ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Dynamics of Hydroxyl Anions Promotes Lithium Ion Conduction in Antiperovskite Li2OHCl

Cite this: Chem. Mater. 2020, 32, 19, 8481–8491
Publication Date (Web):September 1, 2020
Copyright © 2020 American Chemical Society

    Article Views





    Other access options
    Supporting Info (4)»


    Abstract Image

    Li2OHCl is an exemplar of the antiperovskite family of ionic conductors, for which high ionic conductivities have been reported, but in which the atomic-level mechanism of ion migration is unclear. The stable phase is both crystallographically defective and disordered, having ∼1/3 of the Li sites vacant, while the presence of the OH anion introduces the possibility of rotational disorder that may be coupled to cation migration. Here, complementary experimental and computational methods are applied to understand the relationship between the crystal chemistry and ionic conductivity in Li2OHCl, which undergoes an orthorhombic to cubic phase transition near 311 K (≈38 °C) and coincides with the more than a factor of 10 change in ionic conductivity (from 1.2 × 10–5mS/cm at 37 °C to 1.4 × 10–3 mS/cm at 39 °C). X-ray and neutron experiments conducted over the temperature range 20–200 °C, including diffraction, quasi-elastic neutron scattering (QENS), the maximum entropy method (MEM) analysis, and ab initio molecular dynamics (AIMD) simulations, together show conclusively that the high lithium ion conductivity of cubic Li2OHCl is correlated to “paddlewheel” rotation of the dynamic OH anion. The present results suggest that in antiperovskites and derivative structures a high cation vacancy concentration combined with the presence of disordered molecular anions can lead to high cation mobility.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.


    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    Jump To

    The Supporting Information is available free of charge at

    • Temperature dependence of ionic conductivity and differential scanning calorimetry (DSC) analysis for Li2OHCl, Rietveld refinement of X-ray diffraction for Li2OHCl at 373 and 300 K zoomed in at a representative Q range, Rietveld refinement of neutron diffraction for Li2OHCl at 298 K acquired from POWGEN (ORNL), and X-ray pair distribution function (PDF) of Li2OHCl from 100 to 370 K (PDF)

    • Movie S1 (MP4)

    • Movie S2 (MP4)

    • Movie S3 (MP4)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 52 publications.

    1. Po-Hsiu Chien, Bin Ouyang, Xuyong Feng, Lei Dong, David Mitlin, Jagjit Nanda, Jue Liu. Promoting Fast Ion Conduction in Li-Argyrodite through Lithium Sublattice Engineering. Chemistry of Materials 2024, 36 (1) , 382-393.
    2. Briséïs Mercadier, Samuel W. Coles, Mathieu Duttine, Christophe Legein, Monique Body, Olaf J. Borkiewicz, Oleg Lebedev, Benjamin J. Morgan, Christian Masquelier, Damien Dambournet. Dynamic Lone Pairs and Fluoride-Ion Disorder in Cubic-BaSnF4. Journal of the American Chemical Society 2023, 145 (43) , 23739-23754.
    3. Ana C. C. Dutra, James A. Dawson. Computational Design of Antiperovskite Solid Electrolytes. The Journal of Physical Chemistry C 2023, 127 (37) , 18256-18270.
    4. Jonas Spychala, Alexandra Wilkening, H. Martin R. Wilkening. The Batteries’ New Clothes: Li and H Dynamics in Poorly Conducting Li2OHCl Directly Probed by Nuclear Spin Relaxation. The Journal of Physical Chemistry C 2023, 127 (15) , 7433-7444.
    5. Kee Sung Han, J. David Bazak, Robert L. Sacci, Ying Chen, Tyler H. Bennett, Jagjit Nanda, Vijayakumar Murugesan. Halide Substitution Effects on Lithium-Ion Diffusion in Protonated Antiperovskites. The Journal of Physical Chemistry C 2023, 127 (9) , 4451-4458.
    6. Manoj Krishna Sugumar, Takayuki Yamamoto, Kazutaka Ikeda, Munekazu Motoyama, Yasutoshi Iriyama. Preparation of Li-Excess and Li-Deficient Antiperovskite Structured Li2+xOH1–xBr and Their Effects on Total Ionic Conductivity. Inorganic Chemistry 2022, 61 (11) , 4655-4659.
    7. Wei Xia, Yang Zhao, Feipeng Zhao, Keegan Adair, Ruo Zhao, Shuai Li, Ruqiang Zou, Yusheng Zhao, Xueliang Sun. Antiperovskite Electrolytes for Solid-State Batteries. Chemical Reviews 2022, 122 (3) , 3763-3819.
    8. Kwangnam Kim, Yiliang Li, Ping-Chun Tsai, Fei Wang, Seoung-Bum Son, Yet-Ming Chiang, Donald J. Siegel. Exploring the Synthesis of Alkali Metal Anti-perovskites. Chemistry of Materials 2022, 34 (3) , 947-958.
    9. Marca M. Doeff, Raphaële J. Clément, Pieremanuele Canepa. Solid Electrolytes in the Spotlight. Chemistry of Materials 2022, 34 (2) , 463-467.
    10. Jingfeng Zheng, Brian Perry, Yiying Wu. Antiperovskite Superionic Conductors: A Critical Review. ACS Materials Au 2021, 1 (2) , 92-106.
    11. Keisuke Yoshikawa, Takayuki Yamamoto, Manoj Krishna Sugumar, Munekazu Motoyama, Yasutoshi Iriyama. Room Temperature Operation and High Cycle Stability of an All-Solid-State Lithium Battery Fabricated by Cold Pressing Using Soft Li2OHBr Solid Electrolyte. Energy & Fuels 2021, 35 (15) , 12581-12587.
    12. Annalise E. Maughan, Yeyoung Ha, Ryan T. Pekarek, Maxwell C. Schulze. Lowering the Activation Barriers for Lithium-Ion Conductivity through Orientational Disorder in the Cyanide Argyrodite Li6PS5CN. Chemistry of Materials 2021, 33 (13) , 5127-5136.
    13. Kwangnam Kim, Donald J. Siegel. Multivalent Ion Transport in Anti-Perovskite Solid Electrolytes. Chemistry of Materials 2021, 33 (6) , 2187-2197.
    14. Mohammed B. Effat, Jiapeng Liu, Ziheng Lu, Ting Hei Wan, Antonino Curcio, Francesco Ciucci. Stability, Elastic Properties, and the Li Transport Mechanism of the Protonated and Fluorinated Antiperovskite Lithium Conductors. ACS Applied Materials & Interfaces 2020, 12 (49) , 55011-55022.
    15. A. Urrutia, E. Salager, P.E. Cabelguen, R. Janot, J.N. Chotard. Investigation of sulphate hydride anti-perovskite as solid electrolyte. Solid State Ionics 2024, 409 , 116510.
    16. Heejung W. Chung, Bernadette Cladek, Yong-Yun Hsiau, Yan-Yan Hu, Katharine Page, Nicola H. Perry, Bilge Yildiz, Sossina M. Haile. Hydrogen in energy and information sciences. MRS Bulletin 2024, 12
    17. Zunqiu Xiao, Huaying Wang, Ningyuan Cai, Yutong Li, Kejia Xiang, Wei Wei, Tao Ye, Zhongtai Zhang, Shitong Wang, Zilong Tang. Elucidating the effects of −OH content on phase transition and Li-ion transport of anti-perovskite solid electrolytes. Electrochemistry Communications 2024, 161 , 107684.
    18. Xin-Yang Chen, Xue-Jie Gao, Han-Yan Wu, Yu-Long Liu, Xiao-Fei Yang, Run-Cang Sun. Lignin-reinforced PVDF electrolyte for dendrite-free quasi-solid-state Li metal battery. Rare Metals 2024, 43 (3) , 1006-1016.
    19. Ziwen Zhang, Jianchun Chu, Hengfei Zhang, Xiangyang Liu, Maogang He. Mining ionic conductivity descriptors of antiperovskite electrolytes for all-solid-state batteries via machine learning. Journal of Energy Storage 2024, 75 , 109714.
    20. Zunqiu Xiao, Yutong Li, Jin Leng, Kejia Xiang, Wei Wei, Huaying Wang, Zijian Hong, Zhongtai Zhang, Shitong Wang, Zilong Tang. Unraveling the Enhancement of Confined Water on the Li‐Ion Transport of Solid Electrolytes. Advanced Functional Materials 2024, 34 (3)
    21. Lei Gao, Xinyu Zhang, Jinlong Zhu, Songbai Han, Hao Zhang, Liping Wang, Ruo Zhao, Song Gao, Shuai Li, Yonggang Wang, Dubin Huang, Yusheng Zhao, Ruqiang Zou. Boosting lithium ion conductivity of antiperovskite solid electrolyte by potassium ions substitution for cation clusters. Nature Communications 2023, 14 (1)
    22. Mingcui Sun, Chuqiao Sun, Yue Wang, Zheng Xu, Lixun Feng, Haozeng Zhao, Ying Liu, Xiaoning Guan, Changcheng Chen, Pengfei Lu, Xiaoguang Ma. Theoretical investigation of Li-rich anti-perovskite with cluster anion for solid electrolytes. Solid State Ionics 2023, 403 , 116395.
    23. Tan-Lien Pham, Mohammed Guerboub, Assil Bouzid, Mauro Boero, Carlo Massobrio, Young-Han Shin, Guido Ori. Unveiling the structure and ion dynamics of amorphous Na 3− x OH x Cl antiperovskite electrolytes by first-principles molecular dynamics. Journal of Materials Chemistry A 2023, 11 (42) , 22922-22940.
    24. Mahya Nangir, Abouzar Massoudi, Hamid Omidvar. Super Ionic Li 3–2x M x (OH) 1-y N y Cl (M=Ca, W, N=F) Halide Hydroxide as an Anti-Perovskite Electrolyte for Solid-State Batteries. Journal of The Electrochemical Society 2023, 170 (8) , 080512.
    25. James A. Quirk, James A. Dawson. Design Principles for Grain Boundaries in Solid‐State Lithium‐Ion Conductors. Advanced Energy Materials 2023, 13 (32)
    26. Ruohan Jiang, Changsheng Song, Jinghao Yang, Jie Zhao, Fang Fang, Yun Song, Dalin Sun, Fei Wang. Boosting the Na‐Ion Conductivity in the Cluster‐Ion Based Anti‐Perovskite Na 2 BH 4 NH 2. Advanced Functional Materials 2023, 33 (31)
    27. Yu Yang, Zhenming Xu, Chaohong Guan, Runxin Ouyang, Huirong Jing, Hong Zhu. Activating the paddle-wheel effect towards lower temperature in a new sodium-ion solid electrolyte, Na 3.5 Si 0.5 P 0.5 Se 4. Journal of Materials Chemistry A 2023, 11 (17) , 9555-9565.
    28. Lei Gao, Jiangyang Pan, Longbang Di, Jinlong Zhu, Liping Wang, Song Gao, Ruqiang Zou, Le Kang, Songbai Han, Yusheng Zhao. Neutron diffraction for revealing the structures and ionic transport mechanisms of antiperovskite solid electrolytes. Chinese Journal of Structural Chemistry 2023, 42 (5) , 100048.
    29. Chaohong Guan, Yu Yang, Runxin Ouyang, Huirong Jing, Jieqiong Yan, Hong Zhu. Enhanced ionic conductivity of protonated antiperovskites via tuning lattice and rotational dynamics. Journal of Materials Chemistry A 2023, 11 (12) , 6157-6167.
    30. Wuliang Feng, Lei Zhu, Xiaoli Dong, Yonggang Wang, Yongyao Xia, Fei Wang. Enhanced Moisture Stability of Lithium‐Rich Antiperovskites for Sustainable All‐Solid‐State Lithium Batteries. Advanced Materials 2023, 35 (12)
    31. Ping‐Chun Tsai, Sunil Mair, Jeffrey Smith, David M. Halat, Po‐Hsiu Chien, Kwangnam Kim, Duhan Zhang, Yiliang Li, Liang Yin, Jue Liu, Saul H. Lapidus, Jeffrey A. Reimer, Nitash P. Balsara, Donald J. Siegel, Yet‐Ming Chiang. Double Paddle‐Wheel Enhanced Sodium Ion Conduction in an Antiperovskite Solid Electrolyte. Advanced Energy Materials 2023, 13 (7)
    32. Sifan Ling, Bei Deng, Ruo Zhao, Haibin Lin, Long Kong, Ruiqin Zhang, Zhouguang Lu, Juncao Bian, Yusheng Zhao. Revisiting the Role of Hydrogen in Lithium‐Rich Antiperovskite Solid Electrolytes: New Insight in Lithium Ion and Hydrogen Dynamics. Advanced Energy Materials 2023, 13 (2)
    33. R.A. Klein, H.A. Evans, B.A. Trump, T.J. Udovic, C.M. Brown. Neutron scattering studies of materials for hydrogen storage. 2023, 3-50.
    34. Sanoop Palakkathodi Kammampata, Mohammad Akbari Garakani, Zheyu Zhang, Venkataraman Thangadurai. Solid-state electrolytes for lithium-ion batteries. 2023, 658-680.
    35. Stephen J. Turrell, Hyeon Jeong Lee, Marco Siniscalchi, Sudarshan Narayanan, Mauro Pasta, Susannah C. Speller, Chris R. M. Grovenor. Fabrication of thin solid electrolytes containing a small volume of an Li 3 OCl-type antiperovskite phase by RF magnetron sputtering. Materials Advances 2022, 3 (24) , 8995-9008.
    36. Yi-Tzu Wu, Ping-Chun Tsai. Ab initio Interfacial Chemical Stability of Argyrodite Sulfide Electrolytes and Layered-Structure Cathodes in Solid-State Lithium Batteries. JOM 2022, 74 (12) , 4664-4671.
    37. Yingzhi Sun, Bin Ouyang, Yan Wang, Yaqian Zhang, Shuo Sun, Zijian Cai, Valentina Lacivita, Yinsheng Guo, Gerbrand Ceder. Enhanced ionic conductivity and lack of paddle-wheel effect in pseudohalogen-substituted Li argyrodites. Matter 2022, 5 (12) , 4379-4395.
    38. Zheng Xu, Ying Liu, Xiao Sun, Xinyu Xie, Xiaoning Guan, Changcheng Chen, Pengfei Lu, Xiaoguang Ma. Theoretical design of Na-rich anti-perovskite as solid electrolyte: The effect of cluster anion in stability and ionic conductivity. Journal of Solid State Chemistry 2022, 316 , 123643.
    39. Jingfeng Zheng, Jocelyn Elgin, Jieren Shao, Yiying Wu. Differentiating grain and grain boundary ionic conductivities of Li-ion antiperovskite electrolytes. eScience 2022, 2 (6) , 639-645.
    40. Sumana Kundu, Alexander Kraytsberg, Yair Ein-Eli. Recent development in the field of ceramics solid-state electrolytes: I—oxide ceramic solid-state electrolytes. Journal of Solid State Electrochemistry 2022, 26 (9) , 1809-1838.
    41. Markus Joos, Maurice Conrad, Igor Moudrakovski, Maxwell W. Terban, Ashkan Rad, Payam Kaghazchi, Rotraut Merkle, Robert E. Dinnebier, Thomas Schleid, Joachim Maier. Ion transport mechanism in anhydrous lithium thiocyanate LiSCN part II: frequency dependence and slow jump relaxation. Physical Chemistry Chemical Physics 2022, 24 (34) , 20198-20209.
    42. Robert L. Sacci, Tyler H. Bennett, Hong Fang, Kee Sung Han, Michelle Lames, Vijayakumar Murugesan, Puru Jena, Jagjit Nanda. Halide sublattice dynamics drive Li-ion transport in antiperovskites. Journal of Materials Chemistry A 2022, 10 (29) , 15731-15742.
    43. Kwangnam Kim, Donald J. Siegel. Machine learning reveals factors that control ion mobility in anti-perovskite solid electrolytes. Journal of Materials Chemistry A 2022, 10 (28) , 15169-15182.
    44. Hyeon Jeong Lee, Brigita Darminto, Sudarshan Narayanan, Maria Diaz-Lopez, Albert W. Xiao, Yvonne Chart, Ji Hoon Lee, James A. Dawson, Mauro Pasta. Li-ion conductivity in Li 2 OHCl 1− x Br x solid electrolytes: grains, grain boundaries and interfaces. Journal of Materials Chemistry A 2022, 10 (21) , 11574-11586.
    45. Zhizhen Zhang, Linda F. Nazar. Exploiting the paddle-wheel mechanism for the design of fast ion conductors. Nature Reviews Materials 2022, 7 (5) , 389-405.
    46. Zhi Deng, Dixing Ni, Diancheng Chen, Ying Bian, Shuai Li, Zhaoxiang Wang, Yusheng Zhao. Anti‐perovskite materials for energy storage batteries. InfoMat 2022, 4 (2)
    47. Bo Liu, Qianglin Hu, Tianyu Gao, Peiguang Liao, Yufeng Wen, Ziheng Lu, Jiong Yang, Siqi Shi, Wenqing Zhang. Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl solid-state electrolyte. Journal of Materiomics 2022, 8 (1) , 59-67.
    48. Brandon C. Wood, Joel B. Varley, Kyoung E. Kweon, Patrick Shea, Alex T. Hall, Andrew Grieder, Michael Ward, Vincent P. Aguirre, Dylan Rigling, Eduardo Lopez Ventura, Chimara Stancill, Nicole Adelstein. Paradigms of frustration in superionic solid electrolytes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2021, 379 (2211)
    49. Donald J. Siegel, Linda Nazar, Yet-Ming Chiang, Chao Fang, Nitash P. Balsara. Establishing a unified framework for ion solvation and transport in liquid and solid electrolytes. Trends in Chemistry 2021, 3 (10) , 807-818.
    50. James A. Dawson, Theodosios Famprikis, Karen E. Johnston. Anti-perovskites for solid-state batteries: recent developments, current challenges and future prospects. Journal of Materials Chemistry A 2021, 9 (35) , 18746-18772.
    51. Zhengzhe Lai, Wuliang Feng, Xiaoli Dong, Xing Zhou, Yonggang Wang, Yongyao Xia. Lithium dendrites suppressed by low temperature in-situ anti-perovskite coated garnet solid-state electrolyte. Journal of Power Sources 2021, 500 , 229982.
    52. J. A. S. Serejo, J. S. Pereira, R. Mouta, L. G. C. Rego. Sluggish anion transport provides good kinetic stability to the anhydrous anti-perovskite solid electrolyte Li 3 OCl. Physical Chemistry Chemical Physics 2021, 23 (11) , 6964-6973.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect