Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte InterphaseClick to copy article linkArticle link copied!
- Chuntian CaoChuntian CaoSSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United StatesDepartment of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, Untied StatesUniversity of Colorado Boulder, Joint Center for Energy Storage Research (JCESR), Boulder, Colorado 80309, United StatesSLAC National Accelerator Laboratory, Joint Center for Energy Storage Research (JCESR), Menlo Park, California 94025, United StatesMore by Chuntian Cao
- Travis P. PollardTravis P. PollardBattery Science Branch, Sensor and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United StatesU.S. Army Research Laboratory, Joint Center for Energy Storage Research (JCESR), Adelphi, Maryland 20783, United StatesMore by Travis P. Pollard
- Oleg BorodinOleg BorodinBattery Science Branch, Sensor and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United StatesU.S. Army Research Laboratory, Joint Center for Energy Storage Research (JCESR), Adelphi, Maryland 20783, United StatesMore by Oleg Borodin
- Julian E. MarsJulian E. MarsSSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United StatesDepartment of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, Untied StatesUniversity of Colorado Boulder, Joint Center for Energy Storage Research (JCESR), Boulder, Colorado 80309, United StatesSLAC National Accelerator Laboratory, Joint Center for Energy Storage Research (JCESR), Menlo Park, California 94025, United StatesMore by Julian E. Mars
- Yuchi TsaoYuchi TsaoDepartment of Chemistry, Stanford University, Stanford, California 94305, United StatesMore by Yuchi Tsao
- Maria R. LukatskayaMaria R. LukatskayaSSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United StatesSLAC National Accelerator Laboratory, Joint Center for Energy Storage Research (JCESR), Menlo Park, California 94025, United StatesDepartment of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, SwitzerlandMore by Maria R. Lukatskaya
- Robert M. KasseRobert M. KasseSSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United StatesDepartment of Materials Science and Engineering, Stanford University, Stanford, California 94305, United StatesMore by Robert M. Kasse
- Marshall A. SchroederMarshall A. SchroederBattery Science Branch, Sensor and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United StatesU.S. Army Research Laboratory, Joint Center for Energy Storage Research (JCESR), Adelphi, Maryland 20783, United StatesMore by Marshall A. Schroeder
- Kang XuKang XuBattery Science Branch, Sensor and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United StatesU.S. Army Research Laboratory, Joint Center for Energy Storage Research (JCESR), Adelphi, Maryland 20783, United StatesMore by Kang Xu
- Michael F. Toney*Michael F. Toney*Email: [email protected]SSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United StatesDepartment of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, Untied StatesUniversity of Colorado Boulder, Joint Center for Energy Storage Research (JCESR), Boulder, Colorado 80309, United StatesSLAC National Accelerator Laboratory, Joint Center for Energy Storage Research (JCESR), Menlo Park, California 94025, United StatesMore by Michael F. Toney
- Hans-Georg Steinrück*Hans-Georg Steinrück*Email: [email protected]SSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United StatesSLAC National Accelerator Laboratory, Joint Center for Energy Storage Research (JCESR), Menlo Park, California 94025, United StatesDepartment Chemie, Universität Paderborn, 33098 Paderborn, GermanyMore by Hans-Georg Steinrück
Abstract

The solid electrolyte interphase (SEI) is an integral part of Li-ion batteries and their performance, representing the key enabler for reversibility and also serving as a major source of capacity loss and dictating the cell kinetics. In the pervasive LiPF6-containing electrolytes, LiF is one of the SEI’s major components; however, its formation mechanism remains unclear. Electrochemically, two separate reduction pathways could lead to LiF, either via direct anion reduction or electrocatalytic transformation of HF. This work aims to shed light on understanding the role played by these pathways. In a multimodal experimental and theoretical approach, we carried out operando structural characterization on an inert model single crystalline N-doped SiC working electrode during voltammetric scans in LiPF6 baseline electrolytes and complemented these with ex situ chemical characterization. These results were supplemented by cyclic voltammetry measurements using a variety of electrolyte formulations under different cycling rates as well as quantum chemical calculations and Born–Oppenheimer molecular dynamics simulations. Our results reveal that the reductive formation of LiF in these systems is likely a combined mechanism, which concomitantly involves both direct anion reduction and electrocatalytic transformation of HF. Specifically, LiF nucleates via the electrocatalytic transformation of HF followed by significant anion reduction.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 56 publications.
- Jackson Pope, Charlotte Thomas, Yang-Yang Wang, Elisabetta Arca, Seoung-Bum Son, Chunmei Ban. Enhanced Performance of Silicon Anodes through Hybrid Surface Engineering. ACS Applied Energy Materials 2025, 8
(11)
, 7182-7192. https://doi.org/10.1021/acsaem.5c00537
- Kevin Leung. Toward Establishing the Principles of Electronic Structure Modeling of Battery Interfaces. The Journal of Physical Chemistry C 2025, 129
(17)
, 7991-8003. https://doi.org/10.1021/acs.jpcc.5c00616
- Henry L. Thaman, Michael Li, Justin Andrew Rose, Swati Narasimhan, Xin Xu, Che-Ning Yeh, Norman Jin, Andrew Akbashev, Isabel Davidoff, Martin Z. Bazant, William C Chueh. Two-Stage Growth of Solid Electrolyte Interphase on Copper: Imaging and Quantification by Operando Atomic Force Microscopy. ACS Nano 2025, 19
(12)
, 11949-11960. https://doi.org/10.1021/acsnano.4c16418
- Glenn R. Pastel, Travis P. Pollard, Oleg Borodin, Marshall A. Schroeder. From Ab Initio to Instrumentation: A Field Guide to Characterizing Multivalent Liquid Electrolytes. Chemical Reviews 2025, 125
(6)
, 3059-3164. https://doi.org/10.1021/acs.chemrev.4c00380
- Aosong Gao, Hao Lai, Mingqiu Duan, Si Chen, Wenyu Huang, Muzi Yang, Li Gong, Jian Chen, Fangyan Xie, Hui Meng. LiF Artifacts in XPS Analysis of the SEI for Lithium Metal Batteries. ACS Applied Materials & Interfaces 2025, 17
(5)
, 8513-8525. https://doi.org/10.1021/acsami.4c17553
- Andrew Dopilka, Jonathan M. Larson, Robert Kostecki. Operando Infrared Nanospectroscopy of the Silicon/Electrolyte Interface during Initial Stages of Solid-Electrolyte-Interphase Layer Formation. ACS Energy Letters 2025, 10
(1)
, 410-419. https://doi.org/10.1021/acsenergylett.4c03255
- Andrew Dopilka, Jonathan M. Larson, Hyungyeon Cha, Robert Kostecki. Synchrotron Near-Field Infrared Nanospectroscopy and Nanoimaging of Lithium Fluoride in Solid Electrolyte Interphases in Li-Ion Battery Anodes. ACS Nano 2024, 18
(23)
, 15270-15283. https://doi.org/10.1021/acsnano.4c04333
- Xueping Qin, Arghya Bhowmik, Tejs Vegge, Ivano E. Castelli. Computational Investigation of LiF Formation at Graphite–Electrolyte Interfaces. ACS Applied Materials & Interfaces 2024, 16
(22)
, 29347-29354. https://doi.org/10.1021/acsami.4c01719
- Olaf M. Magnussen, Jakub Drnec, Canrong Qiu, Isaac Martens, Jason J. Huang, Raphaël Chattot, Andrej Singer. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chemical Reviews 2024, 124
(3)
, 629-721. https://doi.org/10.1021/acs.chemrev.3c00331
- Isabel Pantenburg, Marvin Cronau, Torben Boll, Annalena Duncker, Bernhard Roling. Challenging Prevalent Solid Electrolyte Interphase (SEI) Models: An Atom Probe Tomography Study on a Commercial Graphite Electrode. ACS Nano 2023, 17
(21)
, 21531-21538. https://doi.org/10.1021/acsnano.3c06560
- Julia Maibach, Josef Rizell, Aleksandar Matic, Nataliia Mozhzhukhina. Toward Operando Characterization of Interphases in Batteries. ACS Materials Letters 2023, 5
(9)
, 2431-2444. https://doi.org/10.1021/acsmaterialslett.3c00207
- Milena Martins, Dominik Haering, Justin G. Connell, Hao Wan, Katrine L. Svane, Bostjan Genorio, Pedro Farinazzo Bergamo Dias Martins, Pietro P. Lopes, Brian Gould, Filippo Maglia, Roland Jung, Vojislav Stamenkovic, Ivano E. Castelli, Nenad M. Markovic, Jan Rossmeisl, Dusan Strmcnik. Role of Catalytic Conversions of Ethylene Carbonate, Water, and HF in Forming the Solid-Electrolyte Interphase of Li-Ion Batteries. ACS Catalysis 2023, 13
(13)
, 9289-9301. https://doi.org/10.1021/acscatal.3c01531
- Arjun S. Kulathuvayal, Yanqing Su. Ionic Transport through the Solid Electrolyte Interphase in Lithium-Ion Batteries: A Review from First-Principles Perspectives. ACS Applied Energy Materials 2023, 6
(11)
, 5628-5645. https://doi.org/10.1021/acsaem.3c00287
- Kevin Leung. First-Principles Examination of Multiple Criteria of Organic Solvent Oxidative Stability in Batteries. Chemistry of Materials 2023, 35
(6)
, 2518-2530. https://doi.org/10.1021/acs.chemmater.2c03806
- Weiteng Lin, Xuewen Zheng, Shuo Ma, Kemeng Ji, Chengyang Wang, Mingming Chen. Quasi-Solid Polymer Electrolyte with Multiple Lithium-Ion Transport Pathways by In Situ Thermal-Initiating Polymerization. ACS Applied Materials & Interfaces 2023, 15
(6)
, 8128-8137. https://doi.org/10.1021/acsami.2c20884
- Andrew Dopilka, Yueran Gu, Jonathan M. Larson, Vassilia Zorba, Robert Kostecki. Nano-FTIR Spectroscopy of the Solid Electrolyte Interphase Layer on a Thin-Film Silicon Li-Ion Anode. ACS Applied Materials & Interfaces 2023, 15
(5)
, 6755-6767. https://doi.org/10.1021/acsami.2c19484
- Qisheng Wu, Matthew T. McDowell, Yue Qi. Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries. Journal of the American Chemical Society 2023, 145
(4)
, 2473-2484. https://doi.org/10.1021/jacs.2c11807
- Evan Walter Clark Spotte-Smith, Thea Bee Petrocelli, Hetal D. Patel, Samuel M. Blau, Kristin A. Persson. Elementary Decomposition Mechanisms of Lithium Hexafluorophosphate in Battery Electrolytes and Interphases. ACS Energy Letters 2023, 8
(1)
, 347-355. https://doi.org/10.1021/acsenergylett.2c02351
- Weilai Yu, Zhiao Yu, Yi Cui, Zhenan Bao. Degradation and Speciation of Li Salts during XPS Analysis for Battery Research. ACS Energy Letters 2022, 7
(10)
, 3270-3275. https://doi.org/10.1021/acsenergylett.2c01587
- Eric J. McShane, Helen K. Bergstrom, Peter J. Weddle, David E. Brown, Andrew M. Colclasure, Bryan D. McCloskey. Quantifying Graphite Solid-Electrolyte Interphase Chemistry and its Impact on Fast Charging. ACS Energy Letters 2022, 7
(8)
, 2734-2744. https://doi.org/10.1021/acsenergylett.2c01059
- Robert M. Kasse, Natalie R. Geise, Elias Sebti, Kipil Lim, Christopher J. Takacs, Chuntian Cao, Hans-Georg Steinrück, Michael F. Toney. Combined Effects of Uniform Applied Pressure and Electrolyte Additives in Lithium-Metal Batteries. ACS Applied Energy Materials 2022, 5
(7)
, 8273-8281. https://doi.org/10.1021/acsaem.2c00806
- Meina Zhang, Lixin Liu, Chunzhe Li. Silicon, carbon, boron nitride nanocages and their halogen doped derivatives as anodes in metal-ion battery. Journal of Physics and Chemistry of Solids 2025, 206 , 112844. https://doi.org/10.1016/j.jpcs.2025.112844
- Jia Zhang, Zhongxiu Liu, Chenyang Dang, Xiaoqing Zhu, Tao Zhang, Jing Shen, Hao Yang, Yujie Zhang, Yunteng Cao, Chris Y. Yuan, C. Chase Cao, Guiyin Xu, Meifang Zhu. From lab to industry: High-safety separators for lithium-ion/-metal batteries. Matter 2025, 8
(6)
, 102101. https://doi.org/10.1016/j.matt.2025.102101
- Xiang Gao, Peiqi Zhou, Haijia Li, Xueyi Zeng, Xin He, Weizhen Fan, Wenlian Wang, Zhen Ma, Junmin Nan. Elevated temperature resilience of pouch LiNi0.8Co0.1Mn0.1O2/graphite batteries through siloxane-induced cathode electrolyte interphase optimization. Journal of Energy Chemistry 2025, 104 , 202-213. https://doi.org/10.1016/j.jechem.2024.12.019
- Eunbin Park, Young-Hoon Lee, Sung-Ho Huh, June Huh, Yung-Eun Sung, Seung-Ho Yu. Bifunctional trimethylsilyl-modified fluorinated ester additive for LiF-rich solid electrolyte interphase in lithium metal batteries. Energy Storage Materials 2025, 78 , 104271. https://doi.org/10.1016/j.ensm.2025.104271
- Hao Zhang, Zhibo Song, Kai Yang, Yundong Zhou, Yuchen Ji, Lu Wang, Yuxiang Huang, Shenyang Xu, Jianjun Fang, Wenguang Zhao, Guoyu Qian, Shanglin Wu, José V. Anguita, Gustavo F. Trindade, Shida Xue, Haoliang Wang, Ian S. Gilmore, Yan Zhao, Feng Pan. In Situ Aminolysis of Fluoroethylene Carbonate Induced Low‐Resistance Interphase Facilitating Extreme Fast Charging of Graphite Anodes. Advanced Energy Materials 2025, 1 https://doi.org/10.1002/aenm.202406104
- Liguo Yue, Manqing Yu, Xiangrong Li, Yinlin Shen, Yingru Wu, Chang Fa, Nan Li, Jijian Xu. Wide Temperature Electrolytes for Lithium Batteries: Solvation Chemistry and Interfacial Reactions. Small Methods 2024, 8
(11)
https://doi.org/10.1002/smtd.202400183
- Israel Temprano, Javier Carrasco, Matthieu Bugnet, Ivan T. Lucas, Jigang Zhou, Robert S. Weatherup, Christopher A. O'Keefe, Zachary Ruff, Jiahui Xu, Nicolas Folastre, Jian Wang, Antonin Gajan, Arnaud Demortière. Advanced methods for characterizing battery interfaces: Towards a comprehensive understanding of interfacial evolution in modern batteries. Energy Storage Materials 2024, 73 , 103794. https://doi.org/10.1016/j.ensm.2024.103794
- Calvin D. Quilty, Edelmy J. Marin Bernardez, Andrew Nicoll, MD Jamil Hossain, Arun Kingan, David J. Arnot, Hafsa A. Mohamed, Ciara L. O'Connor, Xiao Tong, Cherno Jaye, Daniel A. Fischer, Lei Wang, Yue Qi, Esther S. Takeuchi, Amy C. Marschilok, Shan Yan, David C. Bock, Kenneth J. Takeuchi. Lithium-ion battery functionality over broad operating conditions
via
local high concentration fluorinated ester electrolytes. RSC Applied Interfaces 2024, 1
(5)
, 1077-1092. https://doi.org/10.1039/D3LF00259D
- Yuqing Chen, Yun Zhao, Aiping Wang, Daozhen Zhang, Baohua Li, Xiangming He, Xiulin Fan, Jilei Liu. Cosolvent occupied solvation tuned anti-oxidation therapy toward highly safe 4.7 V-class NCM811 batteries. Energy & Environmental Science 2024, 17
(16)
, 6113-6126. https://doi.org/10.1039/D4EE02074J
- Shuang Wan, Weiting Ma, Yutong Wang, Ying Xiao, Shimou Chen. Electrolytes Design for Extending the Temperature Adaptability of Lithium‐Ion Batteries: from Fundamentals to Strategies. Advanced Materials 2024, 36
(21)
https://doi.org/10.1002/adma.202311912
- Glenn R. Pastel, Travis P. Pollard, Qian Liu, Sydney Lavan, Qijia Zhu, Rongzhong Jiang, Lin Ma, Justin Connell, Oleg Borodin, Marshall A. Schroeder, Zhengcheng Zhang, Kang Xu. Designing interphases for highly reversible aqueous zinc batteries. Joule 2024, 8
(4)
, 1050-1062. https://doi.org/10.1016/j.joule.2024.02.002
- Xiaokun Ge, Marten Huck, Andreas Kuhlmann, Michael Tiemann, Christian Weinberger, Xiaodan Xu, Zhenyu Zhao, Hans-Georg Steinrück. Electrochemical Removal of HF from Carbonate-based LiPF
6
-containing Li-ion Battery Electrolytes. Journal of The Electrochemical Society 2024, 171
(3)
, 030522. https://doi.org/10.1149/1945-7111/ad30d3
- Li-Juan Zhang, Jin-Zuo He, Xiao Yan, Lu-Fang Luo, Hao-Dong Qiu, Jian-Hong Peng, Qing-Qing Ma, Ning-Shuang Zhang. Enhancing low-temperature electrolyte performance through intermittent discharge for improved LiODFB additive film formation. Journal of Electroanalytical Chemistry 2024, 957 , 118124. https://doi.org/10.1016/j.jelechem.2024.118124
- Chuntian Cao, Hans-Georg Steinrück. Molecular-scale synchrotron X-ray investigations of solid-liquid interfaces in lithium-ion batteries. 2024, 391-416. https://doi.org/10.1016/B978-0-323-85669-0.00105-7
- Yuqing Chen, Qiu He, Yun Zhao, Wang Zhou, Peitao Xiao, Peng Gao, Naser Tavajohi, Jian Tu, Baohua Li, Xiangming He, Lidan Xing, Xiulin Fan, Jilei Liu. Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery. Nature Communications 2023, 14
(1)
https://doi.org/10.1038/s41467-023-43163-9
- Yangyang Liu, Haodong Shi, Zhong-Shuai Wu. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy & Environmental Science 2023, 16
(11)
, 4834-4871. https://doi.org/10.1039/D3EE02213G
- Josef Rizell, Anton Zubayer, Matthew Sadd, Filippa Lundin, Nataliia Mozhzhukhina, Fredrik Eriksson, Jens Birch, Alexei Vorobiev, Shizhao Xiong, Aleksandar Matic. Neutron Reflectometry Study of Solid Electrolyte Interphase Formation in Highly Concentrated Electrolytes. Small Structures 2023, 4
(11)
https://doi.org/10.1002/sstr.202300119
- Zihao Li, Lingchen Kong, Cong Peng, Wei Feng. Gas‐phase fluorination of conjugated microporous polymer microspheres for effective interfacial stabilization in lithium metal anodes. Carbon Energy 2023, 5
(10)
https://doi.org/10.1002/cey2.354
- Hang Yang, Libo Li, Yuhang Shan, Xibang Chen, Yangmingyue Zhao, Shubo Fan. CuO-ZnO heterojunction doped 2D ultrathin carbon nanosheet catalyzes rapid charge-transfer kinetics of lithium-sulfur batteries. Applied Surface Science 2023, 635 , 157738. https://doi.org/10.1016/j.apsusc.2023.157738
- Ben Jagger, Mauro Pasta. Solid electrolyte interphases in lithium metal batteries. Joule 2023, 7
(10)
, 2228-2244. https://doi.org/10.1016/j.joule.2023.08.007
- Xiaolei Sun, Meiyi Jing, Hong Dong, Wenhe Xie, Feng Luo. CuO-ZnO submicroflakes with nanolayered Al2O3 coatings as high performance anode materials in lithium-ion batteries. Journal of Alloys and Compounds 2023, 953 , 170137. https://doi.org/10.1016/j.jallcom.2023.170137
- Yongyu Liu, Longfei Han, Can Liao, Heng Yu, Yongchun Kan, Yuan Hu. Ultra-thin, non-combustible PEO polymer solid electrolyte for high safety polymer lithium metal batteries. Chemical Engineering Journal 2023, 468 , 143222. https://doi.org/10.1016/j.cej.2023.143222
- Xiaopan Jin, Gaoxu Huang, Xianming Zhao, Guoli Chen, Mengjia Guan, Yongsheng Li. An
in situ
LiF-enriched solid electrolyte interphase from CoF
2
-decorated N-doped carbon for dendrite-free Li metal anodes. Energy Advances 2023, 2
(5)
, 725-732. https://doi.org/10.1039/D3YA00035D
- Fuming Du, Tuo Ye, Yimin Shi, Yong Zhang, Ziyi Qiu, Wei Liu, Tiezheng Lv, Shiyun Duan, Jianjun Liu. Deciphering reduction stability of sulfone and fluorinated sulfone electrolytes:Insight from quantum chemical calculations. Chemical Physics 2023, 568 , 111840. https://doi.org/10.1016/j.chemphys.2023.111840
- Shiyuan Zhou, Qizheng Zheng, Shi Tang, Shi-Gang Sun, Hong-Gang Liao. Liquid cell electrochemical TEM: Unveiling the real-time interfacial reactions of advanced Li-metal batteries. The Journal of Chemical Physics 2022, 157
(23)
https://doi.org/10.1063/5.0129238
- Eric J. McShane, Partha P. Paul, Tanvir R. Tanim, Chuntian Cao, Hans-Georg Steinrück, Vivek Thampy, Stephen E. Trask, Alison R. Dunlop, Andrew N. Jansen, Eric J. Dufek, Michael F. Toney, Johanna Nelson Weker, Bryan D. McCloskey. Multimodal quantification of degradation pathways during extreme fast charging of lithium-ion batteries. Journal of Materials Chemistry A 2022, 10
(44)
, 23927-23939. https://doi.org/10.1039/D2TA05887A
- Xiaowei Ji, Aibin Huang, Hanxiang Jia, Dazhi Sun, Ping Jin, Xun Cao. The ion migration process and cyclic stability of voltage-induced vanadium dioxide phase transition. Journal of Materials Chemistry C 2022, 10
(39)
, 14703-14710. https://doi.org/10.1039/D2TC02668F
- Yuqing Chen, Qiu He, Ying Mo, Wang Zhou, Yun Zhao, Nan Piao, Chi Liu, Peitao Xiao, Hui Liu, Baohua Li, Shi Chen, Li Wang, Xiangming He, Lidan Xing, Jilei Liu. Engineering an Insoluble Cathode Electrolyte Interphase Enabling High Performance NCM811//Graphite Pouch Cell at 60 °C. Advanced Energy Materials 2022, 12
(33)
https://doi.org/10.1002/aenm.202201631
- Bo Nan, Long Chen, Nuwanthi D. Rodrigo, Oleg Borodin, Nan Piao, Jiale Xia, Travis Pollard, Singyuk Hou, Jiaxun Zhang, Xiao Ji, Jijian Xu, Xiyue Zhang, Lin Ma, Xinzi He, Sufu Liu, Hongli Wan, Enyuan Hu, Weiran Zhang, Kang Xu, Xiao‐Qing Yang, Brett Lucht, Chunsheng Wang. Enhancing Li
+
Transport in NMC811||Graphite Lithium‐Ion Batteries at Low Temperatures by Using Low‐Polarity‐Solvent Electrolytes. Angewandte Chemie 2022, 134
(35)
https://doi.org/10.1002/ange.202205967
- Bo Nan, Long Chen, Nuwanthi D. Rodrigo, Oleg Borodin, Nan Piao, Jiale Xia, Travis Pollard, Singyuk Hou, Jiaxun Zhang, Xiao Ji, Jijian Xu, Xiyue Zhang, Lin Ma, Xinzi He, Sufu Liu, Hongli Wan, Enyuan Hu, Weiran Zhang, Kang Xu, Xiao‐Qing Yang, Brett Lucht, Chunsheng Wang. Enhancing Li
+
Transport in NMC811||Graphite Lithium‐Ion Batteries at Low Temperatures by Using Low‐Polarity‐Solvent Electrolytes. Angewandte Chemie International Edition 2022, 61
(35)
https://doi.org/10.1002/anie.202205967
- Sifan Chen, Di Jin, Yu Zhao, Huiting Zhao, Xiaotong Zhou, Junfeng Yan, Gang Wang, Wu Zhao, Jiangni Yun, Zhiyong Zhang. In-situ construction of vacancies and schottky junctions in nickel-iron selenide within N-graphene porous matrix for enhanced sodium/potassium storage. Journal of Alloys and Compounds 2022, 911 , 165091. https://doi.org/10.1016/j.jallcom.2022.165091
- Qingkui Peng, Ziyi Liu, Lihua Jiang, Qingsong Wang. Optimized Cycle and Safety Performance of Lithium–Metal Batteries with the Sustained‐Release Effect of Nano CaCO
3. Advanced Energy Materials 2022, 12
(20)
https://doi.org/10.1002/aenm.202104021
- Lei Hu, Haifeng Xue, Lingli Liu, Sheng Liang, Tao Ding, Ningning Zhou, Lili Wang, Chonghai Deng, Yongsheng Han. Directing electrochemical reaction mechanism via interfacial control for better sulfur cathode. Applied Surface Science 2022, 581 , 152353. https://doi.org/10.1016/j.apsusc.2021.152353
- Jianwen Liu, Ming Yue, Shiquan Wang, Yufeng Zhao, Jiujun Zhang. A Review of Performance Attenuation and Mitigation Strategies of Lithium‐Ion Batteries. Advanced Functional Materials 2022, 32
(8)
https://doi.org/10.1002/adfm.202107769
- Xun Cao, Xiaowei Ji, Aibin Huang, Hanxiang Jia, Dazhi Sun, Ping Jin. Ion Migration Process and Cyclic Stability of Voltage-Induced Vanadium Dioxide Phase Transition. SSRN Electronic Journal 2022, 28 https://doi.org/10.2139/ssrn.4097428
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.