ACS Publications. Most Trusted. Most Cited. Most Read
Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase
My Activity

    Article

    Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase
    Click to copy article linkArticle link copied!

    • Chuntian Cao
      Chuntian Cao
      SSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
      Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, Untied States
      University of Colorado Boulder, Joint Center for Energy Storage Research (JCESR), Boulder, Colorado 80309, United States
      SLAC National Accelerator Laboratory, Joint Center for Energy Storage Research (JCESR), Menlo Park, California 94025, United States
      More by Chuntian Cao
    • Travis P. Pollard
      Travis P. Pollard
      Battery Science Branch, Sensor and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United States
      U.S. Army Research Laboratory, Joint Center for Energy Storage Research (JCESR), Adelphi, Maryland 20783, United States
    • Oleg Borodin
      Oleg Borodin
      Battery Science Branch, Sensor and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United States
      U.S. Army Research Laboratory, Joint Center for Energy Storage Research (JCESR), Adelphi, Maryland 20783, United States
      More by Oleg Borodin
    • Julian E. Mars
      Julian E. Mars
      SSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
      Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, Untied States
      University of Colorado Boulder, Joint Center for Energy Storage Research (JCESR), Boulder, Colorado 80309, United States
      SLAC National Accelerator Laboratory, Joint Center for Energy Storage Research (JCESR), Menlo Park, California 94025, United States
    • Yuchi Tsao
      Yuchi Tsao
      Department of Chemistry, Stanford University, Stanford, California 94305, United States
      More by Yuchi Tsao
    • Maria R. Lukatskaya
      Maria R. Lukatskaya
      SSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
      SLAC National Accelerator Laboratory, Joint Center for Energy Storage Research (JCESR), Menlo Park, California 94025, United States
      Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
    • Robert M. Kasse
      Robert M. Kasse
      SSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
      Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
    • Marshall A. Schroeder
      Marshall A. Schroeder
      Battery Science Branch, Sensor and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United States
      U.S. Army Research Laboratory, Joint Center for Energy Storage Research (JCESR), Adelphi, Maryland 20783, United States
    • Kang Xu
      Kang Xu
      Battery Science Branch, Sensor and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United States
      U.S. Army Research Laboratory, Joint Center for Energy Storage Research (JCESR), Adelphi, Maryland 20783, United States
      More by Kang Xu
    • Michael F. Toney*
      Michael F. Toney
      SSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
      Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, Untied States
      University of Colorado Boulder, Joint Center for Energy Storage Research (JCESR), Boulder, Colorado 80309, United States
      SLAC National Accelerator Laboratory, Joint Center for Energy Storage Research (JCESR), Menlo Park, California 94025, United States
      *Email: [email protected]
    • Hans-Georg Steinrück*
      Hans-Georg Steinrück
      SSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
      SLAC National Accelerator Laboratory, Joint Center for Energy Storage Research (JCESR), Menlo Park, California 94025, United States
      Department Chemie, Universität Paderborn, 33098 Paderborn, Germany
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2021, 33, 18, 7315–7336
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.1c01744
    Published September 14, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The solid electrolyte interphase (SEI) is an integral part of Li-ion batteries and their performance, representing the key enabler for reversibility and also serving as a major source of capacity loss and dictating the cell kinetics. In the pervasive LiPF6-containing electrolytes, LiF is one of the SEI’s major components; however, its formation mechanism remains unclear. Electrochemically, two separate reduction pathways could lead to LiF, either via direct anion reduction or electrocatalytic transformation of HF. This work aims to shed light on understanding the role played by these pathways. In a multimodal experimental and theoretical approach, we carried out operando structural characterization on an inert model single crystalline N-doped SiC working electrode during voltammetric scans in LiPF6 baseline electrolytes and complemented these with ex situ chemical characterization. These results were supplemented by cyclic voltammetry measurements using a variety of electrolyte formulations under different cycling rates as well as quantum chemical calculations and Born–Oppenheimer molecular dynamics simulations. Our results reveal that the reductive formation of LiF in these systems is likely a combined mechanism, which concomitantly involves both direct anion reduction and electrocatalytic transformation of HF. Specifically, LiF nucleates via the electrocatalytic transformation of HF followed by significant anion reduction.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemmater.1c01744.

    • (Figure S1) All datasets from LP30 at 0.16 mV/s and confidence interval approach; (Figure S2) additional XPS; (Figure S3) electrochemistry for several cycles and with different scan rates; (Figure S4) electrochemistry for several cycles and with different scan rate, with current normalized by sweep rate; (Figure S5) electrochemistry for several cycles and with different scan rates, with current normalized by sweep rate, plotted with different y-axis scales; (Figure S6) all parameters from all XRR data; (Figure S7) selected XRD results from operando XRD experiment on the SiC electrode during CV; (Figure S8) electrochemistry of Li plating and stripping on SiC substrate; (Table S1) breakdown of all reactions observed over 24.0 ps trajectories; (Figure S9) BOMD snapshots; (Movies r1–r6) BOMD animations; and (Figure S10) all XRR data sets (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 56 publications.

    1. Jackson Pope, Charlotte Thomas, Yang-Yang Wang, Elisabetta Arca, Seoung-Bum Son, Chunmei Ban. Enhanced Performance of Silicon Anodes through Hybrid Surface Engineering. ACS Applied Energy Materials 2025, 8 (11) , 7182-7192. https://doi.org/10.1021/acsaem.5c00537
    2. Kevin Leung. Toward Establishing the Principles of Electronic Structure Modeling of Battery Interfaces. The Journal of Physical Chemistry C 2025, 129 (17) , 7991-8003. https://doi.org/10.1021/acs.jpcc.5c00616
    3. Henry L. Thaman, Michael Li, Justin Andrew Rose, Swati Narasimhan, Xin Xu, Che-Ning Yeh, Norman Jin, Andrew Akbashev, Isabel Davidoff, Martin Z. Bazant, William C Chueh. Two-Stage Growth of Solid Electrolyte Interphase on Copper: Imaging and Quantification by Operando Atomic Force Microscopy. ACS Nano 2025, 19 (12) , 11949-11960. https://doi.org/10.1021/acsnano.4c16418
    4. Glenn R. Pastel, Travis P. Pollard, Oleg Borodin, Marshall A. Schroeder. From Ab Initio to Instrumentation: A Field Guide to Characterizing Multivalent Liquid Electrolytes. Chemical Reviews 2025, 125 (6) , 3059-3164. https://doi.org/10.1021/acs.chemrev.4c00380
    5. Aosong Gao, Hao Lai, Mingqiu Duan, Si Chen, Wenyu Huang, Muzi Yang, Li Gong, Jian Chen, Fangyan Xie, Hui Meng. LiF Artifacts in XPS Analysis of the SEI for Lithium Metal Batteries. ACS Applied Materials & Interfaces 2025, 17 (5) , 8513-8525. https://doi.org/10.1021/acsami.4c17553
    6. Andrew Dopilka, Jonathan M. Larson, Robert Kostecki. Operando Infrared Nanospectroscopy of the Silicon/Electrolyte Interface during Initial Stages of Solid-Electrolyte-Interphase Layer Formation. ACS Energy Letters 2025, 10 (1) , 410-419. https://doi.org/10.1021/acsenergylett.4c03255
    7. Andrew Dopilka, Jonathan M. Larson, Hyungyeon Cha, Robert Kostecki. Synchrotron Near-Field Infrared Nanospectroscopy and Nanoimaging of Lithium Fluoride in Solid Electrolyte Interphases in Li-Ion Battery Anodes. ACS Nano 2024, 18 (23) , 15270-15283. https://doi.org/10.1021/acsnano.4c04333
    8. Xueping Qin, Arghya Bhowmik, Tejs Vegge, Ivano E. Castelli. Computational Investigation of LiF Formation at Graphite–Electrolyte Interfaces. ACS Applied Materials & Interfaces 2024, 16 (22) , 29347-29354. https://doi.org/10.1021/acsami.4c01719
    9. Olaf M. Magnussen, Jakub Drnec, Canrong Qiu, Isaac Martens, Jason J. Huang, Raphaël Chattot, Andrej Singer. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chemical Reviews 2024, 124 (3) , 629-721. https://doi.org/10.1021/acs.chemrev.3c00331
    10. Isabel Pantenburg, Marvin Cronau, Torben Boll, Annalena Duncker, Bernhard Roling. Challenging Prevalent Solid Electrolyte Interphase (SEI) Models: An Atom Probe Tomography Study on a Commercial Graphite Electrode. ACS Nano 2023, 17 (21) , 21531-21538. https://doi.org/10.1021/acsnano.3c06560
    11. Julia Maibach, Josef Rizell, Aleksandar Matic, Nataliia Mozhzhukhina. Toward Operando Characterization of Interphases in Batteries. ACS Materials Letters 2023, 5 (9) , 2431-2444. https://doi.org/10.1021/acsmaterialslett.3c00207
    12. Milena Martins, Dominik Haering, Justin G. Connell, Hao Wan, Katrine L. Svane, Bostjan Genorio, Pedro Farinazzo Bergamo Dias Martins, Pietro P. Lopes, Brian Gould, Filippo Maglia, Roland Jung, Vojislav Stamenkovic, Ivano E. Castelli, Nenad M. Markovic, Jan Rossmeisl, Dusan Strmcnik. Role of Catalytic Conversions of Ethylene Carbonate, Water, and HF in Forming the Solid-Electrolyte Interphase of Li-Ion Batteries. ACS Catalysis 2023, 13 (13) , 9289-9301. https://doi.org/10.1021/acscatal.3c01531
    13. Arjun S. Kulathuvayal, Yanqing Su. Ionic Transport through the Solid Electrolyte Interphase in Lithium-Ion Batteries: A Review from First-Principles Perspectives. ACS Applied Energy Materials 2023, 6 (11) , 5628-5645. https://doi.org/10.1021/acsaem.3c00287
    14. Kevin Leung. First-Principles Examination of Multiple Criteria of Organic Solvent Oxidative Stability in Batteries. Chemistry of Materials 2023, 35 (6) , 2518-2530. https://doi.org/10.1021/acs.chemmater.2c03806
    15. Weiteng Lin, Xuewen Zheng, Shuo Ma, Kemeng Ji, Chengyang Wang, Mingming Chen. Quasi-Solid Polymer Electrolyte with Multiple Lithium-Ion Transport Pathways by In Situ Thermal-Initiating Polymerization. ACS Applied Materials & Interfaces 2023, 15 (6) , 8128-8137. https://doi.org/10.1021/acsami.2c20884
    16. Andrew Dopilka, Yueran Gu, Jonathan M. Larson, Vassilia Zorba, Robert Kostecki. Nano-FTIR Spectroscopy of the Solid Electrolyte Interphase Layer on a Thin-Film Silicon Li-Ion Anode. ACS Applied Materials & Interfaces 2023, 15 (5) , 6755-6767. https://doi.org/10.1021/acsami.2c19484
    17. Qisheng Wu, Matthew T. McDowell, Yue Qi. Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries. Journal of the American Chemical Society 2023, 145 (4) , 2473-2484. https://doi.org/10.1021/jacs.2c11807
    18. Evan Walter Clark Spotte-Smith, Thea Bee Petrocelli, Hetal D. Patel, Samuel M. Blau, Kristin A. Persson. Elementary Decomposition Mechanisms of Lithium Hexafluorophosphate in Battery Electrolytes and Interphases. ACS Energy Letters 2023, 8 (1) , 347-355. https://doi.org/10.1021/acsenergylett.2c02351
    19. Weilai Yu, Zhiao Yu, Yi Cui, Zhenan Bao. Degradation and Speciation of Li Salts during XPS Analysis for Battery Research. ACS Energy Letters 2022, 7 (10) , 3270-3275. https://doi.org/10.1021/acsenergylett.2c01587
    20. Eric J. McShane, Helen K. Bergstrom, Peter J. Weddle, David E. Brown, Andrew M. Colclasure, Bryan D. McCloskey. Quantifying Graphite Solid-Electrolyte Interphase Chemistry and its Impact on Fast Charging. ACS Energy Letters 2022, 7 (8) , 2734-2744. https://doi.org/10.1021/acsenergylett.2c01059
    21. Robert M. Kasse, Natalie R. Geise, Elias Sebti, Kipil Lim, Christopher J. Takacs, Chuntian Cao, Hans-Georg Steinrück, Michael F. Toney. Combined Effects of Uniform Applied Pressure and Electrolyte Additives in Lithium-Metal Batteries. ACS Applied Energy Materials 2022, 5 (7) , 8273-8281. https://doi.org/10.1021/acsaem.2c00806
    22. Meina Zhang, Lixin Liu, Chunzhe Li. Silicon, carbon, boron nitride nanocages and their halogen doped derivatives as anodes in metal-ion battery. Journal of Physics and Chemistry of Solids 2025, 206 , 112844. https://doi.org/10.1016/j.jpcs.2025.112844
    23. Jia Zhang, Zhongxiu Liu, Chenyang Dang, Xiaoqing Zhu, Tao Zhang, Jing Shen, Hao Yang, Yujie Zhang, Yunteng Cao, Chris Y. Yuan, C. Chase Cao, Guiyin Xu, Meifang Zhu. From lab to industry: High-safety separators for lithium-ion/-metal batteries. Matter 2025, 8 (6) , 102101. https://doi.org/10.1016/j.matt.2025.102101
    24. Xiang Gao, Peiqi Zhou, Haijia Li, Xueyi Zeng, Xin He, Weizhen Fan, Wenlian Wang, Zhen Ma, Junmin Nan. Elevated temperature resilience of pouch LiNi0.8Co0.1Mn0.1O2/graphite batteries through siloxane-induced cathode electrolyte interphase optimization. Journal of Energy Chemistry 2025, 104 , 202-213. https://doi.org/10.1016/j.jechem.2024.12.019
    25. Eunbin Park, Young-Hoon Lee, Sung-Ho Huh, June Huh, Yung-Eun Sung, Seung-Ho Yu. Bifunctional trimethylsilyl-modified fluorinated ester additive for LiF-rich solid electrolyte interphase in lithium metal batteries. Energy Storage Materials 2025, 78 , 104271. https://doi.org/10.1016/j.ensm.2025.104271
    26. Hao Zhang, Zhibo Song, Kai Yang, Yundong Zhou, Yuchen Ji, Lu Wang, Yuxiang Huang, Shenyang Xu, Jianjun Fang, Wenguang Zhao, Guoyu Qian, Shanglin Wu, José V. Anguita, Gustavo F. Trindade, Shida Xue, Haoliang Wang, Ian S. Gilmore, Yan Zhao, Feng Pan. In Situ Aminolysis of Fluoroethylene Carbonate Induced Low‐Resistance Interphase Facilitating Extreme Fast Charging of Graphite Anodes. Advanced Energy Materials 2025, 1 https://doi.org/10.1002/aenm.202406104
    27. Liguo Yue, Manqing Yu, Xiangrong Li, Yinlin Shen, Yingru Wu, Chang Fa, Nan Li, Jijian Xu. Wide Temperature Electrolytes for Lithium Batteries: Solvation Chemistry and Interfacial Reactions. Small Methods 2024, 8 (11) https://doi.org/10.1002/smtd.202400183
    28. Israel Temprano, Javier Carrasco, Matthieu Bugnet, Ivan T. Lucas, Jigang Zhou, Robert S. Weatherup, Christopher A. O'Keefe, Zachary Ruff, Jiahui Xu, Nicolas Folastre, Jian Wang, Antonin Gajan, Arnaud Demortière. Advanced methods for characterizing battery interfaces: Towards a comprehensive understanding of interfacial evolution in modern batteries. Energy Storage Materials 2024, 73 , 103794. https://doi.org/10.1016/j.ensm.2024.103794
    29. Calvin D. Quilty, Edelmy J. Marin Bernardez, Andrew Nicoll, MD Jamil Hossain, Arun Kingan, David J. Arnot, Hafsa A. Mohamed, Ciara L. O'Connor, Xiao Tong, Cherno Jaye, Daniel A. Fischer, Lei Wang, Yue Qi, Esther S. Takeuchi, Amy C. Marschilok, Shan Yan, David C. Bock, Kenneth J. Takeuchi. Lithium-ion battery functionality over broad operating conditions via local high concentration fluorinated ester electrolytes. RSC Applied Interfaces 2024, 1 (5) , 1077-1092. https://doi.org/10.1039/D3LF00259D
    30. Yuqing Chen, Yun Zhao, Aiping Wang, Daozhen Zhang, Baohua Li, Xiangming He, Xiulin Fan, Jilei Liu. Cosolvent occupied solvation tuned anti-oxidation therapy toward highly safe 4.7 V-class NCM811 batteries. Energy & Environmental Science 2024, 17 (16) , 6113-6126. https://doi.org/10.1039/D4EE02074J
    31. Shuang Wan, Weiting Ma, Yutong Wang, Ying Xiao, Shimou Chen. Electrolytes Design for Extending the Temperature Adaptability of Lithium‐Ion Batteries: from Fundamentals to Strategies. Advanced Materials 2024, 36 (21) https://doi.org/10.1002/adma.202311912
    32. Glenn R. Pastel, Travis P. Pollard, Qian Liu, Sydney Lavan, Qijia Zhu, Rongzhong Jiang, Lin Ma, Justin Connell, Oleg Borodin, Marshall A. Schroeder, Zhengcheng Zhang, Kang Xu. Designing interphases for highly reversible aqueous zinc batteries. Joule 2024, 8 (4) , 1050-1062. https://doi.org/10.1016/j.joule.2024.02.002
    33. Xiaokun Ge, Marten Huck, Andreas Kuhlmann, Michael Tiemann, Christian Weinberger, Xiaodan Xu, Zhenyu Zhao, Hans-Georg Steinrück. Electrochemical Removal of HF from Carbonate-based LiPF 6 -containing Li-ion Battery Electrolytes. Journal of The Electrochemical Society 2024, 171 (3) , 030522. https://doi.org/10.1149/1945-7111/ad30d3
    34. Li-Juan Zhang, Jin-Zuo He, Xiao Yan, Lu-Fang Luo, Hao-Dong Qiu, Jian-Hong Peng, Qing-Qing Ma, Ning-Shuang Zhang. Enhancing low-temperature electrolyte performance through intermittent discharge for improved LiODFB additive film formation. Journal of Electroanalytical Chemistry 2024, 957 , 118124. https://doi.org/10.1016/j.jelechem.2024.118124
    35. Chuntian Cao, Hans-Georg Steinrück. Molecular-scale synchrotron X-ray investigations of solid-liquid interfaces in lithium-ion batteries. 2024, 391-416. https://doi.org/10.1016/B978-0-323-85669-0.00105-7
    36. Yuqing Chen, Qiu He, Yun Zhao, Wang Zhou, Peitao Xiao, Peng Gao, Naser Tavajohi, Jian Tu, Baohua Li, Xiangming He, Lidan Xing, Xiulin Fan, Jilei Liu. Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43163-9
    37. Yangyang Liu, Haodong Shi, Zhong-Shuai Wu. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy & Environmental Science 2023, 16 (11) , 4834-4871. https://doi.org/10.1039/D3EE02213G
    38. Josef Rizell, Anton Zubayer, Matthew Sadd, Filippa Lundin, Nataliia Mozhzhukhina, Fredrik Eriksson, Jens Birch, Alexei Vorobiev, Shizhao Xiong, Aleksandar Matic. Neutron Reflectometry Study of Solid Electrolyte Interphase Formation in Highly Concentrated Electrolytes. Small Structures 2023, 4 (11) https://doi.org/10.1002/sstr.202300119
    39. Zihao Li, Lingchen Kong, Cong Peng, Wei Feng. Gas‐phase fluorination of conjugated microporous polymer microspheres for effective interfacial stabilization in lithium metal anodes. Carbon Energy 2023, 5 (10) https://doi.org/10.1002/cey2.354
    40. Hang Yang, Libo Li, Yuhang Shan, Xibang Chen, Yangmingyue Zhao, Shubo Fan. CuO-ZnO heterojunction doped 2D ultrathin carbon nanosheet catalyzes rapid charge-transfer kinetics of lithium-sulfur batteries. Applied Surface Science 2023, 635 , 157738. https://doi.org/10.1016/j.apsusc.2023.157738
    41. Ben Jagger, Mauro Pasta. Solid electrolyte interphases in lithium metal batteries. Joule 2023, 7 (10) , 2228-2244. https://doi.org/10.1016/j.joule.2023.08.007
    42. Xiaolei Sun, Meiyi Jing, Hong Dong, Wenhe Xie, Feng Luo. CuO-ZnO submicroflakes with nanolayered Al2O3 coatings as high performance anode materials in lithium-ion batteries. Journal of Alloys and Compounds 2023, 953 , 170137. https://doi.org/10.1016/j.jallcom.2023.170137
    43. Yongyu Liu, Longfei Han, Can Liao, Heng Yu, Yongchun Kan, Yuan Hu. Ultra-thin, non-combustible PEO polymer solid electrolyte for high safety polymer lithium metal batteries. Chemical Engineering Journal 2023, 468 , 143222. https://doi.org/10.1016/j.cej.2023.143222
    44. Xiaopan Jin, Gaoxu Huang, Xianming Zhao, Guoli Chen, Mengjia Guan, Yongsheng Li. An in situ LiF-enriched solid electrolyte interphase from CoF 2 -decorated N-doped carbon for dendrite-free Li metal anodes. Energy Advances 2023, 2 (5) , 725-732. https://doi.org/10.1039/D3YA00035D
    45. Fuming Du, Tuo Ye, Yimin Shi, Yong Zhang, Ziyi Qiu, Wei Liu, Tiezheng Lv, Shiyun Duan, Jianjun Liu. Deciphering reduction stability of sulfone and fluorinated sulfone electrolytes:Insight from quantum chemical calculations. Chemical Physics 2023, 568 , 111840. https://doi.org/10.1016/j.chemphys.2023.111840
    46. Shiyuan Zhou, Qizheng Zheng, Shi Tang, Shi-Gang Sun, Hong-Gang Liao. Liquid cell electrochemical TEM: Unveiling the real-time interfacial reactions of advanced Li-metal batteries. The Journal of Chemical Physics 2022, 157 (23) https://doi.org/10.1063/5.0129238
    47. Eric J. McShane, Partha P. Paul, Tanvir R. Tanim, Chuntian Cao, Hans-Georg Steinrück, Vivek Thampy, Stephen E. Trask, Alison R. Dunlop, Andrew N. Jansen, Eric J. Dufek, Michael F. Toney, Johanna Nelson Weker, Bryan D. McCloskey. Multimodal quantification of degradation pathways during extreme fast charging of lithium-ion batteries. Journal of Materials Chemistry A 2022, 10 (44) , 23927-23939. https://doi.org/10.1039/D2TA05887A
    48. Xiaowei Ji, Aibin Huang, Hanxiang Jia, Dazhi Sun, Ping Jin, Xun Cao. The ion migration process and cyclic stability of voltage-induced vanadium dioxide phase transition. Journal of Materials Chemistry C 2022, 10 (39) , 14703-14710. https://doi.org/10.1039/D2TC02668F
    49. Yuqing Chen, Qiu He, Ying Mo, Wang Zhou, Yun Zhao, Nan Piao, Chi Liu, Peitao Xiao, Hui Liu, Baohua Li, Shi Chen, Li Wang, Xiangming He, Lidan Xing, Jilei Liu. Engineering an Insoluble Cathode Electrolyte Interphase Enabling High Performance NCM811//Graphite Pouch Cell at 60 °C. Advanced Energy Materials 2022, 12 (33) https://doi.org/10.1002/aenm.202201631
    50. Bo Nan, Long Chen, Nuwanthi D. Rodrigo, Oleg Borodin, Nan Piao, Jiale Xia, Travis Pollard, Singyuk Hou, Jiaxun Zhang, Xiao Ji, Jijian Xu, Xiyue Zhang, Lin Ma, Xinzi He, Sufu Liu, Hongli Wan, Enyuan Hu, Weiran Zhang, Kang Xu, Xiao‐Qing Yang, Brett Lucht, Chunsheng Wang. Enhancing Li + Transport in NMC811||Graphite Lithium‐Ion Batteries at Low Temperatures by Using Low‐Polarity‐Solvent Electrolytes. Angewandte Chemie 2022, 134 (35) https://doi.org/10.1002/ange.202205967
    51. Bo Nan, Long Chen, Nuwanthi D. Rodrigo, Oleg Borodin, Nan Piao, Jiale Xia, Travis Pollard, Singyuk Hou, Jiaxun Zhang, Xiao Ji, Jijian Xu, Xiyue Zhang, Lin Ma, Xinzi He, Sufu Liu, Hongli Wan, Enyuan Hu, Weiran Zhang, Kang Xu, Xiao‐Qing Yang, Brett Lucht, Chunsheng Wang. Enhancing Li + Transport in NMC811||Graphite Lithium‐Ion Batteries at Low Temperatures by Using Low‐Polarity‐Solvent Electrolytes. Angewandte Chemie International Edition 2022, 61 (35) https://doi.org/10.1002/anie.202205967
    52. Sifan Chen, Di Jin, Yu Zhao, Huiting Zhao, Xiaotong Zhou, Junfeng Yan, Gang Wang, Wu Zhao, Jiangni Yun, Zhiyong Zhang. In-situ construction of vacancies and schottky junctions in nickel-iron selenide within N-graphene porous matrix for enhanced sodium/potassium storage. Journal of Alloys and Compounds 2022, 911 , 165091. https://doi.org/10.1016/j.jallcom.2022.165091
    53. Qingkui Peng, Ziyi Liu, Lihua Jiang, Qingsong Wang. Optimized Cycle and Safety Performance of Lithium–Metal Batteries with the Sustained‐Release Effect of Nano CaCO 3. Advanced Energy Materials 2022, 12 (20) https://doi.org/10.1002/aenm.202104021
    54. Lei Hu, Haifeng Xue, Lingli Liu, Sheng Liang, Tao Ding, Ningning Zhou, Lili Wang, Chonghai Deng, Yongsheng Han. Directing electrochemical reaction mechanism via interfacial control for better sulfur cathode. Applied Surface Science 2022, 581 , 152353. https://doi.org/10.1016/j.apsusc.2021.152353
    55. Jianwen Liu, Ming Yue, Shiquan Wang, Yufeng Zhao, Jiujun Zhang. A Review of Performance Attenuation and Mitigation Strategies of Lithium‐Ion Batteries. Advanced Functional Materials 2022, 32 (8) https://doi.org/10.1002/adfm.202107769
    56. Xun Cao, Xiaowei Ji, Aibin Huang, Hanxiang Jia, Dazhi Sun, Ping Jin. Ion Migration Process and Cyclic Stability of Voltage-Induced Vanadium Dioxide Phase Transition. SSRN Electronic Journal 2022, 28 https://doi.org/10.2139/ssrn.4097428

    Chemistry of Materials

    Cite this: Chem. Mater. 2021, 33, 18, 7315–7336
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.1c01744
    Published September 14, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    5205

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.