2021, 143 (28) , 10649-10658. https://doi.org/10.1021/jacs.1c04098
    18. Ian D. Johnson, Brian J. Ingram, Jordi Cabana. The Quest for Functional Oxide Cathodes for Magnesium Batteries: A Critical Perspective. ACS Energy Letters 2021, 6 (5) , 1892-1900. https://doi.org/10.1021/acsenergylett.1c00416
    19. Feilure Tuerxun, Saeko Otani, Kentaro Yamamoto, Toshiyuki Matsunaga, Hiroaki Imai, Toshihiko Mandai, Toshiki Watanabe, Tomoki Uchiyama, Kiyoshi Kanamura, Yoshiharu Uchimoto. Phase Transition Behavior of MgMn2O4 Spinel Oxide Cathode during Magnesium Ion Insertion. Chemistry of Materials 2021, 33 (3) , 1006-1012. https://doi.org/10.1021/acs.chemmater.0c04194
    20. Prakash Parajuli, Haesun Park, Bob Jin Kwon, Jinglong Guo, Baris Key, John T. Vaughey, Peter Zapol, Robert F. Klie. Direct Observation of Electron Beam-Induced Phase Transition in MgCrMnO4. Chemistry of Materials 2020, 32 (24) , 10456-10462. https://doi.org/10.1021/acs.chemmater.0c03121
    21. Gunther Brunklaus, Peter Lennartz, Martin Winter. Metal electrodes for next-generation rechargeable batteries. Nature Reviews Electrical Engineering 2024, 1 (2) , 79-92. https://doi.org/10.1038/s44287-023-00006-5
    22. Naoto Kitamura. Battery and Fuel Cell Materials with Hyperordered Structures. 2024, 395-410. https://doi.org/10.1007/978-981-99-5235-9_17
    23. Haegyeom Kim, Jae Chul Kim. Opportunities and challenges in cathode development for non-lithium-ion batteries. eScience 2024, 1 , 100232. https://doi.org/10.1016/j.esci.2024.100232
    24. Mohsen Sotoudeh, Sebastian Baumgart, Manuel Dillenz, Johannes Döhn, Katrin Forster‐Tonigold, Katharina Helmbrecht, Daniel Stottmeister, Axel Groß. Ion Mobility in Crystalline Battery Materials. Advanced Energy Materials 2024, 14 (4) https://doi.org/10.1002/aenm.202302550
    25. Guang Han, Yangfan Lu, Hongxing Jia, Zhao Ding, Liang Wu, Yue Shi, Guoyu Wang, Qun Luo, Yu'an Chen, Jingfeng Wang, Guangsheng Huang, Xiaoyuan Zhou, Qian Li, Fusheng Pan. Magnesium-based energy materials: Progress, challenges, and perspectives. Journal of Magnesium and Alloys 2023, 11 (11) , 3896-3925. https://doi.org/10.1016/j.jma.2023.08.009
    26. Jiahe Zhang, Xuemei Wang, Hongfen Li, Hanfang Zhang, Yihe Zhang, Ke Wang. Layered Materials in the Magnesium Ion Batteries: Development History, Materials Structure, and Energy Storage Mechanism. Advanced Functional Materials 2023, 33 (44) https://doi.org/10.1002/adfm.202301974
    27. Kee Wah Leong, Wending Pan, Xiaoping Yi, Shijing Luo, Xiaolong Zhao, Yingguang Zhang, Yifei Wang, Jianjun Mao, Yue Chen, Jin Xuan, Huizhi Wang, Dennis Y. C. Leung. Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage. Science Advances 2023, 9 (32) https://doi.org/10.1126/sciadv.adh1181
    28. Kohei Shimokawa, Takuya Hatakeyama, Hongyi Li, Tetsu Ichitsubo. Mg-ion storage materials based on MnO2 frameworks. Current Opinion in Electrochemistry 2023, 38 , 101209. https://doi.org/10.1016/j.coelec.2023.101209
    29. Tomoaki Kaneko, Yui Fujihara, Hiroaki Kobayashi, Keitaro Sodeyama. First-principles study of the reconstruction of Mg M 2 O4 ( M = Mn, Fe, Co) spinel surface. Applied Surface Science 2023, 613 , 156065. https://doi.org/10.1016/j.apsusc.2022.156065
    30. Masashi Kotobuki, Binggong Yan, Li Lu. Recent progress on cathode materials for rechargeable magnesium batteries. Energy Storage Materials 2023, 54 , 227-253. https://doi.org/10.1016/j.ensm.2022.10.034
    31. Zachery W.B. Iton, Seong Shik Kim, Eshaan S. Patheria, Michelle D. Qian, Skyler D. Ware, Kimberly A. See. Battery materials. 2023, 308-363. https://doi.org/10.1016/B978-0-12-823144-9.00110-2
    32. Naoto Kitamura, Yoichiro Konishi, Wenli Ma, Naoya Ishida, Toshihiko Mandai, Chiaki Ishibashi, Yasushi Idemoto. Positive-electrode properties and crystal structures of Mg-rich transition metal oxides for magnesium rechargeable batteries. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-23022-1
    33. Song Chen, Shuang Fan, Henan Li, Yumeng Shi, Hui Ying Yang. Recent advances in kinetic optimizations of cathode materials for rechargeable magnesium batteries. Coordination Chemistry Reviews 2022, 466 , 214597. https://doi.org/10.1016/j.ccr.2022.214597
    34. Xiaoyu Wu, Yaying Dou, Ruqian Lian, Yizhan Wang, Yingjin Wei. Understanding rechargeable magnesium ion batteries via first-principles computations: A comprehensive review. Energy Storage Materials 2022, 48 , 344-355. https://doi.org/10.1016/j.ensm.2022.03.039
    35. Mewin Vincent, Venkata Sai Avvaru, Maciej Haranczyk, Vinodkumar Etacheri. Fast-charging and long-lasting Mg-Na hybrid batteries based on extremely pseudocapacitive bronze TiO2 nanosheet cathodes. Chemical Engineering Journal 2022, 433 , 133810. https://doi.org/10.1016/j.cej.2021.133810
    36. Mewin Vincent, Venkata Sai Avvaru, Maciej Haranczyk, Vinodkumar Etacheri. High‐Performance Mg−Li Hybrid Batteries Based on Pseudocapacitive Anatase Ti 1‐ x Co x O 2‐ y Nanosheet Cathodes. ChemSusChem 2022, 15 (6) https://doi.org/10.1002/cssc.202102562
    37. Alexandra Michail, Begoña Silván, Nuria Tapia-Ruiz. Progress in high-voltage MgMn2O4 oxyspinel cathode materials for Mg batteries. Current Opinion in Electrochemistry 2022, 31 , 100817. https://doi.org/10.1016/j.coelec.2021.100817
    38. Noel J. Leon, Mingfu He, Chen Liao. Solvation, Rational Design, and Interfaces: Development of Divalent Electrolytes. Frontiers in Energy Research 2022, 9 https://doi.org/10.3389/fenrg.2021.802398
    39. Tomoaki Kaneko, Yui Fujihara, Hiroaki Kobayashi, Keitaro Sodeyama. First-Principles Study of the Reconstruction of Mgm2o4 (M = Mn, Fe, Co) Spinel Surface. SSRN Electronic Journal 2022, 71 https://doi.org/10.2139/ssrn.4196395
    40. Ahiud Morag, Minghao Yu. Layered electrode materials for non-aqueous multivalent metal batteries. Journal of Materials Chemistry A 2021, 9 (35) , 19317-19345. https://doi.org/10.1039/D1TA03842G
    41. Xin Yue, Xueping Qin, Yangdong Chen, Yang Peng, Caihong Liang, Min Feng, Xinzhuo Qiu, Minhua Shao, Shaoming Huang. Constructing Active Sites from Atomic‐Scale Geometrical Engineering in Spinel Oxide Solid Solutions for Efficient and Robust Oxygen Evolution Reaction Electrocatalysts. Advanced Science 2021, 8 (17) https://doi.org/10.1002/advs.202101653
    42. Ran Attias, Daniel Sharon, Yosef Goffer, Doron Aurbach. Critical Review on the Unique Interactions and Electroanalytical Challenges Related to Cathodes ‐ Solutions Interfaces in Non‐Aqueous Mg Battery Prototypes. ChemElectroChem 2021, 8 (17) , 3229-3238. https://doi.org/10.1002/celc.202100452
    43. Xue Han, Shijie Li, Wei‐Li Song, Nuo Chen, Haosen Chen, Shanyan Huang, Shuqiang Jiao. Stable High‐Capacity Organic Aluminum–Porphyrin Batteries. Advanced Energy Materials 2021, 11 (32) https://doi.org/10.1002/aenm.202101446
    44. Prakash Parajuli, Bob Jin Kwon, Sanghyeon Kim, Baris Key, John Vaughey, Robert Klie. Atomic-scale Insights of Cation Diffusion into Multivalent Battery Cathodes. Microscopy and Microanalysis 2021, 27 (S1) , 1498-1501. https://doi.org/10.1017/S1431927621005523
    45. Kohei Shimokawa, Taruto Atsumi, Norihiko L. Okamoto, Tomoya Kawaguchi, Susumu Imashuku, Kazuaki Wagatsuma, Masanobu Nakayama, Kiyoshi Kanamura, Tetsu Ichitsubo. Structure Design of Long‐Life Spinel‐Oxide Cathode Materials for Magnesium Rechargeable Batteries. Advanced Materials 2021, 33 (7) https://doi.org/10.1002/adma.202007539
    46. Bo Wang, Yi Peng, Fei Yuan, Qian Liu, Lizhi Sun, Pin Zhang, Qiujun Wang, Zhaojin Li, Yimin A. Wu. A comprehensive review of carbons anode for potassium-ion battery: fast kinetic, structure stability and electrochemical. Journal of Power Sources 2021, 484 , 229244. https://doi.org/10.1016/j.jpowsour.2020.229244
    47. Chaolin You, Xiongwei Wu, Xinhai Yuan, Yuhui Chen, Lili Liu, Yusong Zhu, Lijun Fu, Yuping Wu, Yu-Guo Guo, Teunis van Ree. Advances in rechargeable Mg batteries. Journal of Materials Chemistry A 2020, 8 (48) , 25601-25625. https://doi.org/10.1039/D0TA09330K
    48. Xiaodan Wang, Ying Bai, Xinran Wang, Chuan Wu. High‐Voltage Layered Ternary Oxide Cathode Materials: Failure Mechanisms and Modification Methods †. Chinese Journal of Chemistry 2020, 38 (12) , 1847-1869. https://doi.org/10.1002/cjoc.202000344

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect